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ABSTRACT

SEARUMS is an Eco-modeling, bio-simulation, and analy-
sis environment to study the global epidemiology of Avian
Influenza. Originally developed in Java, SEARUMS enables
comprehensive epidemiological analysis, forecast epicen-
ters, and time lines of epidemics for prophylaxis; thereby
mitigating disease outbreaks. However, SEARUMS-based
simulations were time consuming due to the size and com-
plexity of the models. In an endeavor to reduce time for sim-
ulation, we have redesigned the infrastructure of SEARUMS
to operate as a Time Warp synchronized, parallel and dis-
tributed simulation. This paper presents our parallelization
efforts along with empirical evaluation of various design
alternatives that were explored to identify the ideal parallel
simulation configuration. Our experiments indicate that the
redesigned environment called SEARUMS++ achieves good
scalability and performance, thus meeting a mission-critical
objective.

1 INTRODUCTION

Avian influenza is a viral disease caused by H5N1, a highly
virulent strain of the influenza-A virus, that has the potential
to cause the next global pandemic (CDC 2006, WHO 2006).
Infected migrating waterfowl, in which the virus is endemic,
are the primary vectors for causing intercontinental spread
of the disease (Normile 2006). The virus rapidly spreads
from waterfowl to poultry and humans through contami-
nated water, feed, and surfaces. It has devastating impacts
on poultry farming and has resulted in numerous human
deaths (CDC 2006). Targeted antiviral prophylaxis is the
prevention and control mechanism for influenza. Unfor-
tunately, the constantly changing antigenic characteristics
of H5N1 reduces efficacy of vaccinations (WHO 2006).
Furthermore a myriad of technological issues pose serious
hurdles to manufacturing and distribution of even small
volumes of H5N1 vaccines (WHO 2006).

Consequently, strategies for containing epidemics and
mitigating pandemics are of vital importance (Ferguson
et al. 2006, Longini et al. 2005). Such strategies re-
quire extensive knowledge about its global epidemiology,
epicenters of disease outbreaks, and timelines for targeted
prophylaxis using low efficacy vaccinations. An effective
methodology for discovering epidemiological knowledge is
simulation-based analysis using a descriptive, ecological
model (Ferguson et al. 2006, Longini et al. 2005). Ac-
cordingly, we have developed a modeling, simulation, and
analysis environment called SEARUMS. It is a Java-based
graphical modeling, simulation, and analysis environment
that is specialized for epidemiological study of avian in-
fluenza.

In SEARUMS, simulation-based analyses are conducted
using an individual, agent-based, spatially-explicit model
of global epidemiology of avian influenza. Agents essen-
tially implement the classical SIR (Susceptible-Infected-
Removed) mathematical models (Anderson and May 1992)
used to describe the epidemiological behaviors of the the
three salient entities, namely: waterfowl, poultry, and hu-
mans. The agents are specifically designed to ease effective
use of real world statistical data. The conceptual design of
each agent is based on discrete time Markov processes (Rao
et al. 2007). Figure 1 presents an overview of the three
Markov processes along with the SIR mathematical model.

The global epidemiology of avian influenza is mod-
eled using a collection of the aforementioned agents. The
models, called Eco-descriptions, have been developed using
real-world statistical data on: waterfowl migration (GROMS
2006), waterfowl species that are at higher risk to carry the
virus (Brahmbhatt 2006), global poultry population and
distribution (GLiPHA 2007), and global human popula-
tion distribution information (SEDAC 2007). The models
have been calibrated, validated, and verified through exten-
sive simulations. Verification and validation was performed
by confirming that the timing and chronology of several
outbreaks observed in the simulations correlate with sev-
eral significant real-world incidents reported by the World
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remaining susceptible at time t, and R  is the
where s(t) is the proportion of population
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Figure 1: Overview of SIR model based Markov Processes.

