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ABSTRACT

Spatial phenomena attract increasingly interest in computa-
tional biology. Molecular crowding, i.e. a dense population
of macromolecules, is known to have a significant impact
on the kinetics of molecules. However, an in-detail inspec-
tion of cell behavior in time and space is extremely costly.
To balance between cost and accuracy, multi-resolution ap-
proaches offer one solution. Particularly, a combination of
individual and lattice-population based algorithms promise
an adequate treatment of phenomena like macromolecular
crowding. In realizing such an approach, central questions
are how to specify and synchronize the interaction between
population and individual spatial level, and to decide what
is best treated at a specific level, respectively. Based on an
algorithm which combines the Next Subvolume Method and
a simple, individual-based spatial approach, we will present
possible answers to these questions, and will discuss first
experimental results.

1 INTRODUCTION

With advanced biological methods, e.g. high content screen-
ing or high resolution microscopy, an increasing amount of
information is generated that is incorporated into more and
more complex models. Recent findings emphasize the cen-
tral role space plays in inter- and intracellular dynamics, for
example that molecular crowding, i.e. a dense population
of macromolecules, alters diffusion, hydration, and other
properties of individual molecules. Thereby, the processes
are quite intricate, e.g. depending on the concrete setting
molecular crowding can promote the association of chaper-
ones and thus decrease aggregation of denatured proteins,
but in the absence of chaperones and when the protein
folding process is too slow it might increase aggregation
(Kinjo and Takada 2003). In intracellular environments
macromolecules often occupy more than 1/3 of the total
volume. They represent together with their hydratic shell a
large excluded volume, which affects the physico-chemical

kinetics of various intracellular processes (Zimmermann and
Minton 1993, Hall and Minton 2003).

The simulation of this type of phenomena is rather
costly. To reduce the effort required in simulation, different
approaches are already exploited in computational biology.
One is to use parallel simulation engines (Jeschke, Ewald,
Park, Fujimoto, and Uhrmacher 2008), another is to trade
accuracy for efficiency. The latter can be done by a more
coarse grained execution (Gillespie 2001), or by a combi-
nation of different simulation algorithms, e.g. a numerical
integration algorithm and a stochastic discrete event ap-
proach (Takahashi, Kaizu, Hu, and Tomita 2004). In both
cases temporal resolution forms the basis. In (Gillespie
2001) the simulation proceeds in larger time steps approx-
imating the number of reaction events that happened in
between. In (Cao, Gillespie, and Petzold 2005), reactions
that happen faster are executed by a numerical integra-
tion algorithm whereas the slower reactions in which fewer
species are involved are calculated by a Gillespie variant
in a discrete event mode. The principal idea of this multi-
resolution simulation can be adopted for the spatial variant.
However, in this case time and space has to be taken into
account. In simulating macromolecular crowding it makes
sense to simulate the larger molecules individually and the
smaller ones with less detail, i.e. at population level. This
combination of population, i.e. concentration-based, and
individual-based approaches leads us to multi-level mod-
eling and simulation. In (Uhrmacher, Ewald, John, Maus,
Jeschke, and Biermann 2007) we introduced a specific for-
malism which relates individual and population level. The
downward causation reflects the impact that the population
level has on the individuals, e.g. the high density will
promote phenomena like channeling between the molecules
and the rates of macromolecular reactions will be affected
(Hall and Minton 2003), the upward causation describes
how the activities of the individuals affect the dynamics
at population level, e.g. due to moving macromolecules
the space for other molecules is diminished and in this
tightly packed environment some reactions are more likely
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to happen (Zimmermann and Minton 1993). Thus, one of
the central challenges is to connect both levels, however,
first one has to decide what algorithm to use for each of
the two levels.

The paper is structured as follows: section 2 gives an
overview about algorithms for different levels of abstrac-
tion. Next, in section 3 the multi-algorithm, multi-resolution
simulation approach is introduced that includes a descrip-
tion of the coordinator element and the realization of the
interactions between the distinct simulation levels. As the
approach is used for simulating systems under crowding
conditions, section 4 gives a short introduction to this phe-
nomena. The experimental setup and simulation results are
presented in sections 5 and 6. The paper concludes with
an overview of projects related or similar to the presented
approach in section 7 and a summary (section 8).

