
SIMULATION OPTIMIZATION WITH MATHEMATICAL PROGRAMMING
REPRESENTATION OF DISCRETE EVENT SYSTEMS

Andrea Matta

Dipartimento di Meccanica, Politecnico di Milano
Via La Masa 1

20156 Milano, Italy

ABSTRACT

Optimization–via–simulation consists in applying iteratively
two detached models until an optimality condition is reached:
a simulation model for predicting the system performance,
and a model for generating potential optimal solutions.
Mathematical programming representation has been recently
used to describe the behavior of discrete event systems as
well as their formal properties. This paper proposes explicit
mathematical programming representations for jointly sim-
ulating and optimizing discrete event systems. The main
advantage of such models is the rapidity of searching for
the optimal solution, given to the explicit knowledge of
objective function and constraints. Three types of for-
mulations are proposed for solving the buffer allocation
problem in flow lines with finite buffer capacities: an exact
mixed integer linear model, an approximate LP model and a
stochastic programming model. Numerical analysis shows
that the computational time required to solve resource allo-
cation problems can be significantly reduced by using the
proposed formulations.

1 INTRODUCTION

Simulation is one of the most popular techniques to study
the behavior of Discrete Event Systems (DES). Discrete
event simulation is widely used to analyze the detailed be-
havior of manufacturing systems, logistic systems, health
care systems etc, for estimating their major performance
measures such as throughput, flow times, resource utiliza-
tions, etc (Law 2007). In particular, simulation is used in
all those situations in which it is not possible to define
analytical mathematical expressions for describing the sys-
tem behavior, because of the high related complexity (e.g.
number of components and interactions in the system) and
the different sources of randomness that characterize most
of systems in reality. The main characteristic of simulation
is the possibility of predicting the system performance in an

implicit way, without forcing the analyzer to define complex
mathematical equations modeling the system.

An alternative way of modeling DES has been pro-
posed by Schruben (2000). A DES can be mapped into
a mathematical programming formulation where the opti-
mal solution represents the trajectory of the discrete event
system. In particular, the dynamic behavior of the studied
system is represented by an optimization model in which the
sum of finishing and starting activity events is minimized
constrained to the linear routing of customers flowing into
the system, and to system constraints such as limited buffer
capacities, maximum sojourn times etc. The optimization
problem is linear and it also has a corresponding dual prob-
lem, which in turn is mapped into an oriented graph where
the nodes are the activity events and the edges are the time
intervals between two possible events (Chan and Schruben
2003). Optimizing the flow in the oriented graph corre-
sponds to solve the dual problem and, as a consequence,
to find the system trajectory during a defined time period.
In addition, this graph has the nice property that its set of
edges represents the feasible area of the primal problem.
Therefore, dealing with edges corresponds to dealing with
the set of all possible system trajectories. Mathematical pro-
gramming representation (MPR) of DES can also be view
as a max–plus–type representation (Baccelli et al. 1992,
Chan 2005).

This alternative way of explicitly representing DES can
be exploited for deriving structural properties of the studied
system (Chan and Schruben 2003, Chan 2005, Matta and
Chefson 2005) and for optimization purposes (Chan and
Schruben 2006). This paper deals with the second issue.
In particular, the goal is to discuss how the explicit math-
ematical programming representation of DES can be used
to allocate resources. Different formulations of optimiza-
tion models are presented and discussed in this work. All
models present the original feature that they act both as
performance evaluation and optimization models simulta-
neously. In current practice, optimization and performance
evaluation models are generally decoupled in optimization
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for simulation (Fu 2002). Indeed, a simulation model is typ-
ically a computer code used for predicting the performance
of the system with a certain configuration, the optimization
model is an algorithm on the top of simulation that searches
for the best configuration according to some defined criteria
(see also Figure 1). This paper proposes an MPR of DES
that can be used for optimization while some performance
measures are contemporarily calculated. Entering into the
black box of the simulation model for optimization purposes
represents the novelty of this paper, together with positioning
MPR of DES into the more general stochastic programming
technique. Production flow lines are the system taken as ref-
erence in this study; the classical buffer allocation problem
is considered and a set of different mathematical program-
ming formulations is proposed for simultaneous simulation
and optimization.