Health Organization (WHO) (WHO 2006). The aforemen-
tioned investigations have already been reported and are not
the focus of this paper. Consequently, we have provided a
succinct overview while providing details in an on-line ap-
pendix (SEARUMS 2008). Further details on SEARUMS,
the Eco-descriptions, their verification and validation along
with inferences drawn from several epidemiological studies
are available in the literature (Rao et al. 2007).

2 MOTIVATION

The earlier implementation of SEARUMS used a Java-
based, multi-threaded discrete event kernel for simulation.
The simulation kernel was designed to operate on shared-
memory (multi-core or multi-processor) systems. It used a
centralized event queue with minimal locking for schedul-
ing and processing timestamped events in correct causal
order. Multiple threads operate in a synchronous manner,
processing concurrent events scheduled at a given simula-
tion time. A more detailed description of the simulation
kernel is available in the literature (Rao et al. 2007).

The Java-based simulation back-end of SEARUMS per-
formed well for small models, involving less than 1000
agents (Rao et al. 2007). However, as the size of the model
increased, the simulation kernel did not scale effectively.
Consequently, simulating medium sized models (with 5000
to 8000 agents) required more than 2 to 3 hours per run.
Hundreds of such runs were necessary for thorough epi-
demiological analysis; making such studies prohibitively
time consuming. Furthermore, the supercomputing cluster
available for our research had a standard distributed mem-
ory architecture. Consequently, the shared-memory design
could not effectively utilize the computational infrastructure
beyond a single node. Consequently, we endeavoured to
redesign SEARUMS’ simulation back-end to address these
issues.

3 OVERVIEW OF PROPOSED SOLUTION

In order to circumvent the issues presented in Section 2,
we redesigned our simulation infrastructure to execute as
an optimistic parallel and distributed simulation. Parallel
simulation is a natural candidate to enable effective use
of supercomputing clusters built using distributed mem-
ory architectures (Deelman and Szymanski 2002, Fujimoto
1990, Glass et al. 1997, Maniatty et al. 1999). How-
ever, ensuring scalability required that the latent parallelism
available in the model is effectively utilized. Accordingly,
to maximize parallelism we proposed to utilize Time Warp,
the popular optimistic synchronization methodology (Fuji-
moto 1990). Time Warp was also chosen based on our prior
experiences and due to encouraging parallelization results
reported by other investigators for similar spatially-explicit
models (see Section 4).

Accordingly, we redesigned SEARUMS’ simulation
infrastructure in C++ using a general purpose simulation
framework called WESE (Rao 2003). WESE was chosen as
the target parallel simulation framework for several rea-
sons. WESE is a general purpose, web-enabled, Time Warp
synchronized framework that eases development of parallel
and distributed simulations (Rao 2003). It has been devel-
oped by suitably extending the WARPED simulation kernel.
WARPED provides the core Time Warp related infrastructure
that WESE further customizes to provide additional features,
including a web-based interface. The web interface supports
a text-based protocol that can be used to establish, initiate,
monitor, and control parallel simulations. Moreover, WESE
manages the task of centralizing standard output from vari-
ous computational nodes to ease visualization. This feature
facilitated seamless integration with SEARUMS’ Java-based
modeling, visualization, and analysis GUI; thereby elimi-
nating the need to re-implement the fully functional and
comprehensive frontend. The aforementioned aspects make
WESE an ideal framework for developing our redesigned en-
vironment called SEARUMS++. An architectural overview
of SEARUMS++ along with details on the redesigned agents
is presented in Section 5.