2 ALGORITHMS FOR DIFFERENT
ABSTRACTION LEVELS

Simulation algorithms exploit numerous abstractions to sim-
ulate the dynamics of cellular systems: from the actual
physical processes, described by quantum mechanics etc.,
over the abstraction to entire atoms (molecular dynamics),
toward approaches that consider molecules, compartments,
or entire cells (Vaidehi and Goddard III 2001). Simula-
tion algorithms for a sub-molecular scale rely on natural
laws that are of continuous nature (Takahashi, Arjunan, and
Tomita 2005). At the level of molecules, approaches abstract
from the natural laws by assuming that the molecules move
randomly (i.e., Brownian Motion). A coarse classification
of the algorithms can be achieved by grouping them into
three classes - microscopic, mesoscopic, and macroscopic
(Takahashi, Arjunan, and Tomita 2005, Tolle and Le Novere
2006).

Microscopic algorithms operate with single particle de-
tail, tracing the position in space of every element. The
position of the entities is updated individually by calculating
the forces acting on the particles (e.g. quantum mechan-
ical or Newtonian) and applying the results to determine
the new velocity and position (molecular dynamics). By
adding stochastic fluctuations to the forces, random move-
ments of an individual, caused by permanent collisions with
smaller particles of the solvent, can be simulated (Brownian
motion). While molecular and Brownian dynamics provide
high accuracy, it is impossible to simulate larger models
with many particles as the effort required for position update
and collision detection is significant.

When the amount of particles in a volume changes dis-
cretely and stochastically and individual features of species
elements do not need to be accounted for, algorithms that
operate on a mesoscopic abstraction level can be used for
simulation. The evolution of the simulated system can
be seen as a Markovian process. The governing equation

is the master equation that describes the time evolution
of a probability density function p(S; t) representing the
probability that the system is in state S at a time t. In
(Gillespie 1977), Gillespie presented the stochastic sim-
ulation algorithm (SSA) that generates trajectories of an
underlying master equation. Based on the probability that
two sphere-shaped particles collide and undergo a reaction
in the next infinitesimal time interval, he introduced the
reaction propensity as the product of a stochastic constant
and the number of possible reaction pairs. This propensity
is used to sample the next event time from an exponential
distribution and to determine the corresponding reaction.
As this algorithm calculates every single reaction, improve-
ments have been presented to speed up computation by
aggregating events (Gillespie 2001, Cao, Gillespie, and
Petzold 2006) or introducing efficient data structures and
reusing random numbers (Gibson and Bruck 2000). One
key assumption of SSA is that the distribution of the species
inside the volume is homogeneous. To simulate systems
that do not adhere to this assumption, other approaches that
allow to consider compartments and the diffusion of species
are necessary, e.g. (Kholodenko 2006). A common way
of introducing diffusion on mesoscopic level is partitioning
space into sub-volumes and extending the master equation
with a diffusion term, resulting in the reaction-diffusion
master equation (RDME) (Gardiner 1996). The solution of
the RDME is intractable for all but very simple systems,
leading to the development of the Next Subvolume Method
(Elf and Ehrenberg 2004), an algorithm that generates trajec-
tories of an underlying RDME, similarly to SSA sampling
a chemical master equation.

At a macroscopic abstraction level the law of mass con-
servation is used to derive ordinary differential equations
(ODE) that describe the change of concentrations of species.
This continuous, deterministic approach is applicable when
the number of species elements is high enough to ignore
stochastic effects. While the equations for simple models
can be solved analytically, more complex models must be
simulated with numerical solvers. It is possible to include
space by using partial differential equations (PDE) instead of
ODEs. For example, partial differential equations have been
used to represent signaling processes in membranes assum-
ing a homogeneous distribution of receptors (Haugh 2002).
However, stochastic effects cannot be taken into account eas-
ily and, as a homogeneous distribution is assumed, they are
not suitable for more realistic representations of membrane
micro-domains (Mayawala, Vlachos, and Edwards 2005).
Small numbers of actors, different geometries of compo-
nents, and tracing of individual components pose additional
problems. Furthermore, population-based approaches suf-
fer from state space explosion (Tolle and Le Novere 2006).
This motivates the development of new spatial individual-
based approaches, like e.g. SpacePi (John, Ewald, and
Uhrmacher 2008), which abstracts from detailed quantum
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Algorithm 1 Short version of the Next Subvolume Method
pseudo code description.
Initialization

1. Distribute the initial particles over N sub-volumes
2. Calculate the sum si of diffusion rates di and re-

action rates ri for all sub-volumes

si = ri +di,0≤ i≤ N

3. Sample time of next event for all sub-volumes

τi =−ln(u)/si,

with u being a sample from the uniform distribution
U(0,1) and enqueue sub-volumes according to their
event times

Main loop

1. Take top sub-volume from event queue
2. Determine type of event w.r.t. to diffusion and

reaction rates
• Reaction: determine specific reaction, update

the propensities of the current sub-volume and
sample new event time (see (Gillespie 1977)
for details)

• Diffusion: determine species type and diffu-
sion target, update propensities and sample
new event times for both sub-volumes

mechanics and allows to attribute properties and individual
motions to individuals. However, also at a coarse-grained
level individual-based approaches require significant calcu-
lation efforts. Therefore, we introduce in the following an
approach that combines individual- and population-based
spatial simulation.

