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ABSTRACT 

Assembly line balancing problem (ALBP) means assigning 
a series of task elements to uniform sequential stations un-
der certain restrictions. This paper considers a special type 
of assembly line balancing problem with mixed models, 
fuzzy operation times and drifting operations, which has the 
objective of minimizing the total work overload time. Ac-
cording to chance constrained programming, a fuzzy �  to-
tal work overload time minimization model is built. More-
over, fuzzy simulation and genetic algorithm are integrated 
to design a hybrid intelligent algorithm to solve the above 
model. Finally, Extensive computational results are re-
ported to demonstrate the efficiency and effectiveness of 
the algorithm. 

1 INTRODUCTION 

1.1 Overview 

An assembly line is a flow-oriented production system 
where the productive units performing the operations, re-
ferred to as stations, are aligned in a serial manner. The 
workpieces visit stations successively as they are moved 
along the line usually by some kind of transportation sys-
tem, e.g. a conveyor belt. The current market is intensively 
competitive and consumer-centric. For example, in the 
automobile industry, most of the models have a number of 
features, and the customer can choose a model based on 
their desires and financial capability. Different features 
mean that different, additional parts must be added on the 
basic model. Due to high cost to build and maintain an as-
sembly line, the manufacturers produce one model with dif-
ferent features or several models on a single assembly line. 
Under these circumstances, the mixed model assembly line 
balancing problem arises to smooth the production and de-
crease the cost. 

Formally, a mixed model assembly line balancing 
problem can be stated as follows: given M models, the set 
of operations associated with each model, the processing 

time of each operation (operation time), and the set of 
precedence relations which specify the permissible order-
ings of the operations for each model, the problem is to 
assign the operations to an ordered sequence of stations 
such that precedence relations of each model are satisfied 
and some performance measures are optimized. Unlike the 
case of a single model line, different models of a product 
are assembled on a mixed model assembly line. The mod-
els are launched to the line one after another. Essentially, 
this problem is a sequencing problem with constraints: dif-
ferent sequences of operations being processed correspond 
to different allocation plans. 

In mathematical complexity, the standard ALBP is 
NP-complete in strong sense because the NP-complete 
bin-packing problem can be easily transformed to it (Hop 
2006). It becomes even more complicated when additional 
issues are addressed, such as mixed-model, uncertain op-
eration times and so on. In this paper, we will consider a 
special type of assembly line balancing problem, which 
has mixed models, fuzzy operation times, and drifting op-
erations. 

The paper is organized as follows. The major differ-
ence between our research and other related works is ex-
plained in the remainder of this section. Section 2 provides 
a formal statement of our balancing problem, and Section 
3 builds a fuzzy �  total work overload time minimization 
model. In Section 4 a hybrid intelligent algorithm integrat-
ing fuzzy simulation and GA is designed. Then in order to 
reveal the effectiveness of the hybrid intelligent algorithm, 
Section 5 gives some numerical examples. Finally some 
conclusions are drawn in Section 6. 

1.2 Major Differences between Our Research 
and Earlier Works 

Assembly line balancing has been a topic of research for 
several decades. Most commonly, previous line balancing 
approaches have exploited one of two objectives. One ob-
jective (generally referred to as Type I problem) is to 
minimize the amount of stations given the required pro-
duction rate (i.e. cycle time), operation times, and prece-
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dence requirements, see Mendes et al. (2005) and Haq et al. 
(2006); the other objective (generally referred to as Type II 
problem) is to minimize the cycle time and maximize the 
production rate, with fixed number of stations, see Near-
chou (2007). With either type, it is always assumed that the 
station time, which is the sum of times of all operations as-
signed to that station, must not exceed the cycle time. How-
ever, it is unnecessary or even impossible (e.g. when opera-
tion times are uncertain) to set a cycle time large enough to 
accommodate all the operations assigned to every station 
for each model. Whenever the operator cannot complete the 
preassigned operations on a workpiece, work overload oc-
curs. Two different mechanisms can be adopted to cope 
with the case of an overload: (1) in the U.S., the operator 
returns back towards the next workpiece, and the uncom-
pleted operation is left to utility workers (floaters) who have 
to be available whether or not work overload situations ac-
tually occur and must be highly qualified in order to per-
form a large set of different operations in a very short time 
(Tsai 1995); (2) in Japan, the operator stops the conveyor 
until the remaining work is completed (Zhao and Ohno 
2000). Under the U.S. mechanism the operation diagram in 
a station is not influenced when overloads happen in other 
stations. Because of this advantage, many actual assembly 
lines in the world adopt the U.S. mechanism. Under the 
Japanese mechanism, however, an overload influences op-
eration diagrams in all other stations due to the stoppage of 
the conveyor. Most research work focuses on the U.S. 
mechanism, see, for example, Tsai (1995), Matanachat and 
Yano (2001), Bautista and Cano (2008), and references 
cited in the survey Boysen et al. (2007) and a few focuses 
on the Japanese mechanism, see, for example, Zhao and 
Ohno (2000) and Celano et al. (2004). For mixed model as-
sembly line balancing problem, the “work overload time” is 
an important performance measure, for the utility work is 
rather expensive. In this paper, we will use the U.S. mecha-
nism and the objective is to minimize the total work over-
load time within a decision horizon. 