4 RELATED RESEARCH

Having presented an overview of the proposed approach we
proceed to compare and contrast our research with earlier
investigations. Due to space restrictions, we discuss only
the very closely related research in this section. Read-
ers are referred to the references and literature for a more
comprehensive survey of related works (Rao et al. 2007).
Optimistic parallel simulation of epidemiology of avian in-
fluenza is a unique application. Nevertheless, the models
fall under the category of spatially-explicit models and sev-
eral researchers have investigated the application of parallel
simulation methodology to such models.
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Deelman and Szymanski discuss the use of Time Warp
for simulating spatially-explicit models of Lyme disease on
an IBM SP, based on a shared memory architecture (Deel-
man and Szymanski 2002). They use a Breadth-First Roll-
back (BFR) method that utilizes incremental state saving to
rapidly recover from causal violations. They report almost
linear speedup for models of different sizes. Maniatty et al
illustrate the use of parallel simulations to simulate generic
evolutionary, spatially explicit models using genetic algo-
rithms and cellular automata (Maniatty et al. 1999). They
present stepwise refinement of three systems called TEM-
PEST, STORM, and GALE to yield the desired models and
MPI-based parallel simulation. Their experiments utilized
both conservative and optimistic synchronization methods.
From their empirical analysis on a shared memory SGI Ori-
gin 2000, they conclude that for spatially explicit models
with large diversity of time scales, an optimistic approach
is more efficient than the conservative one (Maniatty et al.
1999).

Glass et al. (1997) discuss the use of Time Warp syn-
chronized parallel simulations for analyzing spatially ex-
plicit, ecological models on shared memory multi-processor
architectures. They propose the use of shared object states
to circumvent some of the bottlenecks reported by Deelman.
Eubank (2002) presents MPI-based parallel simulation of
spread of disease among individuals in a large urban pop-
ulation over the course of several weeks. The simulations
were designed to run on a distributed memory platform
using a conservative synchronization protocol.

In contrast to the research conducted by Deelman (Deel-
man and Szymanski 2002), Maniatty (Maniatty et al. 1999),
and Glass (Glass et al. 1997), our research focuses on paral-
lel simulation on a distributed memory cluster rather than a
shared memory architecture. Consequently, our design ap-
proaches and trade-offs are different from theirs. However,
similar to these three investigations we also use the Time
Warp synchronization protocol. The use of Time Warp dis-
tinguishes our research from that of Eubank (Eubank 2002)
who uses conservative synchronization.

From an epidemiological perspective, our investigations
assume and reflect the current, real-world situation; i.e.,
H5N1 is yet to mutate into its pandemic state and human-
to-human transmission is unsustained. Furthermore, our
research aims to utilize waterfowl migration data to fore-
cast epicenters and timelines of potential epidemics as well
as study effects of targeted, proactive prophylaxis to mitigate
a pandemic. In addition, we also emphasize socio-economic
impacts on global poultry farming which is currently expe-
riencing significant economic impacts. The aforementioned
aspects notably distinguish our efforts from several recent
investigations reported by Ferguson et al. (2006), Longini
et al. (2005), and LANL (2006). The latter investigations
are based on the premise that H5N1 has already mutated to a
pandemic form and epidemics are being caused primarily due

to human-to-human transmission. Such a scenario continues
to remain only a possibility at the time of this writing. On
the other hand, similar to the latter three investigations, we
also use the classical SIR (Susceptible-Infected-Removed)
mathematical approach for modeling.

5 SEARUMS++

An architectural overview of the redesigned, hybrid (com-
bination of Java and C++) system called SEARUMS++
is shown in Figure 2. It has been developed by inter-
facing SEARUMS with a Time Warp synchronized sim-
ulation back-end developed using WESE. All user interac-
tions with SEARUMS++ are preformed via the graphical
modeleditor to create a model called an Eco-description.
The model editor interacts with the visualization
subsystem to provide geographic (using multi-zoom
maps) and statistical (using a variety of configurable charts)
representations. Themodeleditor essentially stores con-
figuration information in skeleton agents instantiated from
the agent repository using reflection. The skeleton
agents were introduced into the agent repository as
a part of this research. The skeleton agents serve as place
holders to facilitate user interactions, GUI development,
and persistence. The actual agents that perform the core
simulation-time activities are part of WESE factories that
are deployed on various compute nodes used for parallel
simulation.

