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ABSTRACT

We describe a discrete event simulator developed for daily
prediction of WIP position in an operational 300mm wafer
fabrication factory to support tactical decision-making. The
simulator is distinctive in that its intended prediction horizon
is relatively short, on the order of a few days, while its mod-
eling scope is relatively large. The simulation includes over
90% of the wafers being processed in the fab and all process,
measurement and testing tools. The model parameters are
automatically updated using statistical analyses performed
on the historical event logs generated by the factory. This
paper describes the simulation model and the parameter
estimation methods. A key requirement to support daily
and weekly decision-making is good validation results of
the simulation against actual fab performance. Therefore,
we also present validation results that compare simulated
production metrics against those obtained from the actual
fab, for fab-wide, process, tool and product specific metrics.

1 INTRODUCTION

A wafer fabrication factory is a complex manufacturing
environment which may consist of hundreds of product
routes, thousands of process steps with re-entrant flows
through hundreds of tools. Stochasticity is introduced by
the inherent variability in processing time, testing time,
unplanned tool outages and wafer re-work. Additionally,
some modern fabs may be controlled by multiple layers
of automation rules for lot dispatching, material handling
and processing. In practice, it is difficult to understand
their interactions with each other and with the day-to-day
decisions made by the fab managers in the interest of
maintaining the productivity of the fab.

While factory managers seek to optimize long term
(i.e., on the order or months or years) metrics such as
cycle time, they also have short term (i.e., on the order
of a few days or weeks) objectives for which accurate
simulations of fab-wide or sector specific metrics may be

needed. For example, when tools go down unexpectedly
and WIP accumulates in certain sectors of the fab, managers
may need to consider alternative strategies for clearing the
excess work-in-progress (WIP). Alternatively, a fab manager
may want to know when a surge of WIP may arrive at a
tool, or when an accumulation of WIP can be expected to
clear a tool, so that the tool’s capacity can be allocated to
other jobs or be brought down for preventative maintenance.
Occasionally, a customer may need to expedite an order,
and fab managers must determine the most efficient method
of expediting specific lots through the fab.

Given the dynamic and complex nature of the fab, the
best solution to these transient and tactical problems may
depend on the current state of the fab. As such, a simulation
tool that produces accurate short term predictions of the
movement of WIP based on the current state of the fab can
be an enormous advantage. As far as the authors are aware,
the literature does not report on the validation of full-factory
simulation models against short-term (operational) metrics
for an actual semiconductor fab.

We have developed a discrete event simulation model
for predicting WIP positions and throughput for the I.B.M.
300mm wafer fabrication factory in East Fishkill, NY (Yario
2005). A rather unique aspect of this factory is that it uses
a common set of resources to fabricate both high volume
production wafers representing the relatively mature product
lines being manufactured in the fab as well as the lower
volume but more diverse development lots representing new
technologies. Our simulator incorporates all the process,
measurement and testing tools being utilized and 90% of
the wafers being processed in this factory within a single,
integrated model. This simulation tool is capable of au-
tomatically accessing the current operational state of the
factory for the purpose of calibrating its parameters.

Our key objectives for building this tool include the
following:

• Forecast WIP position one to five days into the
future to aid day-to-day decision-making

2021 978-1-4244-2708-6/08/$25.00 ©2008 IEEE

Proceedings of the 2008 Winter Simulation Conference
S. J. Mason, R. R. Hill, L. Mönch, O. Rose, T. Jefferson, J. W. Fowler eds.



Bagchi, Chen-Ritzo, Shikalgar, and Toner

• Optimize the production control rules for imple-
menting tactical decisions

• Provide analytic support for strategic productivity
initiatives

• Quantify the potential impact of predicted industry
trends (Pillai 2006) on manufacturing productivity
(e.g., smaller lot sizes and greater product mix)

To meet these objectives, the requirements of our simulator
include the ability to:

1. Model the full scope of the fab with enough detail
to provide accurate predictions for fab-wide and
localized metrics a few days out from a given state
of the fab

2. Perform quickly enough for multiple replications
and experiments to be run by the user in an inter-
active manner

3. Require ‘zero’ data entry for the user
4. Provide automated parameter extraction for the

simulation model, based on historical performance
data from a rolling time window, so that the model
can be re-calibrated to the changing characteristics
of the fab.

