

ARCHITECTURE FOR MODELING, SIMULATION, AND EXECUTION
OF PLC BASED MANUFACTURING SYSTEM

Devinder Thapa
C. M. Park

Kwan Hee Han

S. C. Park

Gi-Nam Wang

Dept. of Industrial Engineering Dept. of Industrial Sys. Engineering Dept. of Industrial Engineering
Ajou University Gyeongsang National University Ajou University

Suwon, 446-749, SOUTH KOREA Jinju, 660-901, SOUTH KOREA Suwon, 446-749, SOUTH KOREA

ABSTRACT

In this paper, we propose an integrated architecture for
modeling, simulation, and execution of PLC (Programma-
ble Logic Controller) based manufacturing system. The
main objective is to integrate the high level modeling,
simulation, and device level executable code generation.
This architecture can improve the fidelity between high
level system model and lower level PLC controlled de-
vices. In this paper, we model the shop floor controller sys-
tem using DEVS (Discrete Event System Specification)
formalism, subsequently, simulate the model and generate
SOP (sequence of operations). We added two algorithms in
conventional DEVS, the first algorithm makes an interface
between 3D graphic model and DEVS model, whereas, the
second algorithm generates SOP. As a result, the generated
SOP can be mapped with PLC I/O (Input/Output) address
to generate an executable controller code. For the purpose
of further validation and implementation, the generated
program can be downloaded to software or hardware PLC.

1 INTRODUCTION

The robustness of PLC devices has made them the de facto
choice in an automobile industry as a process controller
machine. A PLC device has multiple I/O functions and
logic operation functions, and plays a central role in cell
control (Jang, Koo, and Nof 1997). Similarly, PLC pro-
grams are the software counterpart of this machine. The
design and development of this program for manufacturing
systems is a very complex process. Although it is easy to
design logic programs for small systems, as the length of
the program grows it becomes accordingly more compli-
cated to design and verify the PLC code. On the contrary,
the functional operation of any manufacturing unit should
be smooth enough to run the operation without any work
stoppage. A delay in generating the controlling code of
processing devices may cause a major loss of revenue and
goodwill. Use of rapid modeling and compiling tools to

generate IEC standard PLC program is an efficient method
to reduce the PLC development time.
 Since development of PLC program using traditional
approach is error-prone and time consuming job (Canet et
al. 2000; Thapa et al. 2006). A small change in process
controller may drastically increase the rate of down-time
and ramp-up time. Down time and ramp-up time can cause
the production delays; thus, much effort has been given to
follow some standard designing and verification techniques.
On of the efficient and effective ways to reduce down-time
and ramp-up time is formalization of informal specification
and converting it into IEC standard PLC code. However,
the validity of model itself should be tested before genera-
tion of the execution code. Conventional techniques like
simulation and visual animation can be used to verify the
controller logic; however, the integrated use of formal
methods for verification is more desirable to validate the
state model for hidden and subtle errors. An integrated
framework for modeling, simulation, and code generation
is proposed to complete the research work.

In our research, a user oriented simple methodology to
model and execute a PLC controlled design with DEVS is
proposed. In this framework, we model the shop floor con-
troller system using DEVS formalism (Zeigler, Praehofer,
and Kim 2000).
 The DEVS is an event based system that is based on
modular and hierarchical architecture. A modular architec-
ture is characterized by the description of complex systems
by separately defining an individual controller for each
piece of devices. It reduces the complexity of modeling a
distributed controller system. The DEVS model is The
DEVS model is consist of set of coupled and atomic
model. An Atomic DEVS model (A1, and A2), as shown
in figure 1, is defined as a seven tuples, M = <
X,Y,S,τ,δext,δint,λ > where :

- X is the set of input events
- Y is the set of output events
- S is the set of sequential states, {S1,S2,S3, and

S4}

1794 978-1-4244-2708-6/08/$25.00 ©2008 IEEE

Proceedings of the 2008 Winter Simulation Conference
S. J. Mason, R. R. Hill, L. Mönch, O. Rose, T. Jefferson, J. W. Fowler eds.

