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ABSTRACT

In this paper, we present a comparative study of different
stochastic components of genetic algorithms for simulation-
based optimisation of the buffer allocation problem. We
explore the effects of elements such as operators, fitness
assignment strategies and elitism. Three different recom-
bination operators, incorporated with constraint handling
mechanisms such as repair and penalty functions, are ex-
amined. Under the shed of the experiments, we incorporate
problem specific knowledge to further enhance the practical-
ity of GA in decision making for buffer allocation problem.

1 INTRODUCTION

The increasing body of literature in the field of simulation-
based optimisation reveals the importance of moving beyond
the use of simulation models as simply explorative tools for
alternative system designs in an heuristic fashion (Belton
et al. 2004). This area is now the focus of much research
and development in both academia and practice.

The buffer allocation problem (BAP) is a combinatorial
optimisation problem which can be observed in many man-
ufacturing and supply chain systems (Dolgui et al. 2007).
BAP is mainly concerned with improving the throughput
rate in a production line by exploring alternative buffer
allocation schemes.

BAP belongs to the class of NP-hard combinatorial
problems such as knapsack and travelling-sales man prob-
lems (Huang et al. 2002). For such problems, there exists no
algorithm to solve them in polynomial time. Turchyn (2007)
identifies that complete methods which guarantee an opti-
mal solution for NP-hard problems may require exponential
computation time. In most of the real-world problems, the
decision variable space can be large and solution evalua-
tion durations may be long depending on the methodology.
These issues essentially render complete methods computa-
tionally inefficient for complex problems. Simulation-based
optimisation is a good example of such problems owing to

the complexities such as uncertainties, size of the system
modelled and number of the decision variables. These dif-
ficulties may require a sacrifice from solution quality and
promote approximate optimisation methods, instead.

Simulation-based optimisation has been a fruitful do-
main considering the approximate optimisation techniques,
such as stochastic approximation (L’Ecuyer and Yin 1998),
random search (Andradttir 2006), meta-heuristics (Lutz et al.
1998, Ahmed 2007, Chang and Feng-sheng 1994). Detailed
reviews of such techniques can be found in Tekin and Sabun-
cuoglu (2004) and Fu (2002); an empirical comparison of
some search algorithms can be found in Lacksonen (2001).

Meta-heuristic algorithms are among these approximate
techniques which can be used to solve complex problems.
Simulated annealing (SA) imitates the annealing process
in crystalline solids, whereas tabu search (TS) exploits
the memory structure in living beings. Similarly, genetic
algorithms (GAs) emulate the evolutionary process in nature.

GAs, a sub-branch of evolutionary algorithms (EAs),
are developed to solve difficult optimisation problems. A
key property of GAs is the existence of a population during
the search procedure. This allows multiple point iterations
through out the optimisation in contrast with other point-
to-point meta-heuristics. With the additional flexibility of
GA components, they have been applied in various problem
domains. Oduguwa et al. (2005) overview the applications
of evolutionary algorithms in various sectors of manufactur-
ing industry. Similarly, Chaudhry and Luo (2005) provide
an extensive review of applications of GAs in production
and management operations. Finally, a technical review of
genetic algorithms can be found in Srinivas and Patnaik
(1994).

In this study, we will exploit GAs to perform the
optimisation of BAP via different implementations of its
components. First we try to identify the best performing
GA operators on different sizes of BAPs. Subsequently,
we introduce problem specific knowledge to the process
to improve the algorithm performance. The remainder of
this paper is organized as follows. In the following sec-
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tion, the literature review accompanied with the problem
description is given. In section 3, we illustrate the operators
implemented and present the results of the experiments per-
formed. Section 3.5 presents results with exploitation of the
best operators found and exemplifies a GA implementation,
where practical operation of the algorithm is tried to be
improved. Discussions and conclusion finalise the article.

2 LITERATURE REVIEW

2.1 Buffer Allocation Problem

Efficiency, e.g. utilisation of resources, has been as impor-
tant a concept in manufacturing as flexibility and adaptability
in manufacturing systems (Bordoloi et al. 1999). Buffer
allocation is commonly observed as a utilisation of avail-
able storage space in many production systems. Similar
problems can also appear in most supply chains opera-
tions, communication technologies and so on (Dolgui et al.
2007). Therefore, BAP has received a significant attention
in research and practice, particularly in production and op-
erations management. Moreover, its combinatorial nature
and the existence of inherent stochastic elements, such as
machine failures, processing times, in real-world manufac-
turing make the BAP more challenging, thus appealing.