In this paper, we describe the components of our full-
factory simulation model and the production control rules
it implements. We describe our approach to addressing the
objectives and implementing the capabilities listed above.
We also report on the validation of the simulated productivity
metrics outputs against the actual data obtained from the
factory.

2 BACKGROUND

The use of simulation for modeling semiconductor manu-
facturing is abundant in the literature. Simulation studies
are typically focused on studying the longer term, steady
state behavior of the fab. For this purpose, one stream
of research has focused on developing simple but efficient
models of the fab for estimating impact of tool utilization or
throughput on cycle time (Johnson et al. 2005, Rose 2007).
Another stream of research has focused on the use of dis-
crete event simulators that allow for more detailed modeling
of inputs and outputs (DeJong and Fischbein 2000). For
example, Pillai et al. (2004) study, among other things, the
impact of priority lots, new product introductions, and lot
sampling policies. Bureau et al. (2007) use simulation to
compare alternative WIP management policies. Sivakumar
and Chong (2001) quantify the effects of lot size, lot re-
lease controls and machine dispatching rules, among other
things, on throughput, cycle time and cycle time spread,
for backend manufacturing steps. Klein and Kalir (2006)
develop a simulation model for studying transient behavior

of a factory as new products ramp up and old products ramp
down.

While the previously cited simulation efforts are pri-
marily focused on studying the impact of various factors
from a planning perspective, our focus is on producing
near term predictions, based on the current state of the fab,
for day-to-day decision making. The reasons for this are
described in the introduction. Therefore, successful valida-
tion of our model pertaining to short term movements in
WIP is of considerable importance, and we present several
validation results in this paper. Much of the prior literature
provide limited validation results focusing on high-level
metrics such as fab cycle time or throughput. In contrast,
the users of our simulation model are interested in metrics
at the sector, process or product flow level, in addition to
the fab level. Therefore, we present validation results at
various levels of granularity.

We chose to develop our discrete event simulator in-
house rather than using commercially available packages
so as to allow ourselves the greatest amount of flexibil-
ity in modeling and reporting. Simulation efficiency for a
factory-wide model and the ability to integrate the simulator
with in-house optimization plug-ins were also high prior-
ities. Additionally, visualization of the simulation, one of
the main advantages of commercial simulation packages,
was not a priority. For readers interested in commercial
simulation packages, Mason and Jensen (1996) performed
a benchmarking study of some of the most popularly used
packages.

3 SIMULATION MODEL

3.1 Fab Model Components

In order to model fab-wide scope of the production control
rules, the simulation model covers the entire fab. It includes
over 90% of the wafers being fabricated, comprising over
50,000 wafers organized in lots of up to 25 wafers. The
types of lots being modeled are production which is high
volume, development which is lower volume with fewer
wafers per lot, and engineering. Each lot is assigned to
a route or main process description which specifies the
sequence of operations on the lot. An operation describes
a process to be performed on a wafer using a recipe that
depends on the product being made. The chosen recipe
determines a set of tools qualified for it. The simulation
model includes all the routes that are required to model the
targeted 90% of the WIP (about 90 routes), and all of the
operations (60,000 over all the modeled routes), processes
(8000), recipes (30,000), and tools (600) associated with
these routes. Figure 1 shows the relationship between the
various components in the simulation model.

The fab contains hundreds of process tools with a variety
of wafer processing behavior that must be modeled. Most
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Figure 1: Fab Model Components

tools process wafer by wafer, although they may often have
multiple chambers for parallel or pipeline wafer processing.
Some tools process a batch of lots at a time while others
process a small batch of a few wafers (within a lot) at a
time. The simulator also models sampling tools where a
few wafers from each lot are measured or tested. Tools
are organized into tool groups that perform similar types of
processes and then further grouped into areas or sectors.

The flow of WIP through the fab is controlled by various
factors that are modeled in the simulation. Foremost among
them are the production control rules that are described in
detail in §3.2. The other factors modeled are lot holds, lot
sampling, and tool downs.

Lots can go on hold due to certain pre-defined or event-
based triggers. Held lots are taken out of the automated
workflow so that process managers may decide their future
course. Holds are more prevalent on lots on development
routes where the manufacturing process is still being per-
fected.

Lot sampling is performed at several operations in a
route which are non-mandatory. These are usually test and
measurement steps. Various rules based on quality control
determine the sampling rate of the number of lots that
perform this operation as well as the number of wafers
sampled from these lots.