3 MULTI-ALGORITHM MULTI-RESOLUTION
SIMULATION

The proposed multi-algorithm, multi-resolution simula-
tor will focus on the combination of discrete-event with
individual-based algorithms. Central to our approach is a
coordinator responsible for the synchronization, but first let
us introduce the two algorithms that we use in our case
study. The algorithm for the lattice (population) level is
based on the Next Subvolume Method (NSM, see Algorithm
1) (Elf and Ehrenberg 2004).

The NSM separates between two types of events: re-
action events and diffusion events. What event type takes
place next is determined using a two step algorithm. First
the sub-volume with the minimum next event time is calcu-
lated. This calculation is based on the sum of diffusion and
reaction rates. During the second step the actual type of
event is identified. Here the individual values for reaction

and diffusion rates are taken into account. In case of a
reaction event the state of the system is updated similar to
Gillespie’s SSA. If a diffusion takes place the target sub-
volume is randomly selected from all neighbors of the source
sub-volume and the number of elements for the diffusing
species is adjusted for both cells. The NSM algorithm con-
tinues by determining the sub-volume with the least next
event time.

The algorithm used for the individual level is cur-
rently a rather simplistic one assuming random movements.
Spherical macro objects move through space with position
updates taking place in fixed time intervals. The model
description for this abstraction level provides a movement
function and a value representing the update interval for the
individuals. The simulator uses this information to perform
collision detection, update the position of the object, and
to calculate the new movement vector and the next event
time. As this implementation of the individual simulator is
very basic, more complex algorithms are currently under
development, e.g. a simulator for models described in the
SpacePi formalism (John, Ewald, and Uhrmacher 2008).

Both levels of abstraction can influence each other in
numerous ways.

Individual level → lattice level Macromolecules
occupy a certain amount of volume. With their movement
through space, the volume that is available for the small
molecules and their interactions changes. Thus, the density
of the particles in a sub-volume is increased or decreased,
which affect the reaction activity at population level because
the free volume is taken into account when calculating
reaction rates. As the available volume of a lattice cell
decreases, particles that are currently inside the cell get
distributed among its neighbors. This differs from normal
diffusion as particles get ”pushed” out of the cell by the
object. Furthermore, the location of the macromolecules
will have an impact into which adjacent cell a particle is more
likely to diffuse. Also reactions between macromolecules
and particles can take place, thereby, those particles are no
longer available within the sub-volume for other reactions.
In addition, it is possible that, due to being bound to the
moving macromolecule, they will be able to move faster
into certain regions in the cell than only based on diffusion
if, for example, the macro object takes part in an active
transport.

Lattice level → individual level The population
level can also influence the behavior of the macromolecules
by, for example, providing reaction and binding partners.
To determine the number of possible reaction partners is
not trivial as a macromolecule might cover more than one
sub-volume. It is also possible that, given different sub-
volumes, the movement characteristics (speed and direction)
of an individual might be influenced by the concentrations
in these sub-volumes.
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Figure 1: Subdivision of lattices in two-dimensional space
with d = 2 to approximate two macro objects. The sum of all
highlighted sub-compartments represent the area occupied
by the appropriate objects.

3.1 The Coordinator Component

The coordinator represents the connecting part between the
different algorithms operating on distinct levels of abstrac-
tion and controls the simulation process. It keeps track
of the next event times for the involved algorithms and
schedules the simulation part with the least event time to
process next. The coordinator also manages the interactions
between the algorithms and updates the appropriate models
dynamically to reflect changes made at another abstraction
level.