Thapa, Park, Kwan, Park, and Wang

- [0,]: S Rτ ∞→ is the time advance function

which is used to determine the lifespan of a state
where [0,]R ∞ is the set of non-negative real num-
bers plus infinity

- :e x t Q X S Sδ → is the external transition function

where { }(,) | , 0 ()e eQ s t s S t sτ= ∈ ≤ ≤ and et is
the elapsed time since the last event.

:e x t Q X S Sδ → specifies how the system
changes state when an input is received, the effect
is to place the system in a new thus scheduling it
for a next internal transition; the next state is
computer on the basis of the present state, the in-
put port and value of the external event, and the
time that has elapsed in the current state.

- int : S Sδ → is the internal state transition func-
tion which defines how a state of the system
changes internally (when the elapsed time reaches
to the lifetime of the state) λ(s).

- : S Yλ → is the output function which defines
how a state of the system generates an output
event (when elapsed time reaches to the lifetime
of the state)

 There are two cases that an atomic DEVS model M
can change its state s S∈ :(1) when an external input
x X∈ comes into the system M; (2) when the elapsed
time te reaches the lifespan of s which is defined by τ(s). At
the same time of (2), M generates an output which is
defined by λ(s).
 Whereas, the coupled DEVS model (C1), as shown in
figure 1, defines which sub-components (A1, and A2)
belong to it and how they are connected with each other. A
coupled DEVS model is defined as a eight tuples N = <
X,Y,D,{Mi},Cxx,Cyx,Cyy,Select > where

- X is the set of input events
- Y is the set of output events
- D is the name set of sub-components, {A1, and

A2}
- {Mi} is the set of sub-components where for each

, i D∈ , Mi can be either an atomic DEVS model
or a coupled DEVS model

- xx i
i D

C X X
∈

⊆ × ∪ is the set of external input

couplings
- yx i i

i D i D
C Y X

∈ ∈
⊆ ×∪ ∪ is the set of internal

couplings
- yy i

i D
C X X

∈
⊆ × ∪ is the set of external ouput

couplings

- : 2Dselect D→ is the tie-breaking function
which defines how to select the event from the set
of simultaneous events;

 Like the behavior of the atomic DEVS model, a cou-

pled DEVS model N changes its components' states (1)
when an external event x X∈ comes into N; (2) when one
of components Mi where i D∈ executes its internal state
transition and generates its output i iy Y∈ . In both cases
(1) and (2), a triggering event is transmitted to all influ-
ences which are defined by coupling sets Cxx, Cyx, and Cyy.

 Subsequently, we simulate the DEVS model and gen-
erate SOP. As a result, the generated SOP can be mapped
with PLC I/O (Input/Output) address to generate an execu-
table PLC program. Finally, these PLC program can be
downloaded to the software or hardware PLC for the pur-
pose of further validation and implementation.
The rest of paper is organized as follows. Section 2 dis-
cusses reference works and Section 3 explains the pro-
posed model based architecture, and two algorithms added
to conventional DEVS simulator. Similarly, Section 4 il-
lustrates implementation methodology with a simple ex-
ample of automobile work cell. And finally, Section 5 con-
cludes the paper with brief notes on future works.

2 REFERENCE WORKS

Although lots of published work can be found about DEVS
modeling and simulation, not much literature are related to
modeling of PLC controlled manufacturing system. Some
of the similar reference works have been briefly described
as follows.

 Hwang and Choi (2001) presents a new formalism
GK-DEVS for simulation of 3-D multi-components sys-
tems. This research work advocates constructing a unified
virtual manufacturing in which human-in-the-loop simula-
tion can be supported and the simulation model can work
as a control model without model modification or addi-
tional modeling. In this reference work, the atomic model
and coupled model has been integrated to a single structure.
Even though it is easy to connect with less coupling, how-
ever, direct coupling scheme is less modular and it makes
the hierarchical message passing more difficult.

 Park (2005) presents a proposed virtual FMS model,
which consists of four types of objects: the virtual device
model (object model), the transfer handler model (func-
tional model), the state manager model, and the flow con-
troller model (dynamic model). A virtual device model
consists of two parts: shell and core. To improve the reus-
ability of a virtual device model, the shell part is designed
to adapt to different FMS configurations. For the fidelity of
the virtual FMS model, a transfer handler model has a set
of device-level commands imitating the physical mecha-
nism of a transfer.