Tool down-time can be grouped into actual equipment
maintenance event that may be scheduled or unscheduled.
In addition, tools are often not available for processing
wafers because they are either inhibited, preparing monitor
wafers, or being re-qualified for processing.

We do not simulate the details of the automated material
handling system that is used to transport lots between tools.
Instead, we derive travel time parameters from historical
logs.

3.2 Production Control Rules

The production control rules influence the scheduling and
dispatching of lots. They are defined over a wide range of
time horizons, from monthly to ‘real-time’. At monthly,
or weekly, intervals, a set of rules assign ‘daily takt rates’
(DTRs) to product groups based on planned wafer starts.
Meanwhile, daily, or intra-day, throughput targets are set
according to a set of ‘range target’ rules based on actual
work-in-progress (WIP) positions. Finally, ‘real-time’ lot
dispatching rules assign priority ‘tags’ to individual lots.
The range target and lot tagging rules are used to align
the movement of WIP with the DTRs. targeted throughput
levels. Table 3.2 summarizes the basic characteristics of
the DTR, range targets and lot tags.

Table 1: Summary of Elements of Production Control

Elements Description

DTR Desired daily throughput by range
Updated weekly

Range Target Guides lot tagging by range
Updated every 4 hours

Lot Tag Influences dispatch priority of a lot
Updated every 30 minutes

DTRs are collectively set for a flow, which is a group
of routes with similar operations. The DTR levels for all
the flows should account for the capacity of the fab and be
based on the planned wafer starts, so that the throughput
targets are realistically set. Within a flow, different DTR
levels may be specified for different segments along the
flow, depending on how the wafers are distributed from the
front-end to the back-end of the routes in the flow.

To manage the wafers within a flow, the flow is divided
into ranges, where each range consists of a set of consecutive
operations that are expected to complete in 24 hours. A DTR
may be specified for each range, though adjacent ranges
may often be given the same DTR. Figure 2 provides an
example of how DTR levels may be set for ranges in a
given flow. In this figure the WIP in a range is the sum of
the WIP in all operations within that range. The DTRs are
typically reviewed weekly, and modified if necessary.

Given the current WIP and DTR levels for each range,
production control rules are used to help achieve the DTR
by influencing how lots are dispatched. These rules are
implemented in two stages. The first stage defines a ‘range
target’ for each range in a product flow. Unlike the DTR,
the range target is re-calculated every 4 hours and is meant
to be a short term throughput target for the range to bring
the WIP and DTR into closer alignment. The second stage
defines a ‘tag’ for each lot. The lot tags are updated every
30 minutes.
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Figure 2: Example of Daily Takt Rate Levels By Range for
a Given Flow

In the first stage, the rules for setting the range target
for a given range, i, reflect the following general guidelines,
where ‘low’ and ‘high’ WIP are defined relative to the DTR
level:

• If the WIP level in range i− 1 (i.e., the range
immediately downstream from range i) is ‘low’,
then if the WIP in the range i is high enough, range
i will be given a ‘high’ range target.

• If the WIP level in range i− 1 is ‘low’, then if
the WIP in the range i is not high enough, range
i will ‘pull’ WIP from range i+ 1 (i.e., the range
immediately upstream from range i).

• If the WIP level in range i−1 is ‘high’, then the
range target for range i is set to zero (i.e., range i
is ‘stopped’).

In the second stage, the rules for specifying lot tags reflect
the following general guidelines, where a tag of lower value
receives a higher priority in dispatching:

• All other things remaining equal between a pair of
lots:

– Lots classified as high priority will be given
a lower tag value.

– Lots being ‘pulled’ (see range target rule guide-
lines) into the range immediately downstream
will be given a lower tag value.

– Lots nearer to completing a range will be given
a lower tag value.

– Lots arriving in a queue earlier will be given
a lower tag value.

– Lots that must be processed through the range
that day in order to achieve the range target
will be given a lower tag value.

When a lot with a sufficiently high valued tag (i.e., suffi-
ciently low priority) reaches the end of a range, it will be
stopped if the range target has already been met.

3.3 Model Parameter Estimation

The fab-wide scope and the daily frequency of running the
simulation model requires that the data inputs to the simulator
be automated. The model data can be grouped into two
categories. First, data such as the current WIP, routes, list of
tools, can be queried directly from databases and loaded into
the simulator. The second category consists of parameters
that need to be estimated, such as tool performance. This
section describes how we estimate these parameters based on
historical event log data over a rolling time window. These
estimations are implemented in software and refreshed once
a week to keep track of changes in the fab.