Conway et al. (1988) identify roles of buffers in pro-
duction systems. To illustrate, using intermediate buffers
can help improving production rate and smooth operation
of a manufacturing facility by eliminating disruptive effects
of possible stochastic elements such as processing times
and failures (Harris and Powell 1999). However, increase
in capacity can lead to increase in work-in-process (WIP)
inventory. This will essentially result in more space require-
ments for storage at intermediate buffers. Hence, when the
gain over the improvement of production rate is no more
desirable compared to the costs incurred owing to WIP and
storage needs, buffer allocation problems arise.

In this study, we are interested in maximisation of
expected throughput rate of a serial production line via buffer
allocation. The problem setup is as shown in Figure 1.

Figure 1: Serial production line.

The serial production line is composed of serial workstations
consisted of a single machine (server), Mi, and a finite
buffer, Bi of size qi, as shown in Figure 1, for m-station
serial line. Each reliable machine has exponential processing
times with µi = 1 in order to reflect the variabilities in the
process, such as failures. Jobs arrive at the system at the
first buffer and sequentially proceed through the line in first-

come-first-served manner. As a result of having finite buffers
and variability in processing times, this scheme of processing
may cause starvation and blocking at intermediate stages.
When a machine is free to process, it takes a job from its
upstream buffer. If there is no job to process in its upstream
buffer, then the machine is said to be starved. Conversely,
blocking in production lines can be commonly observed in
two different ways, communication and production blocking
(Papadopoulos et al. 1993, pg. 91). In communication
blocking, the machine does not start processing a job from
its upstream buffer if there is no space in the downstream
buffer for that job to be stored. Therefore, it is also known
as blocking-before service. Alternatively, in production
blocking, if the machine is free to process a job, it is taken
from the upstream buffer. However, after completion of the
processing, the job can not be passed on to the downstream
buffer if there is no space available, hence the machine
gets blocked-after-service. In our model, we assume that
only production blocking occurs and the first machine is
never starved and the last machine is never blocked. The
DES model is verified and validated with different buffer
allocation schemes accessible in Papadopoulos et al. (1989).

2.2 Optimisation of Production Lines

Throughput rate, work-in-process, total buffer allocation,
customer service levels can be considered as popular per-
formance measures in manufacturing, particularly in queu-
ing systems. Such measures become crucial to drive with
evaluative tools to assess the system performance against
its configurations. Moreover, these evaluative tools can as-
sist the decision making when integrated with optimisation
routines in order to identify optimal (or better) alternative
designs for system improvement.

The generative techniques generally applied in opti-
misation of production lines via buffer allocation can be
loosely sub-categorised into two. Over the last decades,
many strategies and heuristics that characterise the buffer
allocation schemes on different type of problem settings
have been introduced to literature (Hillier 2000, Chan and
Ng 2002). Alternatively, optimisation routines, which con-
sider the problem as a ‘black-box’, can be used in order
to automatize and attain a more generally applicable allo-
cation procedure (Lutz et al. 1998, Spinellis et al. 2000,
Yamashita and Altiok 1998). Indeed, a third category can be
branched from the combination of optimisation procedures
and allocation strategies (Dolgui et al. 2007).

Optimisation in a ‘black-box’ fashion will essentially
require incorporation of generative techniques to system
evaluation tools. These tools can be regarded as a descrip-
tive component, or a black-box, providing performance of a
system against a prescribed set of decision variables by the
generative method. Gershwin and Schor (2000) review the
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evaluation models of production lines and a detailed study
in performance analysis of manufacturing systems can be
found in Altiok (1997). There have been several appli-
cations of heuristic decomposition techniques (Asadathorn
and Chao 1999), exact numerical algorithms (Heavey et al.
1993, Papadopoulos et al. 1989). Even though analyti-
cal models make the evaluation of the systems very cost
efficient in terms of evaluation time, they suffer from the
fact that they are approximate models and unrealistic as-
sumptions may also be necessary to make the problem
more tractable (Altiparmak et al. 2007). Alternatively,
discrete-event simulation (DES) can provide the sufficient
descriptive environment to include desired level of details
in the most complex systems. Moreover, reusability of the
model components for different problem topologies as well
as transparency can render DES more advantageous. Bulgak
(2006) and Harris and Powell (1999) give examples of DES
used as evaluative tools in optimisation of BAP.