3.1.1 Cell update at lattice level

With the introduction of moving individual objects the spatial
configuration at the lattice level changes with each update at
the individual level. The volume of a lattice cell can increase
or decrease depending on the movement of the macro objects.
To dynamically change the available volume of a cell a
subdivision algorithm based on an octree partitioning is
introduced to determine the fraction of the total cell volume
that is occupied by the individual object (see Algorithm
2). During this algorithm the original cell is recursively
subdivided into smaller sub-compartments and for each an
overlapping test with the macro object is performed. If the
object intersects the sub-compartment, the subdivision steps
are repeated until a predefined subdivision depth is reached.
The sum of the smallest sub-compartments that intersect
the macro object is the volume occupied by this object in
the specific cell. Figure 1 shows a subdivision example
for the two-dimensional case. The higher the subdivision
depth is chosen, the finer the macro object is approximated
at the lattice level but this also increases the effort for the
subdivision process. In the currently implemented NSM
algorithm for the lattice level the volume of a cell is used to
calculate both the diffusion and reaction rates whereas the
rate is inversely proportional to the volume. Furthermore,

Algorithm 2 subdivide(c, d, n); recursive calculation of the
number of occupied sub-compartments for a lattice cell
Require: n = 0

if macro object intersects compartment then
subdivide c into sub-compartments sc
if d > 1 then

subdivide(sc, d-1, n)
else

n++
end if

end if

the free area between two neighboring cells and the fraction
of the cell that is occupied by an individual are taken into
account when processing a diffusion event. In the basic
NSM the probability for selecting a specific neighbor cell
is 1/N with N being the total number of neighbors. Now,
collisions with the macro object must be taken into account.
Therefore, the process for determining the diffusion target
consists of two phases: First, a test if a collision occurs
is performed (see section 3.1.2 for details), if not, a target
cell is selected with respect to the fraction of the border
between the source and each neighbor that is occupied by
a macro object.

As mentioned before, an additional effect of a macro
object entering a cell is a displacement of particles inside the
cell and the lattice level algorithm has to account for this.
Therefore, the NSM algorithm has been extended to handle
this by distributing particles from cells that are completely
occupied by the macro object among the cells at its ”rim”,
i.e. among the cells partly occupied by the object.

Not only macro objects exclude space, but also elements
at lattice level. To simulate crowding effects at this level, a
parameter that represents the amount of volume an element
occupies has been introduced. Thus, the volume of a cell is
not only reduced by a macro object but also by the elements
inside the cell. For now, this parameter is only considered
during the diffusion step of the NSM algorithm. A particle
can only diffuse into a neighboring cell if there is enough
available space. Inside a cell the volume of an element is
assumed to be negligible compared to the volume of the
cell, so this parameter does not influence the calculation
of reaction and diffusion rates. In (Gillespie, Lampoudi,
and Petzold 2007) it is shown for the one-dimensional case
how the size of reactants can influence stochastic kinetics.
It is also pointed out that the generalization to two or three
dimensions is rather complicated (if not impossible) with
the presented approach. The inclusion of crowding effects
inside a lattice cell is therefore left for future work.

3.1.2 Inter Reactions

Additionally to intra reactions at lattice level and individual
level, reactions might also take place between elements of
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different levels. For example, a small cofactor can bind
to an apoenzyme and assist during transformation of the
enzyme to its active state (holoenzyme). The lattice level
simulator should support this inter reactions by providing
information about species concentration in cells that are
partly occupied by a specific macro object. The coordinator
can then determine whether and when a next interaction
might take place between this macro object and an element
of a species that is simulated at lattice level. Let

sX ,sv = n|X |D/l2
sv

be the diffusion rate for a species X with diffusion constant
D in sub-volume sv that can diffuse into n directions (Elf
and Ehrenberg 2004). For cells that are neither completely
nor partly occupied by a macro object, n is the number
of neighbors that can be selected as diffusion targets. Let
us now consider the case when the available cell volume
is decreased by a macro object and a fraction of the cell
is not available for particles. Here, the macro object ”cuts
off” parts of the cell. Let Asv,M be the surface area of the
macro object M inside cell sv and Vsv the available volume
of sv. The required values for Asv,M and Vsv can be obtained
during the subdivision process mentioned above. The rate
for particles that diffuse into the occupied volume, i.e. that
”collide” with the object, can be calculated as

sX ,sv = A2
sv,M|X |D/V 2

sv.

This can be done for the set CM consisting of all cells
partly occupied by a specific object M. With this rates the
next interaction time for object M with a species X can be
calculated as the minimum of the next event times sampled
from an exponential distribution for each sub-volume in CM ,
that is

tM,X = min
sv∈CM

− lnr
sX ,sv

,

with r being a random number from the uniform distribution
U(0,1). Note that this gives only the time of the next
collision between an object and an element of species X .
The individual simulator is responsible for deciding if a
reaction actually takes place. Furthermore, a recalculation
of the next interaction time is necessary when a sub-volume
sv ∈CM is selected as a diffusion target for an element of
species X during a simulation step at lattice level.