3.3.1 Tool Processing Parameters

Our objective is to model the tools in the fab as accurately
as possible without explicitly modeling the internal details
of these tools. For each tool, our model predicts the timing
of two events:

1. the process start time, given the time when a lot
arrives at a tool load port and the lots currently
being processed by the tool.

2. the process end time, given the process start time
and the recipe used to process the lot.

The process start time prediction depends on the type
of tool. For pipeline tools such as photolithography, wafers
from each lot go through a series of steps inside the tool.
The first wafer of a lot starts processing on the tool once the
last wafer from the previous lot, if any, in the tool completes
a processing step. This logic is shown in Figure 3(a), which
shows the load complete (LC), process start (PS), and process
end (PE) events along the processing timeline of two lots.
We denote the time gap between two successive starts as the
time between batch ins (TBBI). TBBI is a linear function
of the number of wafers in the previous lot. Therefore, we
use linear regression to estimate this parameter from tool
processing event logs for each pipeline tool-recipe pair.

Other tools process lots or batches of lots in a sequential
manner. The trigger for the second lot to enter process start
(PS) depends on the process end (PE) event of the previous
lot. This trigger is often received a fixed time interval prior
to the process end of the previous lot, denoted as overlap
in Figure 3(b). In some tools, this overlap is negative,
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Figure 3: Process Start Logic

signifying a gap between processing successive lots on
these tools. We estimate the overlap parameter for each
serial tool by taking an average over the observed overlaps
or gaps in all the cases where the second lot had to wait at
the tool prior to processing.

The processing time for a lot is another critical factor
to be estimated from tool processing event logs. This is
the time between process start (PS) and process end (PE),
as shown in Figure 3. It could depend on various factors
such as the number of wafers, the recipe being used, and
the number of parallel chambers in the tool. We categorize
tools according to their processing logic (i.e., wafer, batch,
small-batch and sample):

For wafer tools, processing time is linearly proportional
to the number of wafers in a lot. We estimate the fixed setup
time and variable time per wafer using linear regression over
all tool processing events for a given recipe (see Figure 4).

For batch tools, processing time is fixed for a set of
lots that can be processed in a batch. We estimate the
average batch processing time for each recipe from the tool
processing event logs (see Figure 5).

For small-batch tools, a small batch of wafers (e.g.,
13) within a lot can be processed in constant time. The
total time required for a lot depends on the multiples of
small batches (1 or 2) that can be constructed for a lot.
We estimate the average time required as a function of the
number of batches per lot and the recipe used from the tool
processing event logs.

For sampling tools, measurement and testing tools often
sample a fixed number of wafers (e.g., 3) from a lot. The
time required depends on the number of wafers sampled.
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Figure 5: Processing Times For a Batch Tool

Another aspect of tool processing time that is critical
for the accuracy of the simulation is ‘training’. A tool can
reduce setup time when it processes two successive lots
with the same recipe. To benefit from this, lot dispatching
rules often create ‘trains’ (i.e., a back-to-back sequence of
lots with similar recipes). When estimating the processing
times from event logs, it is important to detect the effect of
such trains. Figure 4 shows the raw processing time data
plotted as a function of the number of wafers in a lot for
a single tool. In this example, the effect of training can
be seen as a 25 minute reduction in setup time. Based on
the train or non-train classification of each lot, we generate
two linear regressions for each recipe. During simulation
we apply the appropriate regression parameters depending
on the recipe of the current and previous lot processed in
the tool.
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3.3.2 Tool Availability

We consider the following tool states in the simulator:
unplanned down, planned down, idle with WIP, idle without
WIP and processing. Unplanned down states refer to tool
down states that result from unexpected events such as
machine failure or failed quality tests. Planned downs are
downs states that are the result of scheduled maintenance, or
anticipated ‘trigger’ events (e.g., a certain number of wafers
have been processed on the tool) that regularly cause the
tool to go down for maintenance. While planned downs are
certainly more predictable than unplanned down states, these
‘trigger’ events certainly lend an element of uncertainty to
even the planned down states. Additionally, even for planned
down states, the duration of the down is not necessarily
certain. If a tool is either idle or processing, it is considered
to be ‘up’, or available.