To efficiently tune uneven operation times due to dif-
ferent models, in many actual mixed model assembly lines, 
in particular in automotive industry, the operator drifts with 
the operation, i.e. he or she visits the next consecutive sta-
tion for a certain distance (which is called drifting distance 
in this paper). When the operation is finished, the operator 
leaves the workpiece and walks back to the station where 
the operation begun. If the operator is still unable to com-
plete the operations after drifting to the next station for a 
drifting distance, work overload occurs. Very few research-
ers have considered this type of assembly line which is very 
common in reality. Merengo et al. (1999) and Zhao et al. 
(2004) have considered similar balancing problems, but 
they both suppose the operation times to be deterministic, 
Zhao et al. (2007) have considered the situation of stochas-
tic operation times. 

Yet another factor that distinguishes our research and 
others is the uncertainty of operation times. The large ma-
jority of literature addresses line balancing with determi-
nistic operation times; some others concentrate on prob-
lems with stochastic operation times. Although, this 
assumption has been adopted and accorded with the facts 
in widespread cases, it is not reasonable in a vast range of 
situations. When we need to design a new, yet-to-be-built 
assembly line, the estimations of probability distributions 
of operation times are very difficult because there are not 
enough data to analysis. Instead, fuzzy theory can be em-
ployed to handle this case. For instance, based on experi-
ence, the time to finish a certain operation might be “be-
tween 60 and 100 seconds”, or “around 2 minutes”. 
However, very little attention has been paid to ALBP with 
fuzzy operation times. Only three paper can be found so 
far: Tsujimura et al. (1995) and Gen et al. (1996) have at-
tempted to use genetic algorithm for solving fuzzy single 
model ALBP; Hop (2006) consider the fuzzy mixed model 
ALBP for the first time and formulated a fuzzy binary lin-
ear programming model which was then solved by a fuzzy 
heuristic. The purpose of fuzzy data approach is to repre-
sent more realistic situations whose data of problems are 
imprecise, vague, or almost unavailable. Also, the mem-
bership function of a fuzzy data represents the grade of 
satisfaction of a decision maker for the completion time of 
the operation. To the best of the authors’ knowledge, no 
papers on balancing of the above-mentioned special type 
of assembly line with considerations of fuzzy operation 
times have been published so far. Nevertheless, fuzzy op-
eration times are essential, especially when assembling 
tasks are performed by manual operations. Here, we use 
Triangular Fuzzy Numbers (TFNs) to represent fuzziness 
of operation time, and other forms of fuzzy number can be 
done in the same way. 

2 PROBLEM DESCRIPTION 

We first make some assumptions complied with most 
practical mixed model assembly lines: 

1. The line is connected by a conveyor belt which 
moves at a constant speed. Consecutive work-
pieces are equispaced on the line by launching 
each after a cycle time. 

2. Every workpiece is available at each station for a 
fixed time interval. During this interval, the work 
load (of the respective model) has to be per-
formed by an operator while the workpiece ride 
downstream on the conveyor belt. If the work 
load is not finished within the cycle time, the op-
erator can drift to the next consecutive station for 
a certain distance. If the drifting distance is 
reached without finishing the operations, work 
overload occurs. In this case, a utility worker is 
additionally employed to perform the remainder 
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work so fast that the work can be completed as 
soon as possible. 