As an individual can occupy a number of cells it is
possible to include orientation dependent reactions (see e.g.
(Schmitz and Schurr 1972) how orientation of reactants
might affect reaction kinetics) at the individual level by
mapping a specific binding site of a macromolecule to a
lattice cell.

Figure 2: Macromolecular crowding. Left: Particles are
distributed homogeneously inside a volume. Right: Macro
objects occupy volume that is not available for particles.
Thus, the effective volume decreases.

4 MACROMOLECULAR CROWDING

Whereas interactions of macromolecular species within in-
vitro experiments that are carried out in dilute solutions are
not hampered by other macromolecules (e.g. actin filaments
or ribosomes), in living cells macromolecules can occupy
up to 30% - 40% of the available volume. This effect is
called macromolecular crowding and can influence diffusion
coefficients for species and effective rates for reactions taking
place among species (Chebotareva, Kurganov, and Livanova
2004).

For diffusion coefficients, with increasing concentra-
tion of crowding molecules the movement of particles is
perturbed and a reduction of the coefficients by a factor
of ten is estimated (Ellis 2001). In contrast, reaction con-
stants increase as the particles are less randomly distributed
compared to a solution without other macromolecules, re-
sulting in a higher effective concentration and an increased
probability for a reactive collision. However, it must be
differentiated between reactions whose participating species
diffuse fast enough that the rate limiting component is the
reaction process itself and reactions including slowly diffus-
ing species (diffusion-limited reactions). In the latter case
the effective reaction constant can decrease under crowding
conditions (Ellis 2001). As also mentioned by Ellis, the
crowding effect on reaction activity only applies to entities
of a specific size, whereas the change of the diffusion con-
stant is present for all particles. For example, while an ion
is too small for macromolecular crowding to exert effects
on its activity the movement is still affected by the presence
of other molecules that occupy space.

To simulate the effect of crowding on test solutes within
experiments, background molecules in high concentrations
are introduced that preferentially can only interact with
the test particle via steric repulsion without undergoing
a reaction, i.e. the interaction is limited to non-reactive
collisions.

A good example for the effect of crowding conditions
is the competition between protein folding and aggregation
with molecular chaperones as studied in (Kinjo and Takada
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2003). Chaperone proteins assist in the folding and unfolding
process of other proteins by preventing the aggregation of
these structures to non-functional units. Kinjo and Takeda
show that crowding enhances the folding process of slow-
folding proteins and inhibit their aggregation with the help
of chaperones.

5 EXPERIMENTS

Experiments for analyzing the effect of molecular crowding
on reaction propensities were performed on a 40x40x1 grid
with lattice side length l = 1µm. Gillespie (Gillespie 1977)
defined the propensity aR of a reaction R as aR = cRNR with
cR being the stochastic rate constant and NR the number of
distinct molecular reactant combinations. The probability
that reaction R takes place during the infinitesimal time
interval ∆t is aR∆t. The stochastic rate constant cR can be
decomposed into a constant rR that depends on the physical
properties of the reactants as well as the temperature and
the volume V of the cell (Versari and Busi 2007), so that
the propensity can be rewritten as aR = V−1rRNR. Hence,
the propensity of a reaction is inversely proportional to
the available volume. For the experiments, the sum of
all reaction propensities was used to measure the reaction
activity of a lattice cell.

The experimental model included three species A, B,
and C at lattice level. For each species a diffusion coefficient
DA,B,C = 3.5× 10−13 m2s−1 was defined and a single ele-
ment occupies a volume VA,B,C = 0.0045 µm3. As an initial
distribution, each cell contained 10 elements of species A
and B, respectively, resulting in 32000 elements in total.
Two simple reactions (forward and backward reaction)

R f : A+B
r f−→C

Rb : C
rb−→ A+B

were defined with r f = 1.0 µm3s−1 and rb = 10.0 µm3s−1.
The crowding condition was modeled using a specific
amount of globular crowding agents simulated at individ-
ual level. The number of individually simulated entities
depends on a crowding parameter ξ , which is defined as
the ratio of occupied volume Vo to the total model volume
Vt , hence ξ = Vo/Vt . Each entity has a diffusion constant
of D = 7.3×10−14 m2s−1, a radius 0.5 µm and occupies a
volume of approx. 0.5 µm3. A setup for a single experiment
consisted of a value for the crowding parameter ξ and 50
simulation runs.