A WESE Factory acts as an agent repository and
a simulation server. It has been developed in C++ using
WESE’s Application Program Interface (API). Figure 2 il-
lustrates the modules constituting a WESE Factory. The
communication subsystem handles the tasks of in-
teracting with remote SEARUMS++ clients and other WESE
factories used for simulation. The gateway modules uses
the communication subsystem to provide the initial
entry point to a WESE Factory. It creates a new session
manager for each unique session initiated with the factory.
The session manager performs the task of interacting
with the agent factory to create the actual agents and
locally establishes part of the Time Warp synchronized
parallel simulation.

The session manager then initiates a distributed
simulation by interacting with session managers on
other WESE Factories used in a simulation. Agents in a
single WESE Factory are part of the same process and are
scheduled using a single thread of execution. Scheduling
of events is performed using a shared Least-Time-Stamp-
First (LTSF) event queue. Therefore, events exchanged
between agents on the same WESE Factory will never
cause rollbacks. However, the agents are not coerced into
synchronizing with each other. Conversely, inter-Factory
events that are exchanged over the network give raise to
straggler events resulting in rollbacks. The core Time Warp
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Figure 2: Architectural overview of SEARUMS++. Modules in gray have been newly developed as a part of this research.

synchronization feature of WESE has been realized by using
a modified version of the WARPED simulation kernel (Rao
2003). WARPED also handles Global Virtual Time (GVT)
based garbage collection and generation of optimistic I/O.
Each session manager also performs the task of redi-
recting standard output from local simulations back to a
SEARUMS++ client for visualization. A more detailed de-
scription of WESE and the process of developing a WESE
Factory are available in the literature (Rao 2003).

The graphical front-end and the WESE-based parallel
simulation back-end have been coupled together using a
Java-based interface layer. This interface, shown in Fig-
ure 2, has been developed as a part of this research. The
simulation manager is the core module that estab-
lishes, controls, and coordinates all the simulation related
activities. It first interacts with the partitioner to suit-
ably partition the Eco-description for parallel simulation.
Then it uses the list of factories configured in the factory
manager to interact with various factories to perform a par-
allel simulation. Protocol details involved in communicating
with a WESE Factory are handled by individual factory
proxy modules. The factory manager coordinates the
various factory proxy modules and eases interactions
between them and the simulation manager.

The simulation manager also performs the task of
routing application-level messages to suitable visualization
modules that update corresponding skeleton agents. The
skeleton agents provide a dynamic (i.e., during simulation),
intuitive, graphical representation of the actual agents on
various factories. The agents and their behaviors reflect
their conceptual models shown in Figure 1 and are briefly
described below:

Waterfowl Group Agent (WGA): A WGA represents
a flock of waterfowl. The agent starts at a given coordinate
(represented by latitude and longitude) and periodically (ev-
ery 1 hour of simulation time) changes its position along a
predefined migratory path. The migration pathways and mi-

gratory patterns have been developed from data published by
various international organizations (GROMS 2006, Hage-
meijer and Mundkur 2006). Currently, WGA instances reflect
high risk waterfowl species in which H5N1 is endemic.
Hence these agents are initialized to carry some infection.
This agent provides different configurations to model intra-
flock and inter-flock infection spread (Rao et al. 2007).
Inter-flock infections occur when the agent migrates and
comes in contact with any other agent in the Eco-description.
In order to correctly model infection spread, the state of this
agent is large and contains the following information: cur-
rent coordinate (latitude and longitude), current migration
point (the per agent migration path is fixed during modeling
and is not in the state), flock population, infection percent-
age, a blacklist of recently infected agents who should not
be reinfected for a period of 168 hours, and a list to track
changes in overlap areas with neighboring agents.

Poultry Group Agent (PGA): A PGA models a non-
migrating flock of poultry. The activities of this agent
commence when it is infected by another agent in the
simulation. Infections trigger intra-flock spread, inter-flock
spread, and culling-regeneration processes in a PGA. Various
behaviors, including inter-flock and intra-flock infection
spread models, can be suitably configured during model
development. The state of this agent is similar to that of the
WGA except it does not contain migration data but has state
information to model culling and regeneration processes.