3. The operators of different stations do not interfere 
with each other while simultaneously servicing a 
workpiece (i.e. during drifting operations). 

4. The operator returns to the upstream boundary of 
the station or the next workpiece, whatever is 
reached first, in zero time after finishing the work 
load on the current unit, because the conveyor 
speed is much smaller than the walking speed of 
the operators. 

5. Precedence graphs of all models can be accumu-
lated into a single combined precedence graph, 
similar operations of different models may have 
different operation time; zero operation time indi-
cate that an operation is not required for a model. 

6. Operation times of every model are independent 
variables and are descript by TFN. 

7. Cycle time, number of stations, drifting distance, 
conveyor speed and the sequence of models to be 
assembled within the decision horizon are known. 

And the notations used in the paper are as follows: 
K  number of stations; index: 1,2, ,k K� � . 
M  number of models; index: 1,2, ,m M� � . 
D  total number of workpieces to be assem-

bled during the planning period. 
�  [ (1), (2), , ( )]D� � �� �� , assembly se-

quence vector, and ( )i�  is the model 
identification number of the ith workpiece 
to be assembled during the planning pe-
riod. 

J  number of operations; index: 
1, 2, ,j J� � . 

mjt  fuzzy processing time of operation j for 
one workpiece of model m. 

mkT  total operation time (i.e. station time) of 
one workpiece of model m in station k. 

ij�  processing time of operation j for the ith 
workpiece to be assembled during the 
planning period. 

�  =[ ]ij D J� �� , matrix representing all opera-
tion times of the workpieces to be assem-
bled. 

P  combined precedence relation matrices 
corresponding to combined precedence 
graph. 

l  drifting distance, i.e. the distance an op-
erator can get into the next consecutive 
station during drifting operations. 

C  cycle time. 
V  speed of the conveyor. 
A  1 2( , , )Ja a a� �A , an allocation plan of 

operations, ja  means operation j is as-

signed to the station with the index of ja . 
( , )ikx A �  with allocation plan A , the time spent by 

the operator of station k to process the i-th 
workpiece before a drifting operation 
happens. 

( , )iky A �  with allocation plan A , the time spent by 
the operator of station k to process the i-th 
workpiece during the drifting operation. 

( , )ikWOT A �  with allocation plan A , work overload 
time caused by the ith workpiece in sta-
tion k. 

( , )WOT A �  with allocation plan A , total work over-
load time during the planning period. 

With the above assumptions and notations, our spe-
cial assembly line balancing problem can be stated as: 
given the sets of models and their operation times, the op-
erations’ precedence relations, the cycle time C, number 
of stations K, conveyor speed V, drifting distance l, and 
the sequence of workpieces to be assembled in the deci-
sion horizon � , the question is to find an allocation plan 
A assigning operations of each model to K  stations, and 
minimize the total work overload time. In addition, the 
processing times of all the operations are descript with 
TFN. 

Theorem 1 The following iterative relationships hold: 

 ( 1), ( )( ) min( ( , ), )ik i k i k
CV lx A y A T

V �� ��

�
� �,  (1) 

( ) ( 1),( , ) max[min( ( , ), ) ,0]ik i k i k
CV ly A T y A C

V�� ��

�
� � �  (2) 

( ) ( 1),( , ) max( ( , ) ,0)ik i k i k
CV lWOT A T y A

V�� ��

�
� � � .(3) 

Proof: Figure 1 depicts the movements of the opera-
tor of station k and four workpieces (i.e. 

(1), (2), (3), (4)� � � � ) in two dimensions: the horizontal 
axis represents distance and the vertical axis, time. The 
distance between the two vertical full lines depicts the dis-
tance a workpiece travels within a cycle time, the distance 
between the right vertical full line and the vertical dash-
dotted line depicts the drifting distance. The oblique lines 
(both full and dashdotted) trace the workpiece movements: 
a full line represents the workpiece’s downstream move-
ment while being worked by the operator and a dashdotted 
line shows its downstream movement before and after the 
assembly process. A horizontal dashed line traces the op-
erator’s walk upstream to meet the next workpiece. 