Figure 1: Optimization for simulation.

The paper is organized as follows. Mathematical pro-
gramming models for simulating production flow lines are
described in the next section. Integrated simulation and op-
timization models for deciding the amount of buffer space
to distribute between machines are presented in section 3.
Section 4 reports the application of MPR of DES to some
test cases. Finally conclusions are drawn in the last section.

2 ANALYSIS OF OPEN FLOW LINES

2.1 Assumptions

Open flow lines are composed of a certain number of ma-
chines separated by intermediate buffers with limited ca-
pacity. In this paper machines are assumed to be perfectly
reliable and characterized by random processing times gen-
erally distributed. The sequencing of parts is fixed and
known a priori. The generic part i (with i = 1, . . . ,N) ar-
rives at the system at time Ai and is processed sequentially
from the first machine to the last one. The part waits in
the buffer B j−1 if machine Mj is busy because processing
another part k (with k < i). After having been processed by
the first machine, parts go to the second machine and so
forth until the last operation is performed at the last ma-
chine; finally parts leave the system. Machines and buffers
are denoted with the notation Mj and B j respectively, with
j = 1, . . . ,K − 1,K; each buffer B j, located immediately
downstream machine Mj, has a finite capacity Cj (with

j = 1, . . . ,K−1). Transportation times are considered neg-
ligible or already included in machining times. Finally, the
blocking before service control rule is assumed for machines
(Dallery and Gershwin 1992). For sake of simplicity the
last machine is never blocked, thus parts completing the
service at the last machine can always leave the system.
The production rate or throughput of the line is defined as
the number of parts produced in a time interval, thus its
expectation is:

E[P] = lim
t→∞

Nt

t
(1)

where Nt is the number of parts produced after a period of
length t.

2.2 Performance evaluation model

A linear programming (LP) model is now described to
simulate a generic open flow line with K machines separated
by buffers with finite capacity. This simplified version of
LP model can be obtained from Chan and Schruben (2003):

min
F

∑
N
i=1 ∑

K
j=1 Fi, j (2)

subject to:

Fi,1 ≥ Ai + ti,1 ∀i (3)
Fi, j+1−Fi, j ≥ ti, j+1 ∀i; j = 1, . . . ,K−1 (4)
Fi+1, j−Fi, j ≥ ti+1, j i = 1, . . . ,N−1;∀ j (5)

Fi+Cj , j−Fi, j+1 ≥ ti+Cj , j i = 1, . . . ,N−Cj (6)
j = 1, . . . ,K−1

Fi, j ≥ 0 ∀i, j (7)

where ti, j and Fi, j are the processing and finishing time of part
i at machine j respectively. Constraints (3) simply impose
that the service at the first machine cannot start before the
arrival time of the same part at the system plus its first
processing time. Constraints (4) state that a part cannot
be contemporary processed by two different machines at
the same time. Constraints (5) mean that a machine cannot
process two different parts at the same time. Constraints (6)
impose that a part cannot leave a machine if the immediate
downstream buffer is full. Finally finishing times must be
nonnegative; this constraint is redundant if all arrival times
are nonnegative.

The solution of the linear problem provides the opti-
mal values for decision variables F . The problem solution
corresponds to the dynamic behavior of the DES, i.e. the
optimal values are exactly the finishing time events of ma-
chining operations in a real or simulated system that has
the same ordering of parts, the same arrival events and the
same processing times. See again the paper of Chan and
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Schruben (2003) for more details. If constraints (6) are not
present, the model represents the behavior of a flow line
with infinite buffers among machines. Matta and Chefson
(2005) consider closed flow lines by adding two sets of
constraints modeling the fact that the number of parts in
the system is always constant. When arrival and process-
ing times are sampled from known statistical distributions,
the output of the LP model corresponds to a replication of
a simulation model representing the same flow line. The
average throughput of the flow line can be estimated from
the optimal solution:

P̂ =
N

FN,K
(8)

where FN,K is the finishing time of the last part at the last
machine in the simulated sample path.