1795

Thapa, Park, Kwan, Park, and Wang

 Wu (2005) presents a methodology of formal-DES-
theory-based supervisors; it can be applied to industrial
work cell. The software has been created in a modular
fashion. This allows performing changes to specific mod-
ules without the need to modify the others. However, PLC
Automata is the core formal modeling deployed to develop
hybrid PLC. This work focused on generating PLC code
using formal model, however it does not describe about
virtual factory and reducing fidelity.

 Most of the previous work is suitable for small sys-
tems but comprehensive results for real system have yet to
come (Lucas and Tilbury 2003). Some commercial prod-
ucts such as EM-PLC and DELMIA V5 are trying to im-
plement the integrated architecture. The EM-PLC can auto-
generate the SOP, which is based on 3-D modeling infor-
mation, and bar chart (Lee et al. 2006). However, the
drawbacks of these techniques are heavy resource require-
ment such as CPU time and memory space. Similarly,
these techniques are not effective to predict the possible
errors like propagation of errors from one work cell to an-
other. To overcome this problem we define a user oriented
simple methodology to generate IEC standard PLC code. A
theoretical foundation to develop an auto-generation tool is
defined in this research work, and will be subsequently im-
plemented in a real automotive industry to validate the ef-
ficiency and effectiveness of the generated PLC code.
 The main contribution of the proposed framework is to
integrate the factory modeling, simulation, and PLC code
generation. By integrating, we can improve the fidelity be-
tween high level factory model and lower level PLC con-
trolled devices. In addition, generation of PLC program
based on different scenario will be helpful to generate the
compact and optimized code. In the existing systems, it is
very difficult to generate compact PLC code because it re-
quires solving number of intermediate phases to generate
valid input or output signals. Furthermore, simulation
based PLC program generation and execution can over-
come the state explosion problem (Clarke, Grunberg, and
Peled 1999), which exists in other formal verification tech-
niques.

3 PROPOSED MODEL-BASED ARCHITECTURE

The framework described in this paper, employs the DEVS
formalism to model a PLC based controller system, as
shown in figure 1. The DEVS is an event based system that
is based on modular and hierarchical architecture (Zeigler,
Praehofer, Kim. 2000). A modular architecture is charac-
terized by the description of complex systems by sepa-
rately defining an individual controller for each piece of
devices. It reduces the complexity of modeling a distrib-
uted controller system. After forming the DEVS model,
next step is to simulate it. We added two algorithms to
conventional DEVS simulator, which is described in sec-
tion 3.2 and section 3.3. The objective of this algorithm is

to make an interface between 3D graphics model and
DEVS Model. Therefore, we can simulate both (3D graph-
ics and DEVS) models, simultaneously, and generates
SOP. The generated SOP is mapped with PLC’s I/O ad-
dress to create a symbol table. A symbol table stores the
signal name and PLC I/O address as shown in figure 1.
Therefore, we can manipulate symbol table to generate an
executable PLC program. Since verification of the gener-
ated executable PLC program is a mandatory job, before
executing in the real environment, thus we can use soft-
ware or hardware test to validate the generated code.

Figure 1: Model-based design for plc controlled manufac-
turing system

3.1 Algorithm to Integrate 3D Graphics Model and
DEVS Model

According to the given algorithm, initially, the DEVS
simulator’s when_init() function detects the 3D graphics
model. Then, it retrieves the device name, motion type, and
motion time, for instance ROBOT1, MOVE_UP, and 15
second respectively, from the graphics model device data-
base. Accordingly, it stores related information into corre-
sponding variables, as shown in the following pseudo code.

when_init()
while(!3DGraphics)
var_device_name:=3D_device_name
var_motion_type:=3D_motion_type
var_motion_time:=3D_motion_time

1796

Thapa, Park, Kwan, Park, and Wang

After that, it fetches the DEVS atomic model name,

event, and time information from DEVS model. The re-
trieved values of 3D graphics model and DEVS model are
compared, subsequently. If the simulator finds the match-
ing values then it executes the corresponding motion in the
3D graphics. This process continues until the defined mo-
tion time of 3D graphics model and DEVS atomic model
times equalize. After the successful completion of the ex-
isting motion, DEVS simulator fetches the next sequence
of operation and carries the same process till the end of the
simulation; as described in the following pseudo code.