From Figure 1, we can see that while working on the 
(i-1)-th workpiece, the time spent on drifting operation is 

( 1) ( , )i ky � A � . That means, before starting working on the 
i-th workpiece in sequence� , the time left to the operator 
is only ( 1),( ) / ( , )i kCV l V y A ��� � . If the operations allo-
cated to this station can be successfully finished within 
this period, ( , )ikx A �  is equal to the workpiece’s station 
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time ( )i kT� ; otherwise, drifting operation occurs, and 
( , )ikx A �  is equal to ( 1),( ) / ( , )i kCV l V y A ��� � , which 

leads to (1). 
If the i-th workpiece can be finished in the cycle time, 

apparently, ( , ) 0iky �A � ; if it cannot, but can be finished 
through drifting operation (i.e. work overload does not hap-
pens), ( ) ( 1),( , ) ( , )ik i k i ky A T y A C�� ��� � � ; otherwise (i.e. 
work overload happens), ( , ) ( ) /iky A CV l V C� � � � , lead-
ing to (2). 

If the ith workpiece can be finished before drifting op-
eration ends, work overload does not occur, 

( , ) 0ikWOT �A � ; otherwise, ( , )ikWOT A �  is equal to the 
total time of unfinished operations when drifting operation 
ends ( ) ( 1), ( , ) ( ) /i k i kT y A CV l V� ��� � � , which gives (3). �  

 

�(1)

�(2)

�(4)

C×V

�(3)

l

y2k

C

C

y3k

C

x1k

x2k

x3k

WOT3kx4k

Distance

Time
 

Figure 1: The movement paths of an operator and four 
workpieces in one station. 
 

Therefore, with Theorem 1, we can get the total work 
overload time during the planning period ( , )WOT A � . Con-
sidering the model is very complicated and involves fuzzy 
uncertainties, we will use computer simulation method to 
calculate ( , )WOT A �  (details about the computer simula-
tion method will be descript in Section 4). 

3  FUZZY �  TOTAL WORK OVERLOAD TIME  
MINIZATION MODEL 

In some practical optimization problems, the decision 
maker may be disgusted with risk, and prefer the system to 
be more reliable rather than just having a very high ex-
pected performance. A conservation design strategy is 

therefore selected to optimize the system with some given 
confidence levels provided as an appropriate safety mar-
gin. This is the idea of chance-constrained programming 
(CCP). CCP was first developed by Charnes and Cooper 
(1959), and offered a powerful means of modeling sto-
chastic decision systems with assumption that the stochas-
tic constraints will hold at least �  of time, where �  is re-
ferred to as the confidence level. After that, Liu (1999) 
generalized CCP to the case with not only stochastic con-
straints but also stochastic objectives. A framework of 
fuzzy CCP has been present by Liu and Iwamura (1998a, 
1998b) and Liu (1998). In our problem, we tend to mini-
mize the total work overload time with a confidence level 
under the precedence constraints. In this case, an �  total 
work overload time minimization model will be estab-
lished base on a new concept of �  total work overload 
time as follows. 

Definition 1 Given a predetermined confidence level 
� , the fuzzy �  total work overload time during the deci-
sion horizon is defined as: 

 0 0min{ | Cr{ ( , ) } }WOT WOT A WOT� �	 
 . 
In order to minimize the �  total work overload time 

of an assembly line, the following so-called  �  total work 
overload time minimization model is obtained: 

 

0

0

min
s.t.
     Cr{ ( , ) }
      1,  

     1 , ,  ,  are integers

      1 , ,   ,  are integers

ij i j

i j i j

WOT

WOT WOT
p a a

a a K a a
i j J i j

�

�
�
�
� 	 
�

 � � 	�
� 	 	
�
� 	 	�

A �
, (4) 

where�  a confidence level determined by the decision 

maker, 
1 1

( , ) ( , )
K D

ik
k i

WOT WOT
� �

� ��A A� � , and 

( , )ikWOT A �  is defined by equation (3) in Theorem 1. In 
addition, Cr is the credibility measure defined by Liu 
(2007). 