The descriptiveness of DES brings up a disadvantage
over its analytical counterparts because of the time required
to evaluate candidate solutions provided by generative al-
gorithms. This can majorly stem from the introduction of
stochastic elements (e.g. processing times etc.) of the real-
world problems. When such properties are incorporated into
a simulation model, one needs to use specific output analy-
sis techniques which eventually require multiple or longer
simulation runs at steady state. Subsequently, expected
average performance of a solution can be attained. Alex-
opoulos (2006) provides a comprehensive review of statis-
tical techniques used in simulation output analysis. In our
study, we have used batch-means analysis in steady-state
simulation. We perform 30 batch collections to attain the
expected throughput rate and use it as the performance for
a corresponding solution.

Since the expected throughput rate is considered as the
performance criterion, the problem can be formulated as in
Equation 1.

maximise E[T (Q,ω)]

subject to
m
∑
2

qi ≤ N,

qi ≥ 0 ∀i ∈ [2,m]

 (1)

The objective function in Equation 1, E[T (Q,ω)] corre-
sponds to the expected throughput rate for a buffer allocation
scheme, Q = (q2,q3, ...,qm). The parameter, ω represents
the stochastic effects (noise) in the function. The constraint
limits the buffer allocation to be less than an allowed size, N.
In this setup, the optimisation technique should efficiently
explore a large decision space as given by Equation 2 for a
serial production line buffer allocation problem (Lutz et al.
1998).

C
(

N +m−2
m−2

)
(2)

The literature review indicates that the formulation given
in Equation 1, i.e. maximisation of throughput rate given
a maximum available buffer space, dominates the stud-
ies dealing with optimisation of BAP. Alternatively, a dual
problem can also be formed considering the minimisation of
total buffer allocation provided that a minimum throughput
rate will be satisfied (Yamashita and Altiok 1998, Gersh-
win and Schor 2000). Spinellis et al. (2000) outline the
main decision variables in optimisation of production lines
as; buffer, server and work allocation. Buffer allocation
problems share the most substantial majority of the studies
owing to its effects on the efficiency of production lines as
illustrated by Conway et al. (1988).

2.3 Optimisation via Genetic Algorithms

There has been a variety of optimisation techniques in-
tegrated with DES models of production lines for BAP.
In an early simulation-based study, Bulgak et al. (1995)
apply the naive genetic algorithm to maximise average pro-
duction rate of asynchronous assembly systems via buffer
allocation. Harris and Powell (1999) utilizes an adaptation of
Spendley-Hext and Nelder-Mead simplex search algorithms
to solve buffer allocation in production lines, where servers
have different processing times, i.e. unbalanced. Lutz et al.
(1998) propose a simulation-search procedure based on TS.
Similarly, Spinellis et al. (2000) investigates SA and a basic
GA, with decomposition algorithm as an evaluation tool.
They conclude that SA converges to a solution faster than
GA for shorter lines, where as GA outperforms SA in larger
problems in terms of solution quality and convergence rate.

Genetic algorithms (GAs), a sub-branch of EAs, are de-
veloped to solve difficult optimisation problems. In general,
there are some components which need to be implemented
for EAs to work. Initially, a representation, similar to DNA
in living beings, is required to define (encode) a candi-
date solution. When the BAP is considered, an allocation
scheme, Q, can be encoded into an integer array which rep-
resents individuals. Therefore, each gene of an individual
will be decoding qi for the corresponding buffer location
(See Equation 1). Generally, these individuals are randomly
generated and they form a population of solutions, which
distinguishes EAs from other point-to-point optimisation
algorithms, such as SA and TS. Each individual possesses
a quality value which corresponds to simulation perfor-
mance in our context. This quality, i.e. fitness, determines
its relative ability to survive and reproduce. Furthermore,
there are stochastic operators in EAs such as recombina-
tion, mutation and selection which are sequentially applied