Human Group Agent (HGA): The HGA is used to
model a group of humans living in proximity of each other
with a consistent population density. Similar to the PGA, an
infection triggers various activities of this agent. Currently,
human-to-human spread of avian influenza has been rare
and unsustained. Consequently, this agent only performs
healing and death processes. Accordingly, its state is small
and contains the following data: number of infected humans,
number of humans healing, and count of human fatalities.
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Each of the aforementioned agent has been developed
as classical Time Warp Logical Process (LP). The temporal
behaviors and life cycle processes of agents are coordinated
by scheduling suitable timestamped events. The space oc-
cupied by each agent is approximated to circular regions
with even density. Such a modeling approach is commonly
used in spatially explicit ecological models (Deelman and
Szymanski 2002, Ferguson et al. 2006, Glass et al. 1997,
Longini et al. 2005, Maniatty et al. 1999). The spatial
interactions between agents are modeled using EcoArea
components that represents Earth’s surface. EcoArea com-
ponents receive update events from an agent initially and
whenever it changes its attributes, such as: current co-
ordinate, infection percentages, and population changes.
The EcoArea components tracks agents in its purview by
maintaining a list in its state. It uses the information to
detect and trigger interactions between overlapping agents
by scheduling timestamped events.

SEARUMS++ provides two different EcoArea com-
ponents that can be used in the three different configu-
rations enumerated below. The three configurations were
developed in an incremental manner to address scalabil-
ity and performance issues observed in the previous ones.
However, note that immaterial of the configuration used,
the final application-level events are identical in all cases.
The three different configurations explored in the design of
SEARUMS++ were:

Config #1: Unified EcoArea: This component rep-
resents the complete surface of the earth as shown in
Figure 3(a). One unique component is instantiated on
each compute node used for parallel simulation by the
simulation manager. Agents partitioned to that node
only send update events to their their local Unified
EcoArea. Conversely, each Unified EcoArea compo-
nent aggregates its local changes and broadcast updates to
other EcoAreas to ensure coherence of agent information.
These broadcasts may cause additional local proximity
events to be generated. Agents receive proximity notifi-
cations only from their local EcoArea. Agents utilize the
information in proximity events generated by EcoArea
components and directly schedule infection events to
overlapping agents. The objective of this design was to min-
imize inter-Factory communication that ultimately plays
a crucial role in causing rollbacks. However, as presented
Section 6, this configuration did not yield effective per-
formance. Therefore, we explored the design alternatives
discussed below to circumvent the bottlenecks observed in
this configuration.

Config #2: Split EcoArea: This component represents
a specific rectangular region of the Earth’s surface. Areas
represented by Split EcoArea components are distinct
and do not overlap. One unique Split EcoArea com-
ponent is created on each WESE Factory. Currently, a
minimum of 2 factories are necessary to simulate using

this configuration. Furthermore, the partitioner (see
Figure 2) distributes agents based on their geographical co-
ordinates to the corresponding Factory. When Split
EcoArea is used in a simulation, agents communicate only
with the EcoAreas they overlap. Figure 3(b) illustrates this
configuration involving four factories. Note that as agents
move they appropriately register and unregister themselves
from the corresponding EcoAreas. However, in this mode
the agent LPs do not physically migrate from one WESE
factory to another. Instead, inter-Factory interactions oc-
cur over the network which resulted in increased rollbacks
as the number of factories was increased. This resulted in
diminished scalability as discussed in Section 6. Conse-
quently, we further enhanced the simulation by introducing
physical migration of agents as explained below.