4 HYBRID INTELLIGENT ALGORITHM 

The development of algorithms to solve ALBP has a long 
history. A famous method is Jackson’s algorithm, which 
enumerates possible combinations of operations based on 
precedence relationships between them (Jackson 1956). 
Another method is the Branch and Bound method which 
cuts combinations having performance index values lower 
than some bound value (Bukchin and Rabinowitch 2006). 
Some other methods are integer programming (Talbot and 
Patterson 1984), dynamic programming (Henig 1986, Car-
raway 1989) etc. It becomes hard to solve ALBP by these 
traditional methods for problems involving large numbers 
of operations and stations, and these methods are mainly 
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applied to problems of getting the minimum number of sta-
tion for a given cycle time (Type  problem). Heuristic algo-
rithms have also been applied to ALBP, for example, Hel-
geson and Birnie (1961), Moodie and Young (1965), Arcus 
(1966), McMullen and Frazier (1997), Gaither and Frazier 
(1999) etc. These heuristic algorithms are very practical; 
however, it is not guaranteed that they will introduce the 
optimum solution. In recent years, numerous research ef-
forts have been directed towards the development of intelli-
gent algorithms, such as neural networks, simulated anneal-
ing and genetic algorithm to provide an alternative to 
traditional optimization techniques. Hashimoto et al. (1993, 
1994) have applied the Hopfield neural network to ALBP, 
and showed that middle-scale ALBP can be solved effi-
ciently by it. Suresh and Sahu (1994), McMullen and Fra-
zier (1998) have developed simulated annealing algorithms 
to solve ALBP, and get optimum solutions, but numerical 
examples have shown that when used to solve the above-
mentioned special type of ALBP, especially for rather 
large-scale problems, the simulated annealing algorithm is 
inefficient in finding optimum solutions (see for Section 5). 

Genetic algorithm (GA) is a stochastic search method 
for optimization problems based on the mechanics of natu-
ral selection and natural genetics (i.e. survival of the fittest). 
When the objective functions to be optimized are multimo-
dal or the search spaces are particularly irregular, algo-
rithms need to be highly robust in order to avoid get stuck 
at a local optimal solution. The advantage of GA is just able 
to obtain the global optimal solution fairly. During the past 
three decades, GA has demonstrated considerable success 
in providing good solutions to many combinational optimi-
zation problems, especially for sequencing problems such 
as travelling salesman problems, flow-shop and job-shop 
scheduling problems, and so on. 

The application of GA for assembly line balancing has 
been widely studied so far: Anderson and Ferris (1994) 
proposed a GA for Type II problem, and Leu et al. (1994) 
presented a GA-based approach to solve Type I problems 
with multiple objectives. Tsujimura et al. (1995) and Gen et 
al. (1996) have developed similar GAs to solve fuzzy 
ALBP. Haq et al. (2006) studied mixed model ALBP using 
GA. All these studies are different from this work not only 
in terms of the problem considered, but also in terms of the 
hybrid approach. In this approach, we integrated fuzzy 
simulation and genetic algorithm, where fuzzy simulation is 
used to calculate the system performance (i.e. �  total work 
overload time), while genetic algorithm is employed to 
search for the optimal solution. 

4.1 Fuzzy Simulation 

In model (4), there exists a uncertain function with fuzzy 
variables. Due to the complexity, we design a fuzzy simula-
tion to calculate these uncertain functions according to the 
concepts of credibility measure of fuzzy variables. The in-

terested readers can learn details pertaining to fuzzy simu-
lation by referring to the book of Liu (2002). 

Specifically speaking, the uncertain function need to 
be simulated is: 

0 0: min{ | Cr{ ( ) } }U WOT WOT WOT �� 	 
A A,� . 
In order to estimate it, we need to find the minimal value 

0WOT  such that 0Cr{ ( ) }WOT WOT �	 
A,� . The fuzzy 
simulation for calculating U can be summarized as fol-
lows: 
Step 1. Randomly generate ( )l

ij�  from the � -level sets of 
fuzzy variables ij� , 1,2, ,i D� � , 1, 2, ,j J� � , 
respectively, 1, 2, ,l N� � , where N is a suffi-
ciently big number that denotes the maximum 
cycle number of the fuzzy simulation and �  is a 
sufficiently small number.  