For analyzing the effect of crowding on diffusion-
dependent reactions, a 10x10x1 grid with lattice side
length l = 1µm was constructed. Here the focus was on
measuring the time it takes until the first reaction event
takes place under different crowding conditions. For this,
species A (DA = 3.3× 10−13 m2s−1,VA = 0.005 µm3) and
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Figure 4: Mean and standard deviation (top) and minimum
and maximum values (bottom) of the minimum reaction
times for different values of the crowding parameter ξ .

B (DB = 0.0m2s−1,VB = 0.0 µm3) can react according to
reaction R f , but no backward reaction was defined. At the
start of the simulation 200 elements of species A are located
in cell (0,0,0) and only one element of species B in cell
(9,9,0). The experiment was conducted for different values
of the crowding parameter ξ , with 100 simulation runs per
parameter value.

For all experiments, the subdivision depth was set to
d = 3, which means that a cell was partitioned into at most
512 sub-compartments.

6 RESULTS

Figure 3 shows color map plots for the reaction propensities
for all cells of the 40x40x1 model. Overall, crowding can
increase reaction propensities by a factor of about two
or three. It can be seen that a decrease in the available
volume can have a significant local effect with the maximum
propensity for single cells being about five times higher than
the maximum in the dilute case. Figures 3c and 3f show
outputs from an experiment with fewer but larger macro
objects (r = 2.0). Note that in this case an amount of object
volume is not considered in the simulation as the model
has only a z-dimension of one. This was compensated by
increasing the number of macro objects. The maximum
propensity for the experiment with the dilute solution is
264s−1, whereas for the crowded environment this value is
nearly six times higher (1201s−1).

Figures 4 and 5 show results for the experiments analyz-
ing the effect of molecular crowding on diffusion-dependent
reactions at lattice level. Figure 4 shows an approximately
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Figure 3: Color map plots for the average (a,d) and maximum (b,e) propensity for each cell of the 40x40x1 model, plotted
for ξ = 0.0 (dilute) and ξ = 0.3 (crowded). The plots were created from 50 independent simulation runs. Plots c and f
show a sample output from an experiment with macro objects having a radius of r = 2.0. Note that the z-axis scale differs
between plots.
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Figure 5: Distribution of minimum reaction times for differ-
ent values of ξ . The height of a bar for an interval [ti−1, ti)
gives the ratio ρ of the number of samples whose minimum
reaction times lie in this interval to the total samples count.

twofold increase of the average time it takes until the first
reaction occurs. The maximum time for the crowded case
with ξ = 0.4 can be about threefold higher than the average
time in the dilute case (ξ = 0). The movement of elements
is hampered by collisions with a macro object and by the
inability to diffuse into cells without sufficient available vol-
ume, thus it takes longer for an element to reach a specific
target cell. The difference between the predicted tenfold
decrease in the diffusion rate and the measured value might
arise from the simplification that crowding effects are not
considered inside a single cell.

Figure 5 shows a shift in the distribution of average
minimum reaction times towards higher intervals. As the
crowding parameter ξ is increased, the number of samples
with larger reaction times increases as well. In the dilute
case, most of the samples have reaction times between 20
and 40 seconds. In contrast, with 40% of the available
volume occupied, the distribution of the minimum reaction
times shows clearly an increase of samples with times larger
than 50 seconds, with some samples exceeding 90 seconds.

These results support the assumption that the rates of
diffusion-controlled reactions are affected by macromolec-
ular crowding and that they can decrease at least by a factor
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of one-half and, in some cases, down to one-third of the
value obtained for dilute solutions.

7 RELATED WORK

In (Takahashi, Kaizu, Hu, and Tomita 2004) a discrete event
meta-algorithm for simulating models that span multiple
scales is introduced, though the focus is on multi-timescale
simulation. Different algorithms can be combined in a
modular mode, each simulating the dynamics of a sub-set
of state variables. When for two algorithms the intersection
of the state variable sets is not empty, then these algorithms
must notify one another whenever they change the value of a
shared variable. Three classes of algorithms are supported:
discrete event, discrete time, and differential. It is shown
with the heatshock model that a combination of stochastic,
discrete event and numerical integration modules can run
faster than single algorithm simulations (both ODE and
discrete event Gillespie).

In (Versari and Busi 2007) an approach is presented that
applies Gillespie’s algorithm to dynamical compartments.
For this, the average volume of an element for each species
is calculated and the volume of a compartment is increased
or decreased according to this value when an element enters
or leaves it. Therefore, in contrast to Gillespie’s algorithm
particles are no longer treated as zero dimensional points
without volume but each element occupies an amount of
space. This average volume depends on the physical prop-
erties of the species.