We use the same approach for simulating unplanned
and planned down states. Using historical tool state data,
we generate discretized empirical distributions for the time
between ‘failures’ for individual tools as well as for the
duration of a ‘failure’. During the simulation, down events
for each tool are generated from these empirical distributions.
If sampling from these distributions results in an overlapping
planned and unplanned down state, we simulate these as
back-to-back down states.

3.3.3 Lot Holds and Lot Sampling

In the fab, a lot may go on hold (see §3.1), in which case
it does not undergo any processing. We simulate lot holds
similar to the manner in which we simulate tool down
states. That is, we collect historical data regarding the time
between hold events and the duration of hold events for
lots performing a particular process and generate empirical
distributions from this data.

When an operation in a route involves a sampling tool
(i.e., a non-mandatory operation), not all lots on the route
will have that operation performed. Since the sampling rates
for these operations are not explicitly recorded in the fab,
we estimated the sampling rates from historical data. In
particular, for each non-mandatory operation, we observed
the number of lots that were processed at the last mandatory
operation that preceded the operation. We then compare
that number with the number of lots that were processed at
the non-mandatory operation. The ratio between these two
numbers is used to estimate the lot sampling rate for the
non-mandatory operation.

3.3.4 Implementation

The simulator was implemented as a Java application. It
takes less than 1 second to simulate a single replication
of the flow of 50,000 wafers for a day on a 2.16 GHz

personal computer. The time it takes to run the simulation
increases linearly with the number of days and replications
simulated. All the inputs for a simulation are read in from
networked drives containing current and historical snapshots
of the fab state as well as the simulation parameters that are
periodically extracted from event logs. The user specifies
the starting date for the simulation and the number of days
and replications to run. Users can run simulations using
current fab data or historical data.

3.3.5 Simulation Initialization

In order to predict hourly WIP positions while running short
term simulation spanning one to three days, the simulator
cannot enjoy a substantial warm up period. Our experiments
showed that the warm-up times were significantly affected
by the tool states. We start the simulation with a 6AM
snapshot of the WIP in the actual fab, the lot holds and tool
states and initialize the simulated lots and tools accordingly.

4 RESULTS

Given our objective of using the simulator as an operational
decision-support tool, we validate its predictions against the
actual data observed in the fab on a daily basis. In this
section, we describe the various types of validations we
perform.

4.1 Validating Tool Throughput

To validate our model of how tools process lots, we inde-
pendently considered each process and sampling tool in the
fab. Using the models described in §3.3.1, we simulated
each tool with a stream of job arrivals corresponding to
the actual stream of jobs that the real tool encountered at
some point in history. We then compared the simulated
throughput of the tool with the actual throughput of the
tool. Figure 6 shows the comparison of hourly throughput
of a given tool over a 7 day simulation horizon.

4.2 Validating Fab Throughput

A popular metric for measuring productivity in a fab is fab
throughput, or the total number of daily wafer moves (i.e.,
the total number of operations completed on all wafers)
in the fab. Once the throughput for individual tools was
validated, the obvious next step was to validate the daily
wafer moves in the fab. In Figure 7, we compare 3 data
series over eight, 24 hour periods. The first data series
charts the actual fab throughput on each of the given dates.
The second and third data series were generated from daily
simulations over 24 hour periods that was initialized with
the WIP and route data that was current at the start of each
period. Each data series in Figure 7 is missing a data point
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Figure 7: Validation of Overall Moves

for March 14 due to incomplete input data, which prevented
us from simulating fab throughput on that date. The error
bars provided for the simulated data series provide lower
and upper bounds that are within two standard deviations
of the average fab throughput. 20 replications were run for
each simulated date.

The second data series charts the simulated average
throughput when all model parameters are estimated from
historical data as described in §3.3. The third data series
charts the simulated average throughput when assuming
actual tool availabilities instead of the estimated tool avail-
abilities. Additionally, the third data series was generated
using tool processing parameters estimated from the most
recent 2 weeks of historical data as opposed to 8 weeks
of historical data, as is the case for the first data series.
Therefore, the uncertainty in the simulation used to generate
the third data series is more or less limited to lot holds and
lot sampling rates. We expect the third data series to match

Wafer Moves Comparison
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Flows
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Figure 8: Validation of Moves by Flow

more closely with the actual fab throughput than the second
data series, and this indeed what is observed. The low error
in the third data series indicates success in modeling the
fab processes, the production control rules, and our data
estimation approach. The higher error in the second data
series reflects the daily deviations of tool performance from
their historical averages that result in temporary bottlenecks.
For predictions of future fab performance, the simulation
accuracy for fab throughput is likely to be similar to that
obtained by the second data series. However, if one uses
the simulator to study how fab performance for past time
periods could have been impacted by alternative scenar-
ios or decisions than what had actually occurred, then the
accuracy of the simulator is expected to be closer to that
associated with the third data series.