1831



Can, Beham and Heavey

to individuals through the evolutionary cycle. The process
can be illustrated as in the Algorithm 1.

input : Population size;
maximum generation, tmax;
operator probabilities: Pc, Pm.

output: Return best individual found
begin1

0←− t;2

Generate population, P(t);3

Evaluate individuals in P(t);4

while Stopping criterion not satisfied do5

Perform selection of parents from P(t);6

Generate offspring via crossover with7

Pc;
Apply mutation to offspring, with Pm;8

Insert offspring into P(t +1);9

Repeat 6 to 9 P(t +1) is full;10

Replace P(t) with P(t +1);11

end12

end13

Algorithm 1: Evolutionary algorithm
Briefly, selection operators provide individuals to the

mating pool which are to undergo recombination. Recombi-
nation operators perform exploration of the search space by
means of data exchange between individuals. This process
resembles the reproduction in creatures and yields new indi-
viduals (offspring). Mutation, a variation process, provides
genetic diversity and exploitation of a selected individual
by causing slight changes. A key feature accompanied with
the existence of stochastic elements in EA is that even a
weak individual can find chance to reproduce or survive.
This further enhances EAs in terms of avoiding local optima
in complex search landscapes.

Considering the evolutionary cycle (Algorithm 1) and
the operators briefly explained in the above paragraph, the
very abstract description of EAs has lead to various type
of algorithms, such as evolution strategies, evolutionary
programming and genetic algorithms. In the following
section, we will introduce designs of key components of
GAs to solve BAP and provide the experimental results
subsequently.

3 EXPERIMENTS AND RESULTS

3.1 Implementation of Genetic Algorithms

Recent advances in software for both DES and optimisa-
tion have enabled researchers attain flexible and extensive
simulation optimisation tools. Especially with the avail-
able software environments, e.g. Microsoft .Net, algorithm
development has become easier. Moreover, many tasks
requiring graphical interfaces can now be performed with

less programming required compared to former program-
ming languages.

A review of optimisation domain reveals that the algo-
rithm implementations in C++ dominates the field. Alter-
natively, we used a framework built in Visual C#, Heuris-
ticLab 1.1, accessible via <www.heuristiclab.com>.
HeuristicLab, which is easy to modify and extend, gives a
framework which provides necessary interactions between
operations throughout the evolutionary cycle, graphical in-
teraction and easy control to the user. A plug-in housing the
operators is coded in C# and integrated into the main frame-
work (available on <www.heuristiclab.com>). The
DES tool, eM-Plant 7.5 (<www.emplant.com>) is used
to model the problem. The communication with simulation
is established through the COM library of eM-Plant directly
without an intermediate database to increase efficiency of the
interaction between simulation and optimisation modules.

In all the experiments, an elitist-model GA is used.
Elitism guarantees survival of the best solution by substitu-
tion of it to the next generation. Elsewhere (Rudolph 1996),
elitist GAs have been shown to converge to global optimum.
Recombination and mutation are stochastic operators in the
sense that selected individuals will undergo these operations
with a predefined probability.

We have tested a single mutation operator of type swap
mutation. The individual to undergo mutation is divided into
3 random parts and the first and the third parts are swapped.
This type of move provides exploration of alternative allo-
cation schemes of a candidate, which may be considered as
a local optimisation around a total allocation level. Primary
recombination operators implemented are average (AXO),
convex (CXO) and discrete (DXO) crossovers (Gen and
Cheng 1997).

Because of the buffer constraint, CXO and DXO may
yield infeasible solutions during the search. Such solu-
tions are handled via different evaluation schemes including
penalty and repair mechanisms during the fitness assign-
ments. Conversely, AXO operates only in the feasible
solution space. To illustrate, CXORep refers to a modified
implementation of CXO where the infeasible solutions are
repaired, whereas penalty function is applied the infeasible
solutions generated by CXO and DXO during fitness as-
signment. The repair operation in CXORep is performed as
shown in the Algorithm 2. Each time an offspring receives
a gene (allocation to a buffer position) the feasibility is
checked and allocation is allowed accordingly, otherwise
the corresponding gene receives a zero.