Smoldyn (Andrews and Bray 2004) is a simulation
system that is based on the Smoluchowski equation and op-
erates on a microscopic, single molecule level. In (Lipkow,
Andrews, and Bray 2005) Smoldyn was used to simulate,
among other things, the effect of molecular crowding on
signal transduction in Escherichia coli chemotaxis. As Smol-
dyn only supports dimensionless particles, obstacles in the
cytoplasm of the simulated cell that reduces the available
space were introduced. One result was a steeper concentra-
tion gradient of the signaling species inside the cell because
crowding increased its local concentration at one end of the
cytoplasm and, due to the hampered diffusion movement,
reduced it at the other end.

8 SUMMARY & CONCLUSION

As experimental results show molecular crowding influ-
ences significantly intra-cellular dynamics. Therefore, suit-
able modeling and simulation methods are highly needed.
The presented approach supports different spatial levels by
combining simulation algorithms operating on individuals
and populations within a lattice. A coordinator manages
the interaction between the simulators which includes an
octree-based subdivision algorithm for approximating an
individual at the lattice level, the distribution of particles

when an individual occupies a cell, and the scheduling of
inter-level reactions. The coordinator was tested with an
adapted version of the Next Subvolume Method and a sim-
ple individual-based simulation algorithm. Experiments for
analyzing the effects of crowding showed that the dynamics
of a system are influenced by the amount of volume occu-
pied by the species. Compared to a dilute solution, rates for
reactions that are not limited by the diffusion of the reactants
can increase two- and threefold due to the reduced amount
of available volume, whereas rates for diffusion-dependent
reactions can decrease to one-third of the value obtained
from experiments with a dilute solution as a result of the
restricted movement of the elements.

In the presented approach molecular crowding was in-
duced by the macro elements simulated at individual level
and took effect at the population level, as the reactions
in and diffusions between lattice cells were influenced.
Current work is aimed at replacing the simple individual-
based approach by a SpacePi simulator, so that reactions
that take place at individual-level (between the macro-
molecules) as well as interdependencies between individual-
and population-based level can be more easily expressed.
The crowding phenomena was also induced by taking the
size of species at population level into account which in-
fluences the diffusion. This is one step towards simulating
crowding at population level within the cells of the lat-
tice. A more advanced approach for molecular crowding
at population level based on SSA has been introduced in
(Gillespie, Lampoudi, and Petzold 2007), however, being
currently restricted to the one-dimensional case. In compar-
ison to other approaches, we see the virtue of the presented
one in combining two levels of abstractions, and thus in
offering a link between highly accurate individual (with
a lattice size l → 0) and approximative, but often faster,
population-based simulations (l → ∞).

ACKNOWLEDGMENT

The research has been supported by the Deutsche
Forschungsgemeinschaft (DFG).

REFERENCES

Andrews, S., and D. Bray. 2004. Stochastic simulation of
chemical reactions with spatial resolution and single
molecule detail. Physical Biology 1 (3): 137–151.

Cao, Y., D. Gillespie, and L. Petzold. 2005, Jan. The
slow-scale stochastic simulation algorithm. J Chem
Phys 122:14116.

Cao, Y., D. Gillespie, and L. Petzold. 2006, Jan. Efficient step
size selection for the tau-leaping simulation method. J
Chem Phys 124:044109.

1391



Jeschke and Uhrmacher

Chebotareva, N., B. Kurganov, and N. Livanova. Novem-
ber 2004. Biochemical effects of molecular crowding.
Biochemistry (Moscow) 69:1239–1251(13).

Elf, J., and M. Ehrenberg. 2004. Spontaneous separation of
bi-stable biochemical systems into spatial domains of
opposite phases. Systems Biology (IEE) 1 (2): 230–236.

Ellis, R. 2001, Feb. Macromolecular crowding: an important
but neglected aspect of the intracellular environment.
Curr. Opin. Struct. Biol. 11:114–119.

Gardiner, C. 1996, November. Handbook of stochastic meth-
ods: For physics, chemistry and the natural sciences
(springer series in synergetics). Springer.

Gibson, M., and J. Bruck. 2000. EfficientExact Stochastic
Simulation of Chemical Systems with Many Species
and Many Channels. Journal of Physical Chemistry
A 104 (9): 1876–1889.

Gillespie, D. 1977. Exact Stochastic Simulation of Coupled
Chemical Reactions. The Journal of Physical Chemistry
B 81 (25): 2340–2361.