Step 2. Set ( ) ( )[ ]l l
ij D J� ���  and ( ) ( )

,
min[ ( )]l l

ij iji j
v � �� , 

where ( )ij� �  is the membership function of ij� . 

Step 3. Calculate ( )( )lWOT A,�  through computer simu-
lation. 

Step 4. Employ binary search to find the maximal value r 
such that ( )L r �
 holds, where 

 
� ��

� ��

( ) ( )

1

( ) ( )

1

1( ) max | ( , )
2

                       min 1 | ( , )

l l

l N

l l

l N

L r WOT r

WOT r

�

�

	 	

	 	

� 	 �

� �

A

A

�

�
 

Step 5. Return r. 

4.2 Genetic Algorithm 

In this subsection, we design a genetic algorithm that em-
beds the fuzzy simulation proposed above. Now let us in-
troduce the algorithm detailedly in the following way: 

4.2.1 Representation Structure 

We represent an allocation plan by the chromosome 
1 2( , , )Ja a a� �A , where ja  means operation j is assigned 

to the station with the index of ja . 

4.2.2 Initial Process 

The initial population of our GA is composed of two parts: 
some chromosomes of the population are generated 
through heuristics (details of these heuristics will be expli-
cated in Section 5), and the others are randomly derived. 
We denote the chromosomes in the population by ( )nA , 

1, 2, , _n pop size� � . 
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4.2.3 Evaluation Function 

We first calculate the objective values for all chromo-
somes ( )nA , 1, 2, , _n pop size� �  by the designed fuzzy 
simulation. According to the objective values, an order rela-
tionship among these chromosomes is presented to rear-
range them from good to bad. Then, the fitness of each 
chromosome can be computed by some evaluation function. 
Here, the rank-based evaluation function is defined as: 

 ( ) 1( ) (1 ) ,  1, 2, , _n nEval p p n pop size�� � � �A , 
where the chromosomes (1) (2) ( _ ), , pop size�A A , A  are as-
sumed to have been rearranged from good to bad according 
to their objective values and (0,1)p�  is a parameter in the 
genetic system. 

4.2.4 Selection Process 

Generally, we select the chromosomes for a new population 
based on spinning the roulette wheel characterized by the 
fitness of all chromosomes for pop_size times to generate a 
new generation to update the chromosomes. Firstly, we 
compute the cumulative probability iq  for each chromo-
some ( )nA , where 0 0q �  and 

 ( )

1
( ),  1,2, , _

n
j

n
j

q Eval n pop size
�

� �� �A . 

Secondly, we randomly generate a number rand in 
_[0, ]pop sizeq . Then we select the chromosome ( )nA  such 

that 1n nq rand q� 	 	 . Repeating the above steps pop_size 
times, we can obtain pop_size copies of chromosome to be 
a new generation of chromosomes. 

4.2.5 Crossover Operation 

The crossover operation is used to renew the chromosomes 
( )nA , 1, 2, , _n pop size� �  with the probability cP . In or-

der to determine two parents for crossover operation, we 
repeat the following process pop_size times: generating a 
random real number rand from the interval [0,1] , if 

crand P� , we randomly select two chromosomes (i.e. two 
parents) from the population, denoted as 1( )nA  and 2( )nA . 
Then we cross 1( )nA  and 2( )nA  in the following way: ini-
tially, randomly select a crossover point. Then, one child 
inherits the elements between the starting point and cross-
over point from the first parent, in the order and position in 
which this parent appeared; the remaining elements are in-
herited from the second parent, beginning with the cross-
over point and ending up with the last point. The other child 
is generated in the same way, except that firstly inherits 
from the second parent, and then from the first parent. If 
both children are feasible solutions, we replace the parents 
with them. If not, we keep the feasible one if it exists, and 

then redo the crossover operation by regenerating another 
crossover index until totally two feasible children are ob-
tained. In this way, we only replace the parents with the 
feasible children. Finally, pop_size new chromosomes 

( )nA , 1, 2, , _n pop size� �  are obtained. 