Config #3: Split EcoArea with Proxies: This configu-
ration builds on the previous configuration by introducing the
concept of proxy agents for all mobile waterfowl agents
in the simulation. The proxy agents are used to achieve
physical migration of LPs from one WESE Factory to
another, tracking the migration pattern of agents. The over-
all objective is to minimize inter-factory messages (that
are exchanged over the network) as they are the primary
source of rollbacks in WESE-based simulations. The proxy
agent feature has been implemented in the following man-
ner. Initially, one deactivated proxy agent is created by
the simulation manager on each WESE Factory for
every mobile agent in the model. Deactivated agents do
not perform any operations and remain dormant in the sim-
ulation. Based on the initial geographical location of an
agent, the appropriate proxy is activated and it performs
the normal operations of a waterfowl agent. When the
agent migrates across its local EcoArea, it first deacti-
vates itself. Then it schedules an activation event to the
appropriate proxy object on a different WESE Factory.
Furthermore, dormant proxies simply forward events (as
they may already be scheduled) to the active proxy. Activa-
tion, deactivation, and forwarding of events are performed
using sub-simulation cycles. Consequently, the proxy con-
figuration was achieved with minimal increase in state size.
The simulation manager (see Figure 2) performs the
task of collating and distributing proxy information dur-
ing agent creation. This configuration provided the best
scalability and performance as described in Section 6.

6 EXPERIMENTS

The experiments conducted to evaluate the effectiveness of
the various simulation configuration of SEARUMS++ were
performed using three models. Table 1 shows the number of
agents constituting each models. All the models include only
the high risk species of waterfowl that play a dominant role
in intercontinental spread of avian influenza (Hagemeijer
and Mundkur 2006, SEARUMS 2008). This subset of
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One Unified EcoArea per Factory

(a) Unified EcoArea (b) Split EcoArea

− An Agent − Update event − Proximity Event − Infection EventLegend: 
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Figure 3: Different simulation configurations involving Unified and Split EcoArea components.

waterfowl have shown to be sufficient to reproduce the
major real-world disease outbreaks as reported by WHO
(Rao et al. 2007, WHO 2006). As shown in Table 1, the
models have a varying number of humans and poultry agents
at different scales of detail (or resolution). Agent data at
different scales were generated from poultry and human
census data published by GLiPHA 2007 and SEDAC
2007 respectively. All the experiments were conducted on a
distributed memory super computing cluster running Linux.
Each compute node had four dual-core AMD OpteronsT M

with 16 GB of RAM. The nodes were interconnected using
Gigabit Ethernet. Note that the experiments were performed
using the headless mode supported by SEARUMS++ to avoid
GUI overheads. Furthermore, the front-end was executed on
a separate compute node to eliminate resource contentions
with WESE factories.

The simulations were verified by ensuring that the events
generated by the parallel simulations were identical to the
corresponding events generated by the earlier SEARUMS
(Java-based) simulations. Note that the earlier Java sim-
ulations have been thoroughly verified and validated by
comparing epicenters and time lines of simulated outbreaks
against real world outbreaks reported by WHO (Rao et al.
2007). Readers are referred to the references for further
details (SEARUMS 2008).

The objective of the first phase of experimentation was
to identify the optimal simulation configuration from the
three enumerated in Section 5. We used the model M1 for
these experiments. This model was used because it had
short run-times facilitating numerous repeated runs. Since
the model is small, it has limited concurrency and paral-
lelism (Rao, Chernyakhovsky, and Rao 2007). Therefore it
serves as a good stress test to validate the scalability and
performance achieved in each configuration. For all of the
Split EcoArea configurations, the surface of the earth
was divided into vertical strips as shown in Figure 3(b). This
strategy provided us the best load balance for the various
configurations.

Table 1: Characteristics of models used in experiments (Pop
means total population represented by agents in scientific
notation. See appendix for detailed breakdown)

ID Number of Agents Total
WGA PGA HGA

M1 44 1314 1314 2672
Pop: 4.371e6 1.81e10 6.65e9 2.48e10
M2 44 4251 2160 6455
Pop: 4.371e6 1.81e10 6.65e9 2.48e10
M3 44 5586 5270 10900
Pop: 4.371e6 1.81e10 6.65e9 2.48e10

Prior to the vertical partitioning, we tried dividing the
surface into a 2-dimensional grid. However, the grid parti-
tioning scheme resulted in diminished scalability and per-
formance. The reason is that the southern hemisphere does
not have sufficient land surface with humans and poultry.
Consequently, grid areas in the southern hemisphere did not
effectively utilize the computational resources assigned to
them. However, partitioning as vertical strips covered both
hemispheres providing a better load balance. Currently, we
have not explored the option of varying the width of the
strips during partitioning.

