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ABSTRACT 

The global optimization of complex systems such as indus-
trial systems often necessitates the use of computer simula-
tion. In this paper, we suggest the use of reinforcement 
learning (RL) algorithms and artificial neural networks for 
the optimization of simulation models. Several types of va-
riables are taken into account in order to find global opti-
mum values. After a first evaluation through mathematical 
functions with known optima, the benefits of our approach 
are illustrated through the example of an inventory control 
problem frequently found in manufacturing systems. Sin-
gle-item and multi-item inventory cases are considered. 
The efficiency of the proposed procedure is compared 
against a commercial tool. 

1 INTRODUCTION 

In today’s globalized environment, industries are calling 
for immediate action on developing computational and si-
mulation-based methods that will lead to faster transac-
tions, reduced operating costs, and improved performance 
and customer service. Today, many quantitative method-
ologies are available to support decision-making in opera-
tions management. Among these, discrete-event simulation 
has received widespread acceptance in industry. In addi-
tion, with the integration of artificial intelligence, agents 
and other modeling techniques, simulation-based methods 
have become an effective and appropriate decision support 
tool, as well. 

Industries also want these methods to help provide 
more control and flexibility in their operations such as pro-
duction and location planning, warehousing, distribution, 
and transportation. In fact, real-life organizations often face 
large-scale combinatorial problems on both operational and 
strategic levels. In such problems, all possible combina-
tions of decisions and variables must be examined to find a 
solution; consequently, no partial enumeration-based exact 
algorithm can consistently solve them. This occurs because 
sharp lower bounds on the objective value are hard to de-

rive, thus causing a slow convergence rate. By exploiting 
problem-specific characteristics, classical heuristic meth-
ods aim at a relatively limited exploration of the search 
space, thereby producing acceptable-quality solutions in 
modest computing times. 

As a major departure from a classical heuristic, a me-
ta-heuristic method implies a higher-level strategy control-
ling a lower-level heuristic method. Meta-heuristics exploit 
not only the problem characteristics but also ideas based on 
artificial intelligence, such as different types of memory 
structures and learning mechanisms, as well as the analogy 
with other optimization methods found in nature. Solutions 
produced by meta-heuristics typically are of much higher 
quality than those obtained with classical heuristic ap-
proaches. Evidently, meta-heuristic approaches’ success 
arises from intelligent exploitation of the problem structure 
and a good deal of insight achieved by the effective inter-
play between intensification (concentrating the search into 
a specific region of the search space) and diversification 
(elaborating various diverse regions in the solution space) 
mechanisms. 

The aim of this paper is to use the advantages of artifi-
cial intelligence-based techniques such as reinforcement 
learning and artificial neural networks, in order to propose 
a global optimization approach that can be coupled with 
discrete-event computer simulation models to efficiently 
resolve practical industrial problems. The methodology is 
tested on mathematical functions as well as on an inventory 
control problem for manufacturing systems. 

The remainder of this paper is arranged as follows. 
Section 2 presents the problem under study in this paper. 
The proposed methodological optimization approach is 
presented in section 3. Section 4 is devoted to the applica-
tion of the methodology on mathematical functions. Ex-
periments on inventory control problems are presented in 
section 5. This paper ends in section 6 by presenting some 
concluding remarks. 
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2 PROBLEM STATEMENT 

The problem of determining the best combination of vari-
ables to use as input for a simulation model often arises in 
practice. Typically, the input values have to be chosen such 
that the cost function is optimized, where the latter is com-
puted from the output variables of the model. This problem 
has to be addressed in application domains where the mod-
eling of the system is not possible by using a mathematical 
approach. In the area of manufacturing systems, for in-
stance, simulation-optimization has been applied to opti-
mize several practical objective function such as produc-
tive machine hours, the cost of automated transport/storage 
systems, the idle time of assembly systems, or to tune the 
parameters of scheduling heuristics or to configure Kanban 
systems (Kleijnen 1993, Rosenblatt et al. 1993, Brennan 
and Roger 1995, Mebarki 1995, Paris et al. 1996). 

A simulation-optimization problem is an optimization 
problem where the objective function is a response evalu-
ated by simulation (Andradottir 1998). It may be formu-
lated as follows: 
 )(min XZ

DX∈
 (1) 

 
Where Z is the criterion evaluated from simulation, 

X=(Xi)i=1,...,n is the vector of variables and each variable Xi 
takes its values in a domain Di. 