Alternatively, the penalty approach can also be used to
handle the constraints. The penalty mechanism preliminarily
used in Experiments I is the reciprocal of the constraint
violation, i.e. capacity divided by total allocation. In
Experiment II, results for different penalty strategies are
presented.
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input : Receive parents; X t and Y t .
output: Return offspring, X t+1.
serve, occupy ← 0;1

Generate random numbers; r ∈ [0,1], α ∈ [0,1];2

if r ≤ pc then3

for i← 0 to l do4

serve = α ∗X t
i +(1−α)∗Y t

i ;5

occupy = occupy+serve;6

if occupy≤ capacity then7

X t+1
i =serve;8

else9

X t+1
i = 0;10

occupy = occupy-serve;11

end12

end13

end14

Algorithm 2: CXORep crossover

Since EAs are stochastic in nature, the experiments
need to be repeated several times to provide a confidence in
the achievements of the algorithms. In our experiments, we
perform 10 independent experiments for each configuration
simulated and average the total number of evaluated solutions
in tests when an optimal or sub-optimal solution in the
vicinity of 1% of the best quality is reached. And this
averaged evaluation count is considered as the performance
criteria. The problems are labelled as XsYb, where X refers
to station number and Y is the total available buffer space.

3.2 Experiment I – Identification of the Best Components

Three different selection operators in GAs; roulette wheel,
linear ranking and tournament selection are experimented.
More details on these mechanisms can be found in (Goldberg
and Deb 1990). These operators are coupled with different
recombination operators to solve a 9s8b problem. GA is
started up with the settings; population size, 40, Pc = 0.5
and Pm = 0.05. The optimum solution for this problem
settings is known, where each intermediate buffer receives
‘1-unit’ storage capacity, and maximum average expected
throughput rate is 0.5663.

Table 1: Experiments on randomly chosen selection & re-
combination couples.

Exp. No Selection Crossover Count E[T(Q)]
1 Roulette AXO 217 0.5477
2 Linear Rank CXORep 288 0.5313
3 Tournament DXO 369 0.5663

The comparative results are given in Table 1. In the first
and the second experiments, GA prematurely converged to

non-optimal values in all tests whereas in the third experi-
ment GA was 90% successful at locating the optimum as
shown in Figure 2.

Figure 2: Typical single run charts representing the be-
haviour of GAs in Table 1: 1 (left), 2 (centre), 3 (right).

As tournament selection and DXO outperformed the
other settings shown above, they are independently tested
with different components, subsequently (See Tables 2 & 3).
The findings imply that allowing the formation of infeasi-
ble solutions with a penalty strategy, particularly in DXO,
outperforms when such solutions are repaired instead.

Table 2: Experiment results for Tournament Selection with
different crossover operators. Results still indicate superi-
ority of DXO.

Selection Crossover Evaluation Count
Tournament AXO 474
Tournament CXORep 542
Tournament CXO 422
Tournament DXO 369

Table 3: Results for DXO with other selection operations.

Selection Crossover Evaluation Count E[T(Q)]
Roulette DXO 964 0.5663
Linear Rank DXO 415 0.5663
Tournament DXO 369 0.5663

It is worth mentioning that there exists an optimum
population size which is dependent on the size of the cor-
responding search space defined by the amount of decision
variables and constraints of a problem (See Equation 2).
Table 4 shows how the population size effects the perfor-
mance of GA in terms of the total number of evaluated
solutions during the search in the 9s8b problem. It has been
empirically observed that below a certain population size,
there is more probability for GA to prematurely converge
to a non-optimum solution owing to loss of gene diver-
sity. Conversely, when the population size is increased, the
search space may be unnecessarily explored. The third col-
umn in Table 4 summarizes the percentage of convergence
to optimum or near optimum solutions in 10 experiments.
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Table 4: Effects of population sizes on the performance.