4.2.6 Mutation Operation 

Now we update the chromosomes ( )nA , 
1, 2, , _n pop size� �  by mutation operation with the 

probability mP . Similar to the process of selecting parents 
for crossover operation, we repeat the following steps 
pop_size times: generating random real number from the 
interval [0,1] , if mrand P� , we randomly select a chro-
mosome (i.e. a parent) from the population, denoted as 

( )nA . Then we mutate ( )nA  through trade and transfer 
method (Reeve and Thomas 1973): (1) interchanging the 
positions of two operations (trade); (2) shifting an opera-
tion from one station to another (transfer). Like crossover 
operation, if the child is feasible for the precedence con-
straints, we replace the parent with the child; otherwise, 
we redo the mutation operation until a feasible child is ob-
tained. 

4.3 Hybrid Intelligent Algorithm 

The hybrid intelligent algorithm designed above to solve 
the fuzzy model (4) are summarized as follows: 
Step 1. Initialize pop_size chromosomes. 
Step 2. Calculate the objective values for all chromo-

somes through fuzzy simulation. 
Step 3. Compute the fitness of each chromosome by 

rank-based evaluation function based on their ob-
jective values. 

Step 4. Select the chromosomes by spinning the roulette 
wheel. 

Step 5. Update the chromosomes by crossover and muta-
tion operations. 

Step 6. Repeat the second to fifth steps a given number 
of times. 

Step 7. Report the best chromosome as the optimal solu-
tion. 

5 COMPUTATIONAL EXPERIMENTS 

To assess the desirability of the proposed algorithms, we 
give some numerical examples that are performed on a 
personal computer. We choose five combined precedence 
relation matrices from the stand ALBP lib (Scholl 2007); 
operation times are assumed to be descript by TFNs, 
whose parameters are randomly generated. All problems 
have 3 models; total numbers of workpieces to be assem-
bled are all 50 and every sequence is randomly generated. 
The conveyor speed is set as V=0.01m/s, cycle time is 
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C=380s, drifting distance is l=1m for all problems, and sta-
tion quantities are determined by the number of operations. 

Suppose the decision-maker want to reasonably assign 
operations, and the objective is to minimize the 0.95 total 
work overload time, the following 0.95 total work overload 
time minimization model is obtained: 
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For each problem, experimentation is performed to 
compare the hybrid intelligent algorithm with several oth-
ers, including 13 heuristics extended from the literature 
and simulated annealing approach provided by McMullen 
and Frazier (1998). Details of the 13 heuristics are con-
tained in Table 1. The interested reader can learn more 
about them by referring to Arcus (1966) for H1, Moodie 
and Young (1965) for H2 and H3, Gaither and Frazier 
(1999) for H7 and H8, Helgeson and Birnie (1961) for 
H13, and McMullen and Frazier (1997) for the remaining 
heuristics. 

Each of the five problems (21, 35, 45, 58, and 83 
tasks) is solved by the 15 approaches 10 times, i.e. totally 
250 experiments are performed. Table 2 shows means, 
standard deviations of total work overload time, along 
with the ranking of each approach. 

 
Table 1: Description of the heuristics used in the comparison and initialization of GA. 

Label Description 
H1 The probability of selection for each operation on the appropriate list is directly proportional to its expected proc-

essing time. 
H2 The operation with the longest expected processing time is selected to enter the current station. 
H3 The operation with the shortest expected processing time is selected to enter the current station. 
H4 The operation with the shortest 0.95 work overload time of the current station is selected, if several operations 

yield the same work overload time, the first one available is selected. 
H5 The operation with the shortest 0.95 work overload time of the current station is selected, if several operations 

yield the same work overload time, the last one available is selected. 
H6 Selects the operation on the appropriate list with the largest expected station time and smallest 0.95 work overload 

time. This rule is an attempt to “have the best of both worlds” in terms of station time and work overload time. 
H7 The first available operation is selected. 
H8 The last available operation is selected. 
H9 The operation having the most followers is selected. 
H10 The operation having the fewest followers is selected. 
H11 The operation having the most immediate followers is selected. 
H12 The operation having the fewest immediate followers is selected. 
H13 The operation having the highest ranked positional weight is selected, and ranked positional weight means the sum 

of the processing time of the current operation and all its followers. 
 