Several studies have been carried out on simulation 
optimization. These approaches can be categorized in four 
major classes: gradient-based search methods, stochastic 
approximation methods, response surface methodologies, 
and heuristic methods (Andradottir 1998, Fu 1994, April et 
al. 2003, 2004, Kim 2006). Basically, the aim of each of 
these approaches is to propose a strategy to explore the so-
lution space D with a limited number of simulation ex-
periments (Pflug 1984). Two types of strategies exit. The 
first consists on collecting a sample of interesting points 
(e.g. using experimental design) and exploiting these points 
in a second step (e.g. using a response surface). The second 
strategy consists on searching iteratively the domain D, 
which requires a connection between the optimization al-
gorithm and the simulation model (Haddock and Mittenthal 
1992). 

Unfortunately, most existing approaches suffer from 
the following inconveniences (Pierreval and Paris 2000): 

• They are adapted to the cases where the domains 
Di are real intervals, due, for example, to the 
computation of a gradient, of a response surface 
or a regression metamodel. Therefore, such model 
cannot handle qualitative variables (e.g. queuing 
strategies). This greatly limits their potential ap-
plications. Some authors propose the use of binary 
variables in their models, which may not be rele-
vant nor efficient (Pierreval and Paris 2000). The 
binary variables are treated as numerical variables 
with values being 0 or 1, which, in the case of 

non-numerical decision variables with many pos-
sible realizations, will require the definition of 
many binary variables treated numerically one by 
one. 

• Several iterative methods may be time consuming, 
especially if the domain D is large and if long runs 
or replications are necessary (Law and Kelton 
1991). 

• Many classical methods can be sensitive to local 
extremes, because they have to explore a limited 
region of the search space in order to keep a rea-
sonable CPU time. 

• Certain optimization methods lose a lot of their ef-
ficiency if the domain D is large (e.g. large inter-
vals Di). For instance, although metamodels pre-
sent the interesting advantage of providing an 
analytical function to optimize, optimization me-
thods based on metamodels are restricted to a 
subdomain D’ (generally small) where the meta-
model is valid. 

 
The drawbacks presented previously can be avoided 

by using Reinforcement Learning as the optimization ap-
proach in a hybrid simulation-optimization model. Rein-
forcement Learning (RL) dates back to the early days of 
cybernetics and work in statistics, psychology, neurosci-
ence, and computer science (Kaelbing et al. 1996). Since 
its begins, it has attracted rapidly increasing interest in the 
machine learning and artificial intelligence communities. 
Its promise is beguiling: a way of programming agents by 
reward and punishment without needing to specify how the 
task is to be achieved. 

RL is the problem faced by an agent that must learn 
behavior through trial-and-error interactions with a dy-
namic environment. There are two main strategies for solv-
ing RL problems. The first is to search in the space of be-
haviors in order to find one that performs well in the 
environment. This approach has been taken by work in ge-
netic algorithms and genetic programming, as well as some 
more novel search techniques (Schmidhuber 1996). The 
second is to use statistical techniques and dynamic pro-
gramming methods to estimate the utility of taking actions 
in states of the word. This strategy takes advantage of the 
special structure of RL problems that is not generally 
available in optimization problem. 

In the standard reinforcement-learning model, an agent 
is connected to its environment via perception and action. 
On each step of interaction the agent receives as input i 
some indication of the current state s of the environment. 
The agent then chooses an action a to generate an output. 
The action changes the state of the environment, and the 
value of this state transition is communicated to the agent 
through a scalar “reinforcement signal” r. The agent’s be-
havior B should choose actions that tend to increase the 
long-run sum of values of the reinforcement signal. It can 
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learn to do this over time by systematic trial and error, 
guided by a wide variety of algorithms. 

Formally, the model consists of a discrete set of envi-
ronment states S, a discrete set of agents actions A, and a 
set of scalar reinforcement signals, typically {0,1} of the 
real numbers. The agent’s job is to find a policy π, map-
ping states to actions, that maximizes some long-run meas-
ure of reinforcement. We expect, in general, that the envi-
ronment will be non-deterministic; that is, that taking the 
same action in the same state on two different occasions 
may result in different next states and/or different rein-
forcement values. However, we assume the environment is 
stationary; that is, the probabilities of making state transi-
tions or receiving specific reinforcement signals do not 
change over time. 

Reinforcement learning differs from the more widely 
studied problem of supervised learning in several ways. 
The most important difference is that there is no presenta-
tion of input/output pairs. Instead, after choosing an action, 
the agent is told to immediate reward and the subsequent 
state, but is not told which action would have been in its 
best long-term interests. It is necessary for the agent to 
gather useful experience about the possible system states, 
actions, transitions and rewards actively to act optimally. 
Another difference from supervised learning is that on-line 
performance is important: the evaluation of the system is 
often concurrent with learning. 

3 PROPOSED METHODOLOGY 

This section presents the proposed simulation-optimization 
methodology. Preliminary results were presented Patern-
ina-Arboleda et al. (2007). 