Population size Evaluation Count %Convergence
20 194 60
40 369 90
80 677 90

3.3 Experiment II – Penalty Strategies

After identification of successful components, we present
results for different penalty strategies, subsequently. We
compare three different penalty strategies on a 15s30b prob-
lem. The first strategy is already utilized in Section 3.2,
with results given in Tables 1 to 3 for tournament selection
and DXO in 9s8b problem. In the second strategy, the in-
feasible solutions are given death penalty by assigning zero
fitness. Alternatively, an extension to the death penalty is
made as a third strategy in which the infeasible individuals
are penalised as in the first strategy if deviation form the
total buffer capacity exceeds one; otherwise they undergo
the death penalty. Such modification can be helpful to
avoid the loss of genes in competitive candidates. Table 5
shows the results for these strategies for 9s8b and 15s30b
problems, respectively.

Table 5: Average evaluation count results for 9s8b & 15s30b
problems.

Strategy 9s8b 15s30b
1 369 3127
2 346 3339
3 381 4022

The results for the 9s8b problem have implied that death
penalty approach has yielded better results, although more
experiments would be needed to be able to say it is clearly
better. The ultimate advantage of such a penalty is the
avoidance from evaluating infeasible solutions. However, it
can have negative effects on the population diversity for the
proceeding iterations due to loss of genes in the individuals
with infeasible allocations and can lead to premature conver-
gence. To cope with the diversity loss, a larger population
and a higher mutation rate can be used with the cost of an
increase in the evaluation count. A larger initial population
essentially has more chance to provide a richer gene pool
and increased mutation rate will cause small variations on
the individuals at the further stages of the evolution. Hence,
the population size and mutation rate are increased to 60
and Pm = 0.1, respectively, for the 15s30b problem since it
has a larger search space.

3.4 Experiment III – Investigating the Effect of Elitism

Elitism refers to preservation of a number of the best per-
forming individuals from a generation to the following
generation. Elitist GAs have been formerly shown to con-
verge to global optimum in general search spaces (Rudolph
1996). Convergence behaviour in stochastic problems is
further illustrated by Allen et al. (2002). In its naive sense,
selecting one or more elite solutions throughout the iteration
resembles selecting a subset of individuals from which sys-
tem comparisons can be made. Since the simulation output
is stochastic, one can say a solution is better than the other
probabilistically relying on the confidence interval. While
enlarging elitist subset can help to improve convergence
rate by decreasing the number of evaluated solutions, it can
amplify the selection pressure, hence may result in prema-
ture convergence. The Figure 3 shows how this is observed
in the 15s30b problem.

Figure 3: A typical single run chart representing the be-
haviour of convergence of GA with elitist selection 2 (left)
and 4 (right).

Experimental results in Table 6 indicate that selection
of an elitist subset improves the algorithm convergence
rate dramatically when the size of the subset is not very
large to result in premature convergence. Table 6 presents
the evaluation count results for the 15s30b problem with
different number of elitism employed. The crossover used
is DXO with Pc = 0.5 and selection operator is tournament
selection in all tests. The settings for the case where elitism is
one, the population size is 60, and Pm = 0.1 for convergence
performance over 10 experiments. The population size is
40 and Pm = 0.05 for the case where elitism is two or
four. Results imply the improvements in terms of average
number of evaluated solutions over 10 experiments where
the deviation from the optimum throughput rate is less than
1%.

During the experiments shown in the table above, GA
with 4 elitist solutions was outperforming in terms of eval-
uation count in the experiments. However, the setup where
elitism is 2 was more preferable because of being 80% suc-
cessful in locating the global optimum in 10 runs, whereas
it was 2 out of 10 times for the Experiment 3.
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Table 6: Elitism vs. Evaluation count tests for the 15s30b
problem.

Exp. No No.of Elites Evaluation count E[T (Q)]
1 1 2817 0.6352
2 2 1212 0.6352
3 4 940 0.6352

3.5 Sensitivity of Performance against Total Buffer Size

In the experiments up to this point, problem specific knowl-
edge is not used in GA implementations in order to keep the
solver’s independence from the problem topology. Nonethe-
less, success of a certain operator, e.g. DXO, implies its
suitability for the specific problem.

Although genetic algorithms have performed satisfac-
torily in Experiments I to III, locating optima can still
be perceived as impractical in operational sense. While
this weakness mainly stems from the long model execu-
tion times, it can be overcome by introduction of problem
specific knowledge to the algorithm. Moreover, ‘no free
lunch’ theorem implies the advantage of integrating domain
knowledge to the algorithms (Wolpert and Macready 1997).