when_receive_*(portvalue, time)
if(portvalue=internal)
if(store_values!=’NULL’)

if (var_device_name=DEVS_atomic_model_name)
&&

 (var_motion_type=DEVS_atomic_model_event)
then
 while
(var_motion_time!=DEVS_atomic_model_time)
run simulation();
end
end
else
‘wait’
end
when_receive_X(portvalue, time)
if(portvalue=external)
if(store_values!=’NULL’)
f (var_device_name=DEVS_atomic_model_name)

&& (var_motion_type=DEVS_atomic_model_event)
then
while
(var_motion_time!=DEVS_atomic_model_time)
run simulation();
end
end
else
‘wait’
end

 The changes take place inside the when_init(),

when_receive_*(), and when_receive_x(), functions of
atomic.h file of the DEVS simulator. The execution of spe-
cific function depends on the variable portvalue (internal
or external).

3.2 Algorithm for SOP Mapping with PLC IO
Addresses and Code Generation

In order to achieve more conformity of different PLC pro-
gramming languages, IEC 61131-3 standard was developed.
The IEC 61131-3 has classified five types of PLC program,

IL(Instruction List), ST(Structured Text), LD(Ladder Dia-
gram), FBD(Function Block Diagram), and SFC (Sequen-
tial Flow Chart) (The International Electro Technical
Committee 1993). Where IL and ST are textual program-
ming whereas LD and FBD are graphical program, and
SFC is a sequential function chart. The SFC can be used to
define the sequence of program that consists of other pro-
grams. Based on the algorithm define in the subsequent
section, we can convert DEVS simulated data to any of the
five IEC standard languages.

 Algorithm used for symbol mapping and code genera-
tion is described as follows. Initially, the DEVS simulator
read the SOP information and maps it to PLC IO address.
All the input variables passed to DEVS atomic model can
be mapped as INPUT event, whereas, all the output gener-
ated by DEVS atomic model can be mapped as OUTPUT
event in the symbol table. Subsequently, if the type of
event is INPUT then the simulator mapped the variable
name with input address (Ix.x) of the PLC. Similarly, if the
event type is OUTPUT, then the simulator maps variable
name with output address (Qx.x) of the PLC. Where, I and
Q denote address type INPUT or OUPUT, and x.x denotes
particular byte and bit addresses of the PLC device.

Read (SOP)
While (SOP!=NULL)
Check (event)
if (event=INPUT)
DEVS_atomic_model_name<MAP>
INPUT_Address(Ix.x)
end
if (event=OUTPUT)
DEVS_atomic_model_name<MAP>OUTPUT_Addre
ss(Qx.x)
end; end

 In terms of PLC code generation, the mapped values
can be written in the variable section of the IEC’s POU
(Program Organization Units) as shown in example 1. The
pre-conditions defined in the DEVS atomic model to gen-
erate an output event can be implemented as interlocks us-
ing IF-ELSE constructs in the IEC’s POU as shown in ex-
ample 2. The pre-conditions are logical expressions formed
out of the input variables. For instance, if the values of C1,
MH1, and MH2 are one then start the ZIG operation. Simi-
larly to start the WM1 and WM2 operation the value of
ZIG must be one. Consequently, by combining the INPUT,
OUTPUT, and interlocks we can generate a complete exe-
cution code. A simple example of IEC standard PLC pro-
gram (ST) is shown in figure 7.
Example 1: Write mapped values of symbol table to IEC’s
POU;

INPUT_VAR
C1 : BOOL;

1797

Thapa, Park, Kwan, Park, and Wang

MH1 : BOOL;
MH2 : BOOL;
END_VAR
OUTPUT_VAR
WM1 : BOOL;
WM2 : BOOL;
ZIG : BOOL;
END_VAR
Example 2: Map pre condition to PLC program inter-
lock or condition
IF (C1=1 AND MH1=1 AND MH2=1) THEN
ZIG := 1;
END_IF
IF (ZIG=1) THEN
WM1 :=1;
WM2 :=1;
END_IF

 The SOP mapping and code generation algorithm is

added in the SRTEngine.h file of DEVS simulator.