MPR models present both advantages and drawbacks
when compared to traditional computer codes of discrete
event simulation models:

• Model development. It is more straightforward to
write equations and to solve them with any available
solver than developing a simulation model in a
computer code.

• Computational time. LP uses simplex based tech-
niques to find out the optimal solution, this is faster
than the large number of mathematical operations
simulation generally performs. Note that efficient
techniques can be used because the decision vari-
ables F are defined in the continuous domain. This
does not hold for more complex systems in which
the sequencing of parts is not fixed, or the routing
of parts is dynamically dependent on the system
conditions, etc. Indeed, for these more complex
systems it is necessary to use integer variables in
addition to continuous F , thus hardly increasing
the problem complexity. For this reason the mod-
eling power of MPR is quite restricted to a certain
class of DES.

• Formal properties. Thanks to the explicit math-
ematical formulation of the system model, it is
possible to derive structural properties of the ana-
lyzed system such as monotonicity, concavity etc
of major system performance (Chan 2005). Also
deadlocks can be easily identified (Matta and Chef-
son 2005); indeed, if a system deadlock will occur
during simulation, the set of the feasible area of
the LP model is empty or the objective function is
unbounded. This can be checked by using standard
algorithms for feasibility checking of LP models.

• Sensitivity analysis. Perturbation analysis (PA) in-
dicators can be calculated by using classical sen-

sitivity analysis of linear programming (Chan and
Schruben 2006, Zhang and Chan 2007).

3 BUFFER ALLOCATION: MODELS
FORMULATION

The buffer allocation problem, i.e. deciding the distribution
of buffer space among the machines of the line, is a well
known problem both in industrial research and practice.
Depending on the type of the goal pursued during the opti-
mization, there are two types of buffer allocation problems.
In the primal problem the total cost of the allocated buffer
capacity is minimized constrained to a minimum value of
expected throughput of the line P∗:

min
C∈Ω

aT ·C

s.t. E[P]≥ P∗

where P is the system throughput, Ω is a finite set of
RK−1 with finite coordinates and a is a cost vector. On the
other hand, the average system throughput is maximized
constrained to a maximum budget available for the buffer
allocation in the dual problem:

max
C∈Ω

E[P]

s.t. aT ·C≤ a∗

where a∗ is the available budget. See (Gershwin and Schor
2000) for a complete description of the buffer allocation
problem and the related literature. In the remainder of this
paper different types of MPR are proposed for solving the
two types of buffer allocation problems.

3.1 Primal

3.1.1 MILP formulation

The primal buffer allocation problem can be formulated in
a MILP model that integrates both performance evaluation
and optimization:

min
x,F

∑
K−1
j=1 a j ·∑

Uj
k=L j

x j,k · k

subject to:

Fi,1 ≥ Ai + ti,1 ∀i
Fi+1, j−Fi, j ≥ ti+1, j i = 1, . . . ,N−1

∀ j

Fi, j+1−Fi, j ≥ ti, j+1 ∀i
j = 1, . . . ,K−1

Fi+Cj , j−Fi, j+1 ≥ ti+Cj , jx j,k− (1− x j,k)M i = 1, . . . ,N− k j
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j = 1, . . . ,K−1(9)
∀k

Uj

∑
k=L j

x j,k = 1 ∀ j (10)

FN −Fd ≤ T ∗ (11)
Fi, j ≥ 0 ∀i, j

x j,k ∈ {0,1} ∀ j,k (12)

where x j,k is a binary variable equal to one if a capacity
k (with k = L j, . . . ,Uj) is assigned to buffer B j; the values
L j and Uj are the bounds defined by the analyst of the
optimization problem for the j− th buffer. The constraint
(11) imposes that the throughput must be greater or equal
to a minimum value, this implies defining an inequality
between the time necessary to produce N−d pieces and the
available time T ∗. The parameter T ∗ is defined by the user
when he decides the minimum value of throughput mean
to be satisfied. When x j,k = 1 all the constraints related to
buffer B j with an assigned capacity equal to k are activated;
otherwise the constraint is made redundant by subtracting
from the right–hand side a large value M. The index d
represents the end of the system warm–up, identifiable
with well-known techniques (Law 2007). Finally, only one
capacity k must be chosen for each buffer B j as imposed by
equation (10). Parameter k j in constraint (9) is the capacity
of buffer B j when a capacity k (with k = L j, . . . ,Uj) is
selected; this superior limit to the definition of constraints
is due to the fact that the last stream of pieces of the sample
path cannot be cause of blocking because simulation simply
ends after the N− th unit leaves the system.