 
3.1 Proposed learning algorithm 

As stated before, given a simulation model M, let note Z 
the criterion evaluated from simulation on a set of input va-
riables X=(Xi) where each variable Xi take its values in a 
domain Di, defined in an interval of length 

iiir minmax −= , with fixed increments for i=1,...,n named 
steps. The number of elements sN  in the domain space is 
given by the expression: 

   ∏
=

⎟
⎠
⎞

⎜
⎝
⎛ −+=

n

i i
iis stepN

1

minmax1    (2) 

 
which corresponds to a graph with each vertex representing 
a solution to the optimization problem that should be eva-
luated by the simulation model. The agent’s objective is to 
strategically travel within the graph attempting to visit im-
proved states so as to optimize the long-term average re-
ward. In particular, the algorithm we select for the agent is 
a modification of the algorithm SMART (Semi-Markov 
Average Reward Technique) proposed by Paternina-

Arboleda and Das (2001, 2005) because of the difference 
on the final objective of the problem. 

Let us define the following notation: 
m: number of iterations during the optimization proc-

ess, 
rimm(i,a,j): immediate reward for the agent for being in 

state i, have taken action a and go to state j, 
ρ: average reward, 
τ(i,a,j): transition time of the system from state i to 

state j after action a, 
R(i,a): average reinforcement for being in state i and 

have taken action a. This is a matrix with n rows (number 
of states) and p columns (number of possible actions). It 
should be noted that not all actions can be taken from any 
state, 

tm: total time, 
αm: learning rate for the reinforcement matrix, 
βm: learning rate for the agent, 
Pm: exploration rate for the agent, which allows the 

agent to take actions randomly. 
 
The algorithm is presented next: 
 

Initialization: 
The reinforcement matrix R(n,p) is empty. 
Set the number of iterations m=1 
Total time is tm=0 
The average reward ρm=0 
The exploration and learning rates are set at their 
initial values 

Search strategy: 

While the number of iterations m is less or equal 
to the maximum number of iterations allowed, do: 
Step 1: With probability (1 – Pm), select from the 
set of feasible actions for the current state i, an ac-
tion that optimizes the corresponding value of the 
reinforcement matrix R. Otherwise, select ran-
domly any other feasible action. 
Step 2: The selected action a drives the system 
from state i to state j, for which the matrix R is 
updated using the corresponding values for τ(i,a,j) 
and rimm(i,a,j) as:  

{ }),(max),,(),,(),()1(),(1 bjRjaijairaiRaiR
Ab
mmimmmmmm

∈
+ +−+−← τραα  

 
If in step 1 the action was selected to be not ran-
dom (exploitation), then the cumulative reward 
has to be updated: 
Total time: ),,( jaitt mm τ+←  
Average reward: 

⎥⎦
⎤

⎢⎣
⎡ ++−←

+
+

1
1

),,()1(
m

immmm
mmmm t

jairt ρβρβρ . 

Do ji←  and 1+←mm  
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Decrease reinforcement rates αm and βm, as well 
as Pm. 
Continue with next iteration 

 
It should be noted that as well as when using an ana-

lytical search procedure, there is no guarantee that a global 
optimality will be found. However, since exploitation and 
multi-agent procedures are implemented, there is a higher 
probability of finding global optima as explained latter in 
section 3.3. 

 
3.2 Approximation of the reinforcement function: 

A neural network approach 

As explained before, the agent has to move in a graph 
at each iteration. If all rewards were memorized in a n×n 
matrix, with n being the number of states, as for the transi-
tion matrix in for stochastic Markov processes, then the re-
quirement to storage all this information (the size of the 
matrix) would be prohibitive according to the number of 
variables, the search space and the increment. In addition, 
although we are proposing a n×p matrix, with p being the 
number of possible actions, which reduces the requirement 
in time and space, this structure is also too big and gives so 
much details without adding to our insight. 

The knowledge of the agent will thus be memorized in 
an artificial neural network. More precisely, a set of neural 
networks distributed over the range of input of decision va-
riables. This will represent a perception-wise linear ap-
proximation of the behavior of the agent’s rewards at each 
state according to the actions it has taken. Each neuron is 
located at an interval of the input variables, and is defined 
as a vector of dimension 3N containing the action to be tak-
en at that state, such that the neuron evaluates it and esti-
mates the reward. Hence, for each state, only the set of 
possible actions with higher reward are considered. 