In addition to overall fab throughput, engineers are also
often interested in the wafer moves by flow or lot type (i.e.,
production, development, engineering). Figure 8 provides
a comparison of our simulated wafer moves by flow with
the actual moves by flow, over a 24 hour period.

4.3 Validating Lot Trajectories

Another form of forecast useful to the product and devel-
opment managers of the fab is the expected movement of
‘focus’ lots. Figure 9 shows multiple replications of the
simulated trajectory of a lot over several days. Specifically,
a single trajectory charts the range that the lot is in on a
given day. Recall that lots move from higher range num-
bers to lower range numbers over time. Overlaid on the
simulated trajectories is the actual trajectory of this lot, as
recorded in the historical data. As expected, the error in
the predicted trajectory increases farther into the simulation
horizon. The error is also a function of the type of route
the lot is on. The trajectory of lots on production routes is
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Figure 9: Example of Lot Trajectory Prediction for a Single
Lot

easier to predict than development routes due to the higher
chances of branching and holds in the latter.

4.4 Validating X-Factor

X-factor is a common semiconductor manufacturing metric
that measures the total time that that a wafer spends queueing
and processing, relative to its raw processing time. Different
product flows may have different X-factor targets. Typically,
the fab managers at Fishkill are interested in tracking X-
factor by lot type (e.g., production, development). Table 2,
shows the simulation error in the expected X-factor for
production and development lots, in 4 different weeks. That
is, the simulator was run with a 7 day simulation horizon
for 4 different start dates. According to the results in this
table, the average error over the 4 weeks is under 5%.

Table 2: Percentage Deviation of Simulated Weekly X-
Factor from Actual

Week Production Lots Development Lots

1 4.3% -5.1%
2 4.3% -4.1%
3 1.2% 1.5%
4 9.2% 0.2%

4.5 Examples of Daily Projections by Process Type

Recall from Figure 1 that similar recipes belong to the same
process type. A process type is confined to one area, and
utilizes a subset of the tools in that area. A tool could be
assigned to more than one process type. In the Fishkill
manufacturing plant, WIP is regularly reported by process
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Figure 10: Example of Daily WIP Projection for a Process
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Figure 11: Example of Daily Throughput Projection for a
Process Type

type because, for most purposes, it provides a convenient
summary of data that would be considered too detailed if
provided at the individual tool level. Additionally, process
types are more easily correlated to product flows than a
simple tool grouping (i.e., a partition of the set of tools)
would be. Figure 10 shows a daily prediction of average
hourly WIP for a process type and its comparison with
the actual. The error bars around each data point capture
2 standard deviations around the simulated average hourly
wip.

Figure 11 shows a daily projection of the throughput
expected for a given process type. Given the throughput and
WIP for a process type, one can also derive the expected
number of incoming wafers for a process type. An example
of daily in-gate projections is provided in Figure 12. Daily
WIP, in-gate and throughput projections provide a valuable
forecast of the load expected at a process type and allows
equipment engineers to prioritize tool maintenance events
and allocation of tool capacity accordingly.
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Figure 12: Example of Daily In-Gates for a Process Type

5 CONCLUSIONS

In this paper we described the components of a discrete-
event simulator that we used to model the IBM 300mm
semiconductor manufacturing plant in East Fishkill, NY. We
also presented results validating the accuracy of the model.
The simulator is capable of providing daily forecasts of
the average WIP, incoming WIP, and throughput to process
managers and equipment engineers to support their daily
decision-making. It can also be used to analyze the potential
impact of tactical changes in the production control rules or
tool maintenance schedules before implementing them in
the fab. Other useful applications of the simulator include
the analysis of the potential impact of the high-priority lots,
WIP imbalances, lot sampling policies, tool availability, lot
and batch sizes and WIP balancing.
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