This MILP model has the characteristic to behave both as
a performance evaluation model, by estimating the maximum
flowtime of the system with a given buffer allocation, and
as an optimization model, by choosing the right space
distribution among machines. This is a special issue, since
it allows having an intrinsic integration between simulation
and optimization models, which are generally separated.
More specifically, the model is able to check the feasibility
of the throughput constraint during the optimization process.
Thus the optimal solution, if existing, provides the buffer
allocation respecting the throughput constraint. Note that,
differently from the model presented in the previous section,
solution variables F do not correspond with the finishing
times of the DES simulated with the same buffer allocation
because some F tend to assume large values to respect
constraints (9). However the N−d parts in the sample path
will be surely produced in a time inferior to T ∗ because of
the presence of constraint (11) that guarantees the minimum
value of throughput mean decided by the user. Thus the
correctness of the result is always preserved. To obtain
the system performance with the identified optimal buffer
allocation, i.e. to calculate the correct F values according

to the optimal buffer allocation, it is necessary to solve
the performance evaluation model or to run any other valid
simulation model. It is important to mention that the solution
of this problem is optimal only for the particular generated
sample path and not in general for all possible system
trajectories.

Optimizing buffers with this proposed model corre-
sponds to apply sample–path optimization technique with
only one simulation replication (Robinson 1996, Gurkan
et al. 1994, Fu et al. 2005). Indeed, a sample path is
randomly generated and a deterministic optimization prob-
lem is obtained and solved. The main advantage in this
case is that the faced problem is a standard MILP problem
that can be tackled with the several methods and heuristics
developed in the last fifty years.

Branch and bound algorithms can be used to solve the
above MILP model. However solving this model is not
an easy task because of constraints (9) that put together
continuous F and binary x variables. Most of branch and
bound method uses an LP relaxation of the model, allowing
decision variables x to take values from the continuous
domain [0,1], to estimate a lower bound of the objective
function value. In this case it happens that the lower bound
is very weak due to the structure of constraints (9), as a
consequence the integrality gap is large and the required
computational time to solve the MILP problem is relevant.

The solution of the LP relaxation could also be useful to
understand the relative benefits of adding space to a specific
buffer. Indeed, due to the specific structure of constraints (9)
of the problem, all x j,k in the optimal solution assume null
values except for k = L j,L j +1; in particular, for k = L j x j,k
is close to 1, while its complement to the unit is allocated
to k = L j +1. The value of x j,L j+1 is related to the difficulty
of respecting the finite capacity constraint, the larger the
value of x j,L j+1 is and the more the space to be allocated at
buffer B j must be. For this reason the x j,L j+1 values can be
interpreted as a sort of indicators that are proportional to the
gradient of the objective function. Thus a possible, and also
very informal, usage of LP relaxed formulation, in addition
to the classical branch & bound, is in combination with
gradient–based optimization heuristics, e.g. Hill Climbing
algorithm (Pichitlamken and Nelson 2003).

3.1.2 LP approximate formulation

Constraints (9) of the MILP model are active when x j,k = 1
and redundant otherwise. An alternative way of deactivating
these constraints is to define a continuous nonnegative sur-
plus time variable s that can make redundant the constraints
when necessary. Thus if the weighted sum of these surplus
variables is minimized, a very fast, but approximate, solu-
tion of the buffer allocation problem can be obtained. More
specifically, s j,k is null if it is never necessary to use the
surplus variable to deactivate constraints related to buffer
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B j with capacity k, and is positive otherwise. The larger
the value of s j,k is and the higher the importance of having
the capacity k at buffer B j will be. This simplified model
differs from the MILP model in the objective function:

min
s,F

K−1

∑
j=1

a j ·
Uj

∑
k=L j

s j,k ·wk

where wk are simple weights, and constraints (9) that be-
come:

Fi+Cj , j−Fi, j+1 ≥ ti+Cj , j− s j,k i = 1, . . . ,N− k j

j = 1, . . . ,K−1; ∀k

Constraints (9) and (11) hold also in this new formulation
while constraint (10) cannot be used since decision variable
s are continuous. Weights wk can be chosen so that large
buffers are penalized; the relationship of weights can be
linear wk = k, or quadratic wk = k2, or it can assume any
other reasonable form. If s j,k is positive, it means that at
least one constraint corresponding to buffer B j with capacity
k has been deactivated, i.e. the amount k of buffer capacity
is necessary. The larger the decision variable s j,k is and
the higher the importance of having a buffer of capacity k
at B j will be. The selected buffer quantity for each buffer
B j corresponds to the largest index k for which the time
variable s j,k is positive; note that the solution of the model
provides real values for the surplus time variables s, then the
integer solution of the buffer allocation is extrapolated with
the heuristic rule just described. Since this problem can be
solved with very low computational efforts, its solution can
be used as a starting point in local search algorithms.

3.1.3 Stochastic programming formulation

MPR of DES can be view as a particular case of stochastic
programming. Indeed, if arrival times and processing times
are considered as samples from known statistical distribu-
tions, the LP performance evaluation model of the flow line
can be formulated as follows:

min
F

∑
N
i=1 ∑

K
j=1 Fi, j

subject to:

Fi,1 ≥ Ai(ω)+ ti,1(ω) i = 1, . . . ,N

Fi, j+1−Fi, j ≥ ti, j+1(ω) ∀i
j = 1, . . . ,K−1

Fi+1, j−Fi, j ≥ ti+1, j(ω) i = 1, . . . ,N−1
∀ j

Fi+Cj , j−Fi, j+1 ≥ ti+Cj , j(ω) i = 1, . . . ,N−Cj

j = 1, . . . ,K−1
Fi, j ≥ 0 ∀i, j

where ω is the particular sample. In stochastic simulation
the system performance is calculated for every generated
sample ωr, with r = 1, . . . ,R, where R is the number of repli-
cations. Thus, accordingly with the replication approach, R
right-hand side vectors are sampled and R LP deterministic
problems are solved; this corresponds to the wait and see
approach of stochastic programming in which the analyzer
waits for the manifestation of the uncertainty and then makes
decisions (Birge and Louveaux 1997). The expected value
solution, obtained solving the same problem with expected
right-hand side vectors instead of sampled values, has no
more sense in this case because it corresponds to evaluating
the system with all activities being deterministic.

The MILP primal problem can be view as a particular
case of a two–stage stochastic programming problem with
recourse (Birge and Louveaux 1997), in which x and F are
the first and second stage decision variables respectively
and the sources of uncertainty are arrivals and processing
times, both right-hand side values. Stochastic Decomposi-
tion (SD) techniques are generally used to solve two–stage
stochastic programming models with recourse, however the
described primal buffer allocation problem presents some
characteristics that make it difficult to solve. The objective
function depends only on the first stage variables, because
the recourse function is missing. This makes the problem
really hard, since the research of the solution in the first
stage is ”blind” and SD techniques could not perform well
due to the low efficiency of generated cuts.

Another problem is related to the throughput constraint
in inequality (11). Indeed, one way of dealing with this
constraint is to impose that the inequality must be satisfied
for every possible realization ω . However this approach
could be too conservative and more realistic requirements
should be identified. In these cases chance constraints are
often used to ensure feasibility of the second stage problem
with probability equal at least to 1− ε:

Prob{FN−Fd ≤ T ∗} ≥ 1− ε (13)

where ε is a real small value. Nemirovski and Shapiro (2006)
discuss this type of constraints and propose an algorithm
to formulate and solve them efficiently.