BAP literature offers many corollaries characterising
successful allocation schemes (Hillier and So 1995, Hillier
2000, Chan and Ng 2002). Since we have studied a balanced
asynchronous serial production line with finite buffers, it
can be helpful to study integration of related corollaries
within the algorithm. Hillier (2000) reflects on the charac-
teristics of buffer allocation on balanced lines. During the
simulation validation process, it is observed that some of
these specifications did not hold for our model. Therefore,
we evaluate some design points and try to identify a lower
limit on total buffer allocation below which the performance
is assumed to be no more appealing to a decision maker.

Figure 4: Alternative allocations for 5s4b problem. The
possible promising regions are encircled.

In Figure 4, we consider a 5s4b problem and first try
to determine a threshold allocation level for allocation vs.
throughput rate which will be uniformly distributed through
the line. This dictates GA to perform the global optimi-
sation over an attractive region of the search space, rather
than the whole domain. Owing to the concave increasing
relationship between the throughput rate and total buffer
allocation (Hillier et al. 1993), a lower limit is induced to
the constraint this way in providing the initial population
to GA. Table 7 shows the resultant evaluation costs and
indicates operationality of such an approach in different
size of problems. In these problems, the recombination op-
erator, DXO with Pc = 0.5, is incorporated with the penalty
mechanisms from Section 3.3. Similar to previous setups,
tournament selection and Swap2Segments mutation, with
Pm = 0.05, are preferred. Since a smaller portion of the
decision space is to be explored, smaller population sizes
are used depending on the size of the decision space of
the problem. In all of the 10 runs of each experimental
setup, GAs located global optimum or near-optimal solu-
tions with less than 0.4% deviation from the maximum
expected throughput rate.

Table 7: Results after incorporation of problem-specific
knowledge to GA.

Problem Pop. Size Penalty type Elitism Count
9s8b 20 (2) 2 199

15s20b 20 (2) 2 242
15s25b 20 (2) 2 356
15s27b 30 (3) 2 423

4 DISCUSSION & CONCLUSION

The buffer allocation problem represents various type of
problems in the manufacturing industry. Owing to its NP-
hardness and high number of alternative solutions, solving
BAP requires algorithms which can explore a large discrete
solution space and discover the promising areas. We have
utilised genetic algorithms to perform this task and further
enhance it via knowledge-based modifications.

In this work, we performed an empirical comparison of
different recombination mechanisms as well as constraint
handling techniques. Our results have shown that allowing
the formation of infeasible solutions and incorporation of
linear penalty functions during the search exhibit a better
performance. We have also presented how the size of
the elitist subset influence the GA performance in solving
BAP. This illustration can shed some light to our future
GA implementations when the noise in the evaluation is
considered. Finally, inclusion of domain-specific knowledge
in the GA implementation has dramatically improved the
algorithm performance. This way, GA is driven to exploit a
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desirable region. It would be interesting to divide the overall
search space to such sections and investigate the progress of
the parallel GAs which can be helpful in a multi-objective
study in approximating to the pareto-frontier.

Another observation made during the experiments is
degeneracy of the population. In a population at each
iteration, when the fitness values of different individuals
are very close to each other despite their genetic diversity,
the population is then called as degenerate population which
tends to prematurely settle at a sub-optimum solution. The
empirical tests have revealed the degeneracy in BAP. This
also implies that BAP has a decision space with large
number of local optima surrounding the global optimum
with slight differences in performance value. This fact
further complicates the problem since it becomes more
difficult to reach the global maximum. Therefore, while
using GAs for optimisation, one may also consider the
methods to tackle the problem further when the population
is degenerated. In our experiments, we have only tested a
single mutation type, Swap2Segments. Since small genetic
variations and diversity can be provided by mutation, a new
operator suitable for the problem structure can be introduced
to restrain from the degeneracy. Alternatively, performing a
response surface study over the degenerate population may
yield the landscape character of the promising areas of the
search space.

In the future, we would like to exploit these outcomes
in order to extend our work to multi-objective optimisation
of simulation models of similar systems such as supply
chains.
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