Gillespie, D. 2001. Approximate accelerated stochastic sim-
ulation of chemically reacting systems. The Journal of
Chemical Physics 115 (4): 1716–1733.

Gillespie, D. T., S. Lampoudi, and L. R. Petzold. 2007,
January. Effect of reactant size on discrete stochastic
chemical kinetics. The Journal of chemical physics 126
(3).

Hall, D., and A. Minton. 2003. Macromolecular crowding:
qualitative and semiquantitative successes, quantitative
challenges. Biochim. Biophys. Acta. (1649): 127–139.

Haugh, J. 2002, February. A Unified Model for Signal
Transduction Reactions in Cellular Membranes. Bio-
phys. J. 82 (2): 591–604.

Jeschke, M., R. Ewald, A. Park, R. Fujimoto, and A. Uhrma-
cher. 2008. Parallel and distributed spatial simulation
of chemical reactions. In Proceedings of the 22nd
ACM/IEEE/SCS Workshop on Principles of Advanced
and Distributed Simulation (PADS 2008).

John, M., R. Ewald, and A. Uhrmacher. 2008. A spatial
extension to the pi calculus. In Electronic Notes in
Theoretical Computer Science, Volume 194, 133–148.
Amsterdam, The Netherlands: Elsevier Science Pub-
lishers B. V.

Kholodenko, B. 2006. Cell-signalling dynamics in time and
space. Nature Reviews Molecular Cell Biology 7 (3):
165–176.

Kinjo, A., and S. Takada. 2003. Competition between pro-
tein folding and aggregation with molecular chaperones
in crowded solutions: insight from mesoscopic simu-
lations. Biophys. J. 85:3521–3531.

Lipkow, K., S. Andrews, and D. Bray. 2005. Simulated
diffusion of phosphorylated chey through the cytoplasm
of escherichia coli. J Bacteriol 187 (1): 45–53.

Mayawala, K., D. G. Vlachos, and J. S. Edwards. 2005.
Computational modeling reveals molecular details of
epidermal growth factor binding. BMC Cell Biol 6.

Schmitz, K., and J. Schurr. 1972. Role of orientation con-
straints and rotational diffusion in bimolecular solution
kinetics. Journal of Physical Chemistry 76 (4): 534–
545.

Takahashi, K., S. Arjunan, and M. Tomita. 2005, Mar.
Space in systems biology of signaling pathways–
towards intracellular molecular crowding in silico.
FEBS Lett. 579:1783–1788.

Takahashi, K., K. Kaizu, B. Hu, and M. Tomita. 2004,
Mar. A multi-algorithm, multi-timescale method for
cell simulation. Bioinformatics 20:538–546.

Tolle, D., and N. Le Novere. August 2006. Particle-based
stochastic simulation in systems biology. Current Bioin-
formatics 1:315–320(6).

Uhrmacher, A., R. Ewald, M. John, C. Maus, M. Jeschke,
and S. Biermann. 2007. Combining micro and macro-
modeling in devs for computational biology. In Proc.
of the 2007 Winter Simulation Conference.

Vaidehi, N., and W. Goddard III. 2001. Atomic level sim-
ulation models for biological systems. In Computa-
tional Models of Molecular and Cellular Interaction,
ed. J. Bower and H. Bolouri, 161–188. MIT Press.

Versari, C., and N. Busi. 2007. Stochastic simulation of bio-
logical systems with dynamical compartment structure.
In CMSB, 80–95.

Zimmermann, S., and A. Minton. 1993. Macromolecu-
lar crowding: biochemical, biophysical and physi-
ological consequences. Annu. Rev. Biophys. Biomol.
Struct. 22:27–65.

AUTHOR BIOGRAPHIES

MATTHIAS JESCHKE holds a MSc in Computer Sci-
ence from the University of Dresden. His main re-
search interest is in multi-resolution simulation and par-
allel and distributed approaches. He is currently a PhD
student in the DFG Research Training School dIEM oSiRiS
and a member of the modeling and simulation group
at the University of Rostock. His e-mail address is
<matthias.jeschke@uni-rostock.de>.

ADELINDE M. UHRMACHER is Associate Pro-
fessor at the Department of Computer Science at
the University of Rostock and head of the Modeling
and Simulation Group. Her research interests are in
modeling and simulation methodologies. Her e-mail
address is <lin@informatik.uni-rostock.de>.
The web page of her group is
<wwwmosi.informatik.uni-rostock.de.

1392