3.2 Dual

3.2.1 MILP formulation

The MILP dual version of the buffer allocation problem
is similar to that of the primal problem except for the
objective function, in which the expected production rate is
maximized, and the main system constraint, i.e. a limited
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budget instead of a minimum throughput to deal with. Using
equation (8), the objective function of the dual problem is:

min
x,F

FN (14)

constrained to

K−1

∑
j=1

a j

Uj

∑
k=L j

k · x j,k ≤ a∗ (15)

in addition to constraints (9),(10) and (12). As for the
primal problem, this formulation can be solved exactly by
branch and bound algorithms. Again the integrality gap is
large due to the weak lower bound obtained from the LP
relaxation of the problem and for this reason the time to
solve this problem can be very large for long lines.

3.2.2 LP approximate formulation

The dual problem can be approximately solved by using
continuous time variables s to deactivate constraints fol-
lowing the same approach presented in section 3.1.2. In
this case the sum of these time variables must be limited
to a threshold value α; the larger α is and the higher the
expected production rate will be. Thus, the objective func-
tion of the LP approximate dual problem is the same as in
function (14) constrained to

K−1

∑
j=1

Uj

∑
k=L j

s j,k ≤ α (16)

in addition to constraints (9) and (12). Given a value of α ,
the selected buffer quantity for each buffer B j corresponds to
the largest index k for which the time variable s j,k is positive.
The value of α can be properly chosen so that the buffer
capacity cost deriving from solving the approximate model
coincides with the total available budget a∗. A simple
algorithm is the bisection method that, starting from an
upper vale for α , iteratively updates α until the total buffer
capacity allocated with the approximate LP dual model
is equal to a∗. This algorithm exploits the monotonicity
property of the expected throughput as a function of the total
buffer capacity (Buzacott and Shantikumar 1993). Indeed,
according to this property the optimal solution of the dual
problem must be a point on the border of the feasible
set at which all the available budget is used. A way to
initialize α is to assign the sum of the optimal values s
of the approximate LP primal problem built by imposing a
minimum expected throughput very close to the bottleneck’s
one; then the bisection algorithm is launched.

3.2.3 Stochastic programming formulation

The dual allocation problem can be formulated as a two–
stage stochastic programming model in which the recourse
function is the only term in the objective function to be
minimized:

min
x,F

E[FN(ω)]

The problem has complete recourse, i.e. the second stage
problem has always a feasible solution. Thus complexities
deriving from introducing chance constraints do not hold
here, differently from the primal problem. The objective
function is convex and SD algorithms can be efficiently
applied to solve this type of problem (Higle and Sen 1996,
Sen and Higle 2005). SD provides a piecewise linear
approximation of the recourse function without the necessity
of solving the second stage problem problems for all sampled
scenarios ωr, i.e. without simulating the flow line in all
replications; this is a major issue that may lead to significant
reductions of computational efforts compared to stochastic
optimization problems (Zhao and Sen 2006).

4 NUMERICAL ANALYSIS

In this section the application of the proposed formulations
is reported on two test cases. The first case is a flow line of
three machines with random processing times exponentially
distributed having rates equal to 7, 7 and 6. The boundaries
of the problem are L j = 0 and Uj = 20 for ∀ j = 1, . . . ,K−1.
For simplicity a is a unitary cost bi–dimensional vector and
the first machine is assumed to be never starved, thus all
arrival times are null. For the primal problem the requested
minimum average throughput is 5.776; for the dual problem
the available budget for buffer allocation is 20 and the rela-
tionship of weights is quadratic. This case has been faced
by Pichitlamken and Nelson (2003) in a more general prob-
lem in which mean service rates of machines are optimized
together with buffer capacities. The optimal solution of the
dual problem for this system is C = (8,12) with an expected
throughput in steady state of 5.776. Tables 1 and 2 show
the solutions of the exact and LP approximate formulations
of the primal and dual problems respectively for different
values of simulated parts machined by the system. It can
be noticed that the approximate formulation provide near–
optimal solutions in all analyzed cases. Computational time
of the LP approximate model is of the order of minutes,
much lower than that necessary for the MILP model (order
of hours). The convergence of the solution as N increases is
not treated in the experiments, since this issue is not faced in
the paper. The convergence of stochastic optimization prob-
lems is discussed in several papers; see the work of Shapiro
(1996) and the recent discussion of Birge (2007) with ref-
erences therein. SD algorithm exploits the special structure