The graph in Figure 4 shows the simulation execution
times (average of several simulation runs) observed for the
three configurations. The experiments were stopped when
the run times started to steadily increase. As illustrated by
the graphs, Config #1, namely the Unified EcoArea,
did not perform well. The root cause of the bottleneck
was the significant increase in broadcast messages between
EcoAreas in this configuration. The increase in inter-
factory messages is evident from the corresponding curve
in Figure 5(c). As the number of nodes used for parallel
simulation were increased, the number of events exchanged
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Figure 4: Simulation execution timings for model M1

betweenUnifiedEcoAreas grew in a linear fashion. The
increase in events causes the number of rollbacks to grow
as shown in Figure 5(b), thus degrading the performance.

On the other hand, the other two configurations do not
involve broadcasting of events betweenEcoAreas. Instead,
as described in Section 5, the agents directly schedule events
to appropriateSplitEcoAreas depending on their current
geographic location. This feature significantly restricts the
necessary crossEcoArea interactions. Therefore, as shown
in Figure 5(a), the total number of committed events initially
decreases as the number of partitions increases. Figure 6
illustrates a simple scenario to assist in reasoning about the
decrease in events. As shown in Figure 6(a), in the two
partition case the agents overlapping two partitions need to
generate and process two sets of events. In contrast, the
the three partition case shown in Figure 6(b), one set of
events are eliminated; thereby reducing the total number
of committed events. However, note that application-level
events remain unchanged and all configurations produce
exactly the same final event trace. Furthermore, for a given
number of partitions the committed events remain constant.

Such partitioning artifacts consistently impact all the
models, particularly when a few partitions are used. How-
ever, as shown in Figure 5(a), the set of committed events
rapidly stabilize with increase in the number of partitions
as incremental change in number of overlapping agents
rapidly diminishes. However, both Split EcoArea con-
figurations continue to exhibit minor jitters on number of
committed events with changes in number of partitions. In
addition, Config #3 involving proxy agents consistently
commits about 2000 events more than Config #2. These
events are generated to implement activation and deactiva-
tion of proxy agents as described in Section 5. However,
due to the scale of the graph this difference is not apparent
in Figure 5(a).

(a) Two partitions (b) Three partitions

:Agent :Update :Proximity :Infection

Figure 6: Effect of partitioning on events

Although Config #2 and Config #3 commit almost
the same number of events, their performance is significantly
different as shown in Figure 4. The difference arises due
to the dramatic difference in the number of rollbacks as
illustrated by Figure 5(b). Recollect from Section 5 that
in WESE inter-factory interactions are the primary source
of rollbacks. Config #3 suffers from fewer rollbacks
because proxy migration maximizes local interactions and
minimizes inter-factory interactions. This characteristic is
evident from the number of inter-factory messages shown in
Figure 5(c). Conversely, in Config #2 agents remain on the
same factory and generate numerous inter-factory messages
as they migrate. The inter-factory messages in-turn increase
the number of rollbacks.

The charts in Figure 4 and Figure 5 clearly high-
light the effectiveness of Config #3 involving Split
EcoAreas and proxy agents. One of important aspects to
note is that these experiments were conducted using optimal
GVT computation intervals and an optimal time window
for throttling the simulation. Throttling our simulations is
necessary for two reasons. First, the agents do not stop life
cycle activities and schedule events beyond the required
end time. However, such events are unnecessary and the
time window is necessary to minimize them. Secondly,
the time window was necessary to throttle the simulations.
Without the time window the number and length of roll-
backs significantly increased causing dramatic degradation
in performance. Similar observations have been reported by
other researchers as well (Deelman and Szymanski 2002,
Eubank 2002, Glass, Livingston, and Conery 1997, Ma-
niatty, Szymanski, and Caraco 1999). Interestingly, the
need for controlling optimism seems pervasive to spatially-
explicit, optimistic simulations running on both shared and
distributed memory architectures.