4 AN EXAMPLE TO IMPLEMENT THE
PROPOSED FRAMEWORK

4.1 Work Cell Layout of Automobile Assembly Line

To clarify the procedure, we are explaining a work cell
layout of assembly line as depicted in figure 2. This layout
is divided into three parts for the sake of clarity. Where,
the first section known as part handling cell is composed of
one carrier and two material handling robots (robot1_MH,
and robot2_MH). The function of carrier is to carry the
central part of the car floor in the assembly line. We as-
sumed that the part is already loaded in the carrier, whereas
the function of robot1_MH and robot2_MH are to bring
front part and rear part in the assembly line, respectively.
The three numbers defined inside the section one are the
sequence of part handling by the corresponding devices.
 Likewise, section two known as part assembling cell
has two welding robots (robot1_WLD and robot2_WLD).
The functions of these two welding robots are to perform
spot welding to fix the three components. After the spot
welding is finished, assembled part is moved to the section
3 that is known as assembled part cell. In this way, the one
cycle of the assembly process finishes.

Figure 2: Work cell layout of automobile assembly line for
car floor

4.2 Corresponding DEVS Model of the Work Cell

Figure 3 is the corresponding DEVS model and its behav-
ior of work cell layout as described in figure 2. We can de-
velop four coupled model, which are EF, Model_S1,
Model_S2, and Model_SC. For instance, EF is an experi-
mental framework which consists of two atomic models
called source and sink. Source atomic model is used to
generate a part information, whereas, sink atomic model
can be used to collect statistical reports. Likewise,
Model_S1 is a corresponding model for part handling cell.
It consists of three atomic models, that are carrier (C1), ro-
bot1_MH (MH1), and robot2_MH (MH2). The binary
number [0, 1] simply described the state of the atomic
model. Where, 0 is IDLE state of the machine and 1 means
BUSY state of the machine.

 Similarly, Model_S2 is the part assembling section of
the work cell layout as shown in figure 4. It consists of
three atomic models, two welding robots (WM1, and
WM2) and one ZIG. To maintain the hierarchical and
modular structure, we define an extra supervisory model,
Model_SC, which consists of one atomic model SC. It can
be used as a supervisory controller to keep track of differ-
ent atomic models. It checks pre-conditions of the system
states before firing any event. Similarly, an arrow connect-
ing models shows the flow of information from one mod-
ule to another. This type of modular and hierarchical archi-
tecture is compatible with IEC 61131-3 standard program
structures. As a result, it facilitates mapping from DEVS
model to IEC standard POUs.

1798

Thapa, Park, Kwan, Park, and Wang

Figure 3: Corresponding DEVS model of work cell

4.3 Implementation of the Proposed Framework

()

()

()

()

0

{ , , , };
{ , 1, 2};
{ , _ , 1, 2, 1_ , 2_ };

;

;

;

;

{ }
(, , ,) (, (),[0, ()],{?

WAIT

FIRE

ZIG

WELD

ext ext

S WAIT FIRE ZIG WELD
X CR MH MH
Y ZIG ZIG DONE WM WM WM DONE WM DONE

INTEGER

INTEGER

INTEGER

s WAIT
S s e x WAIT WAIT WAIT CR

τ

τ

τ

τ

δ τ τ δ τ τ

+

+

+

=
=
=

=∞

=

=

=

=
=

int int

int

int

|| ? 1|| ? 2}) (,1);
(,[0,],) (, (),

((& 1& 2))

! ;
(,1);

! ;
(,1);

(, (),{! _ ,! 1,! 2}) (,1);
(, (),{! 1_ ,!