1398



Matta

of the two–stage problem and finds out the exact solution
in smaller time than classical branch and bound algorithms
applied to the MILP problem. For instance, for solving the
dual problem for N = 10000 the ILOG CPLEX solver needs
approximately 5 hours while SD only 32 minutes for 10
scenarios, each one with N = 3000 (both experiments were
carried out on a Core 2 Duo E6850 3.0Ghz/1333MHz/4MB).
This CPU time reduction confirms the results of Zhao and
Sen (2006), who compare stochastic programming tech-
nique with sample–path based simulation–optimization.

Table 1: Case 1: primal problem (d = 2000,P∗ = 5.776).

C
N exact approximate

3000 (8,9) (8,9)
4000 (8,10) (10,11)
5000 (8,12) (11,13)
6000 (8,14) (10,11)
7000 (11,11) (9,10)
8000 (9,12) (10,11)
9000 (10,12) (10,12)
10000 (10,12) (10,12)
15000 (9,12) (10,12)
20000 (9,12) (10,12)
25000 (10,12) (10,12)

Table 2: Case 1: dual problem (d = 2000, a∗ = 20).

exact approximate
N C P̂ C P̂

3000 (9,11) 5.879 (9,11) 5.879
4000 (9,11) 5.883 (9,11) 5.883
5000 (8,12) 5.783 (9,11) 5.783
6000 (8,12) 5.731 (9,11) 5.728
7000 (8,12) 5.734 (9,11) 5.734
8000 (8,12) 5.755 (9,11) 5.755
9000 (9,11) 5.745 (9,11) 5.745
10000 (9,11) 5.761 (9,11) 5.761
15000 (9,11) 5.762 (9,11) 5.762
20000 (9,11) 5.753 (9,11) 5.753
25000 (9,11) 5.728 (9,11) 5.728

The second case is a flow line composed of five machines
with random processing times lognormally distributed. The
two parameters of the lognormally distributed processing
times, i.e. the mean µ and standard deviation σ of the
variable’s natural logarithm, are both equal to 1 except for
the first machine, which represents the bottleneck having
µ = 1.5 time units. The boundaries of the problem are
L j = 0 and Uj = 20 for ∀ j = 1, . . . ,K−1. For simplicity a
is a unitary cost 4–dimension vector. For the dual problem

the available budget is 29 and the relationship of weights
is quadratic. Table 3 shows the solutions of the exact and
LP approximate formulations of the dual problem for some
values of N. Again it can be noticed that the approximate
formulation provide near–optimal solutions in the analyzed
cases; the reduction of computational time in experimen-
tation was around 95% in this case. Similar results have
been obtained for many other cases that are not reported in
this paper.

Table 3: Case 2: dual problem (d = 2000, a∗ = 29).

exact approximate
N C P̂ C P̂

3000 (12,6,5,6) 0.1366 (10,8,6,5) 0.1359
4000 (12,6,7,4) 0.1343 (10,8,6,5) 0.1335
5000 (13,6,6,4) 0.1357 (10,8,6,5) 0.1338
6000 (13,6,5,5) 0.1319 (10,8,6,5) 0.1314
7000 (13,6,5,5) 0.1321 (10,8,6,5) 0.1317

5 CONCLUSIONS

This work proposes a set of different MPRs of DES that com-
bine performance evaluation and optimization in a unique
model. The LP approximate formulation can be used as a
fast global search algorithm to rapidly identify a promising
area in the solution space. The stochastic programming
formulation has a special structure that can be exploited
by SD algorithms to efficiently solve the sample–path opti-
mization problem in a restricted area of the solution space.
The proposed models have been applied for solving the
buffer allocation problem in production lines, however they
can be used to optimize other kinds of DES (e.g. kanban–
based systems, base stock, conwip, assembly systems etc).
Future work will be dedicated to develop a complete MPR–
based algorithm for resource allocation of DES able to solve
complex real cases.
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