The impact of GVT period on simulation time is shown
in Figure 7(a). Note that, smaller GVT periods are synony-
mous with more aggressive GVT computations and garbage
collection. Figure 7(a) shows both the raw observations and
the Bezier approximation of the data points. As expected,
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(c) Inter-factory messages

Figure 5: Comparison of committed events, rollbacks, and inter-factory (over network) messages for model M1
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Figure 7: Performance impacts of GVT period and throttling
using a Time Window for model M1

neither a too small nor a too large of a GVT period is
optimal. The ideal GVT period was found to be between
2000 and 4000. This value was used for all experiments
reported in this article.

The effect of changing the time window to throttle the
optimism is shown in Figure 7(b). Smaller time windows
result in more aggressive throttling curtailing the optimism.
Conversely, larger time windows permit the simulation to
optimistically advance; but rollbacks can be longer and more
expensive. Similar to the GVT period, neither a small time
window that curtails optimism nor a large time window that
permits unrestrained optimism is advantageous. Figure 7(b)
indicates that a broad range of window sizes are effective.
We choose the median value from this graph as the optimal
time window for all the simulations reported in this paper.

Having identified the optimal simulation configuration,
we utilized them for simulating the larger models, namely
M2 and M3 shown in Table 1. The simulation execution
times for these two models using Config #3 is shown in
Figure 8. Recollect that simulation execution times vary due
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(b) Model M3

Figure 8: Simulation execution timings for larger models.

to the nature of the model and the type of partitioning used.
However, the approximated curve-fitted plot illustrates the
general trend in the observations. As shown by the graphs
in the figure, the simulations provide excellent scalability
and performance. The empirical evidence highlights that
the design goals of SEARUMS++ have been successfully
met.

7 CONCLUSIONS

The application of simulation-based analysis is gaining
momentum for epidemiological analysis of emergent dis-
eases such as avian influenza. We have developed an
Eco-modeling, parallel bio-simulation, and epidemiologi-
cal analysis environment called SEARUMS++. It has been
developed by completely redesigning and replacing the sim-
ulation infrastructure of an existing software system. The
fundamental motivation for the redesign was to circumvent
the scalability and performance bottlenecks of the earlier
design. Scalability is important to meet the computational
demands while performance is necessary to facilitate anal-
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ysis of numerous scenarios in order to elicit comprehensive
epidemiological knowledge.

This paper described in the issues involved in the de-
sign and development of a Time Warp synchronized parallel
simulation back-end in C++. The different design alterna-
tives that were incrementally developed and empirically
evaluated to identify the optimal simulation configuration
were discussed. The paper discussed the experiments, con-
ducted on a distributed-memory super computing cluster to
evaluate the effectiveness of the revised design. The best
results were obtained from the design that used vertically
split spaces and proxy agents to achieve dynamic, physical
migration of agents. This configuration achieved best results
by minimizing inter-factory events which are the primary
source of rollbacks.

The experiments indicate that optimistic synchroniza-
tion methodology effectively utilizes the latent parallelism
in the model to yield improved scalability and performance.
Furthermore, it is a strong evidence that the design objec-
tives were successfully met. Nevertheless, the optimism
had to be throttled to reach an optimal equilibrium between
increased parallelism and rollback overheads. Literature
review and our experience indicate that the need to throt-
tle Time Warp simulations for spatially explicit models is
pervasive to both shared memory and distributed memory
architectures. Lastly, the success of our endeavor continues
to emphasize the current and future importance of parallel
simulations in epidemiology and related fields.
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