MH MH FIRE
S s y FIRE FIRE

if CR MH MH true
then
Y ZIG
ZIG

else
Y BACK
WAIT

ZIG ZIG ZIG DONE WM WM WELD
WELD WELD WM DONE WM

δ τ δ τ

δ τ
δ τ

=
=

=

=

=

=
2_ }) (,1);DONE WAIT=

Figure 4: Mathematical representation of DEVS simulator

 This section describes a mathematical representation of
DEVS simulator for the atomic model of supervisory con-
troller (SC). As shown in figure 4, the DEVS model of SC
which is described in the previous section IV (B). It con-
trols the different event firing based on some given pre-
conditions. A transition is fired once the conditions are sat-
isfied. Although this section only illustrates the SC atomic

model, we need to define other atomic and coupled models
in the similar way.

 Per the execution of DEVS simulator based on algo-
rithm defined in section 3.2 and 3.3, the final desired out-
put will look similar to example shown in figure 7.

FUNCTION SC
INPUT_VAR
C1 : BOOL;
MH1 : BOOL;
MH2 : BOOL;
END_VAR
OUTPUT_VAR
WM1 : BOOL;
WM2 : BOOL;
ZIG : BOOL;
END_VAR
IF (C1=1 AND MH1=1 AND MH2=1) THEN
ZIG := 1;
END_IF
IF (ZIG=1) THEN
WM1 :=1;
WM2 :=1;
END_IF
END_FUNCTION

Figure 5: An example of IEC standard structured text

 In this paper, we only applied the techniques for a

simple work cell example; however, the procedure can be
equally applied to more complex systems.

5 CONCLUSION AND FUTURE WORK

This paper proposed an integrated architecture for PLC
based manufacturing line. The framework combines the
high level simulation of the virtual factory and device level
control code generation. As a result, the proposed frame-
work improves the fidelity between high level system
model and lower level PLC controlled devices. For this
purpose, DEVS formalism and simulator has been used to
model the factory and simulate it. As a result, sequence
generated by the simulator can be mapped to PLC I/O ad-
dresses for generating the executable PLC program. Finally,
these PLC program can be downloaded to software or
hardware PLC for real implementation. This framework
can reduce the PLC development time and down-time of a
manufacturing industry. This is an ongoing research, our
future endeavor is to improve DEVS simulator and imple-
ment it into real PLC based manufacturing line.

 While implementing this approach in the real indus-
tries, we face many problems which need to be considered
before implementing in the large scale industries. A major
problem regarding implementation was dealing with dif-
ferent vendor’s software like Rockwell, ABB, MELSEC,
and SIEMENS etc. As an individual package they have
pretty good properties and features, whereas, it is a cum-
bersome job to make integration between these various

1799

Thapa, Park, Kwan, Park, and Wang

packages. There is a strong need to develop a low cost in-
tegrated package program with plug ‘n’ play capability for
complete solutions of verification and validation of the
controller logic. Even the IEC 61131-3 standard catego-
rized 5 types of program languages; it’s a complex prob-
lem to make an integration among them.

 Another major problem is state explosion problem. It
confines the formal verification techniques to some simple
applications. However, in real situation we need to imple-
ment these techniques in a very huge and complex scenario.
Tackling these problem and full fledged deployment of this
method to real situation is the open research area for aca-
demician as well as industrial researchers.
 In spite of this, changing scenario in the manufactur-
ing industries may remove the old fashioned PLC with PC
controlled environment. It has opened a new door in the
field of formal modeling and verification of control logic
programs. Whatever the changes may be the role and im-
portance of Modeling, Verification, and implementation of
control logics will not relegate.

ACKNOWLEDGMENTS

This work has been partially supported by BK21 (Brain
Korea 21st Century) and Digital manufacturing simulator
and OLP (Off Line Programming) system for automobile
industry project, South Korea.

REFERENCES

Canet, G., S. Couffin, J.-J. Lesage, A. Petit, and P.
Schnoebelen. 2000. Towards the automatic verifica-
tion of PLC programs written in Instruction List. In
Proceedings IEEE SMC, USA, 2449-2454.

Clarke, E. M., O. Grunberg, and D. A. Peled. 1999. Model
checking, The MIT Press Cambridge, England.

Hwang, M., and B. Choi. 2001. GK-DEVS: geometric and
kinematics DEVS formalism for simulation modeling
of 3-dimnesional multi-component systems. The Soci-
ety for Modeling and Simulation International 18(3):
159-173.