Table 2: Means (rankings) and standard deviations of investigated approaches. The first row of the table is the name of prob-
lems, and the number in the parentheses behind each name indicates the number of operations; the first row column lists the 
name of approaches. 

MITCHELL (21) GUNTHER (35) KILBRID (45) WARNECKE (58) ARC (83)  
mean s.d. mean s.d. mean s.d. mean s.d. mean s.d. 

H1 2493.76 (11) 340.88 3557.60 (13) 926.50 5170.43 (7) 1663.07 6555.77 (7) 1648.24  11836.45 (9) 715.16 
H2 2365.72 (9) 166.74 2805.37 (5) 322.83 6311.28 (11) 338.29 8853.30 (13) 318.20  16085.35 (13) 317.69 
H3 2391.38 (10) 170.39 2806.06 (6) 318.72 6667.70 (12) 374.97 3780.78 (3) 227.44  9752.02 (6) 360.95 
H4 2081.51 (6) 176.73 4187.85 (14) 574.09 5415.75 (8) 435.60 5894.32 (5) 1533.08  7270.18 (4) 1307.23 
H5 2681.40 (12) 202.03 3500.12 (11) 286.04 4157.67 (4) 529.47 7793.57 (10) 1102.72  11112.79 (8) 1523.92 
H6 2114.42 (7) 167.93 1560.63 (3) 855.69 5914.73 (9) 1336.82 6174.53 (6) 779.34  12996.29 (11) 2083.36 
H7 3730.73 (15) 274.88 2581.79 (4) 192.90 6186.92 (10) 279.32 9890.55 (15) 389.79  16321.35 (14) 620.57 
H8 2361.78 (8) 129.79 3517.88 (12) 135.86 2818.08 (3) 209.78 8365.24 (11) 434.00  7375.24 (5) 650.16 
H9 1978.17 (5) 239.74 3445.48 (10) 208.39 8037.55 (14) 369.47 8968.59 (14) 386.81  10478.31 (7) 366.54 

H10 1877.23 (3) 170.93 3301.63 (8) 284.81 5134.42 (6) 286.94 7654.68 (9) 465.08  12775.17 (10) 381.21 
H11 3232.17 (14) 128.98 3014.38 (7) 237.40 8277.98 (15) 353.34 6963.46 (8) 322.20  16599.36 (15) 452.42 
H12 1956.23 (4) 215.54 3406.55 (9) 284.46 7139.46 (13) 373.80 8787.19 (12) 522.15  7205.15 (3) 439.25 
H13 2686.19 (13) 255.79 4236.95 (15) 136.72 4522.12 (5) 112.05 4652.90 (4) 254.94  13068.40 (12) 429.73 
SA 0.00 (1) 0.00 528.50 (2) 193.47 1158.75 (2) 274.13 2045.08 (2) 630.01  2698.58 (2) 314.10 

HIA 0.00 (1) 0.00 1.06 (1) 2.10 121.78 (1) 188.57 252.61 (1) 168.49  372.70 (1) 175.87 
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From inspection of Table 2, it is clear that heuristics are 
far worse than intelligent algorithms (i.e., simulated anneal-
ing and genetic algorithm). There does not exist a single 
heuristic that always guarantee better result than others for 
all the problems. For small- and middle-scale problems, 
both intelligent algorithms can get desirable allocation 
plans. However, when it comes to large-scale problems, the 
hybrid intelligent algorithm provides performances far bet-
ter than what simulating annealing does. As a result, we can 
say that the hybrid intelligent algorithm is a relatively ro-
bust approach for the special type of ALBP outlined in this 
paper. 

6 CONCLUSION 

In this paper, a special type of assembly line balancing 
problem with station lengths longer than the distance con-
veyor moved within one cycle time is investigated in fuzzy 
environments, where operation times are assumed to be 
fuzzy variables, and the objective is to minimize the total 
work overload time during the decision horizon. Based on 
explicit formulation of this problem, we proposed a fuzzy 
� total work overload time minimization model. In order to 
solve this model efficiently, a fuzzy simulation is designed 
and embedded into genetic algorithm to produce a hybrid 
intelligent algorithm. Finally some computational experi-
ments are given to show the effectiveness of the proposed 
algorithm. 
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