Hwang, M. H. 2007. DEVS++:C++ open source library of
DEVS formalism, available via
<http://odevspp.sourceforge.net> [ac-
cessed 1 September, 2007].

Jang, J., P. Koo, and S. Nof. 1997.Application of design
and control tools in a multirobot cell. Computers in
Industrial. Engineering 32(1):89-100.

Lee, S., M. A. Ang, and J. Lee. 2006. Automatic genera-
tion of logic control. Ford motor company, University
of Michigan USA and Loughborough University UK.

Lucas, M. R., and D. M. Tilbury. 2003. A study of current
logic design practices in the automotive manufacturing
industry. International journal of Human-Computer
Studies 59:725-753.

Park, S. C. 2005. A methodology for creating a virtual
model for a flexible manufacturing system. Computers
in Industry 56:734-746.

Thapa, D., C. M. Park, S. Dangol, and G. N. Wang. 2006.
III-Phase verification and validation of IEC standard
programmable logic controller. IEEE Computer Soci-
ety, CIMCA Australia.

The International Electro Technical Committee. 1993. IEC
61131-3, programmable controllers, programming
languages.

Wainer, A. G., and W. Chen. 2003. A framework for re-
mote execution and visualization of cell-DEVS mod-
els, The society for modeling and simulation interna-
tional 79(11):626-646.

Wu, Z. W. 2005. Modeling and simulation of an intelligent
flexible manufacturing system via high-level objects
Petri nets (HLOPN). International Journal of Produc-
tion Research 43(7):1443-1463.

Zeigler P., H. Praehofer, and T. G. Kim. 2000. Theory of
modeling and simulation. 2nd edition, Academic Press.

AUTHOR BIOGRAPHIES

DEVINDER THAPA is a Postdoc Research Fellow in the
Department of Industrial & information systems at AJOU
University, South Korea. He has completed his PhD in
22 Feb., 2008 from Ajou University in Industrial and In-
formation Systems Engineering. His PhD thesis was re-
garding formal modeling, verification, and implementation
of PLC program using Timed-MPSG. His area of research
is related to manufacturing automation and intelligent deci-
sion support system. He can be reached at
<debu@ajou.ac.kr>.

C. M. PARK is a research professor in the Department of
Industrial & Information Systems Engineering at Ajou
University. He has completed his PhD in 2002 from AJOU
University, in Industrial Engineering. His research interest
is related to Intelligent Information & manufacturing sys-
tem, and image processing. He can be reached via email at
<cmpark@ajou.ac.kr>.

SANG C. PARK is an assistant professor in the Depart-
ment of Industrial & Information Systems Engineering at
Ajou University. Before joining Ajou, he worked for
DaimlerChrysler Corp. and CubickTek Co., developing
commercial and in-house CAD/CAM/CAPP/simulation
software systems. He received his BS, MS, and PhD de-
grees from KAIST in 1994, 1996, and 2000, respectively,
all in industrial engineering. His research interests include
geometric algorithms in CAD/CAM, process planning, en-
gineering knowledge management, and discrete event sys-
tem simulation. He can be reached via email at
<scpark@ajou.ac.kr >.

1800

Thapa, Park, Kwan, Park, and Wang

Gi-NAM WANG is a department head and professor in
the Department of Industrial & Information Systems Engi-
neering at AJOU University, South Korea. He has com-
pleted his PhD in 1992 from Texas A&M University, in
Industrial Engineering. He has worked as visiting professor
at University of Texas at Austin during 2000-2001. His
area of research is related to Intelligent Information &
manufacturing system, system integration & automation, e-
Business solutions and image processing. He can be
reached via email at <gnwang@ajou.ac.kr>.

KWAN HEE HAN is an associate professor in the De-
partment of Industrial & Systems Engineering at Gyeong-
sang National University, Korea. Before joining Gyeong-
sang, he worked for Daewoo Information Systems
Company. He received his BS in Industrial Engineering
from Ajou University in 1982. He received his MSIE
and Ph.D. degree from KAIST in 1984, 1996, respec-
tively. His research interests include simulation modeling,
virtual manufacturing system and business process man-
agement. He can be reached via email at
<hankh@gsnu.ac.kr>.

1801

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