This artificial neural network is a primitive class of 
neural networks based on the hypothesis of linearity, so 
that it does not require so much computation time. The pa-
rameters are updated using the Widrow-Hoff algorithm, 
which is based on mean-square procedure (Haykin 1994): 

 
Step 1: Initialization 

Set all Wk(1)=0 
Step 2: Filtering information 

Computation of the expected output: 

∑
=

=
p

j
jj nxnwny

1
)()(ˆ)(  

Computation of the forecasting error: 
)()()( nyndne −=  

Update of weights: 
)()()()1(ˆ nxnenwnw kkk η+=+  

 

Where Wk(n): weights of the neuron k at time n, y(n): 
current output of neuron at time n, d(n): expected output 
for the neuron at time n, e(n): forecasting error at time n, η: 
learning rate. 

The learning parameter is reduced using the “search-
then-converge” procedure proposed by Darken and Moody 

(1992): )/(1)( 0

τ
ηη nn += , where η0 is the initial learning 

rate and τ is a constant that can be understood as a reduc-
tion factor. This implies that when n>τ, the algorithm ex-
ploring the neural network converges. For a great number 
of iterations (n>>> τ), the learning parameter behaves as a 
stochastic approximation algorithm. 

The procedure we have presented is efficient for 
small-medium instances for which it is possible to memo-
rize all pairs of state-actions (Paternina-Arboleda et al. 
2007). A different procedure, however, should be used to 
keep in memory the values of the reward obtained from the 
set of actions the agent performs. The necessary conditions 
to update the parameters using an approximation scheme 
are (Das et al., 1999): 

),,(),,,,( φφφεαφ axRrayx nimmn ∇=Δ  

where αn is the learning rate, ),,( φφ axRn∇  is a vector 
of partial derivates against each component φ and 

),,,( φε immryx  represents the temporal difference: 

),,(),,(max)(),( φφτ axRbyRnPaxr nn
b

imm −+− . 

 
In this case, the objective is to update the action that 

has been taken, which corresponds to a n-vector with the 
kth component (the action) being 1. 

 
3.3 Global optimality 

Intelligent search methods and meta-heuristic proce-
dures use high-level optimization strategies in order to 
avoid local optima; instead they are interested in to find 
global optimal values, but without any theoretical guaran-
tee about the gap between their solution and the actual op-
timum. As a matter of fact, some procedures may give dif-
ferent solution for the same input instance depending on 
the initial solution taken as starting point. 

In our procedure, in order to avoid this, two strategies 
are implemented for the iterations on the decision vari-
ables: a multi-agent approach and a search-then-converge 
strategy. The collaborative multi-agent approach is based 
on the selection of n points to start the search procedure. 
An agent (a decision-maker) is located at each of these 
points, and its knowledge about the environment is kept on 
a neural network. In this way, as all agents interacts, it is 
possible to obtain a global knowledge about the environ-
ment. If all agents behave in a similar way, this means that 
the search space is being reduced. To implement this strat-
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egy, a preliminary set of n evaluations is performed on 
randomly selected points and the best values are chosen to 
be assigned to the agents. 

The search-converge stage starts with an exploration 
of the search domain Di setting an initial increment or step 
size for each decision variables Xi, namely p. This initial 
step size is higher than the target precision of the procedure 
or it can be thought as the convergence step size. At each 
step size reduction of the agents are set to their correspond-
ing best solutions found in the search procedure. For each 
variable, an initial step size value is set as a percentage of 
the search interval for that variable. The procedure then 
begins and, at each iteration, the percentage is decreased 
according to a modification of the Darken and Moody’s 

formula: ⎥⎦
⎤

⎢⎣
⎡

+= )/(1
1)( 0 τnpnp , where p0 is the initial val-

ue. When n=τ  the parameter is half of its initial value 
therefore Darken-Moody expression can be interpreted as a 
percentage reduction of the initial parameter over the itera-
tions. Hence, if we want a convergence to a minimum val-
ue pmin, then τ should be set properly against the number of 
iterations. If we only consider integer variables, then the 
expression can be reformulated as 

⎭
⎬
⎫

⎩
⎨
⎧

⎥⎥
⎤

⎢⎢
⎡

+= )/(1,max)( 0
min τm

ppmp . 

4 EXPERIMENTS USING MATHEMATICAL 
FUNCTIONS WITH KNOWN OPTIMA 

The aim of this section is to study the benefits that can be 
achieved through the proposed simulation-optimization 
methodology, in particular in terms of computing effi-
ciency. The surfaces (without random error) used to test 
the procedure are shown in figures 1 and 2. Case 1 and 2 
are uni-modal shaped, in the former any point give infor-
mation about the steepest path, the latter is the opposite. 
Case 3 is a tough case due to the peaks and valleys be-
tween them. In this case the information of the steepest di-
rection is weak for any point located far from the vicinity 
of the optimum. Case 4 is a mixture between case 1 and 
case 3 and could be referred to as ridge bimodal. 

 
Figure 1: Unimodal surfaces 

 

 
Figure 2: Multimodal surfaces 

 
An initial experiment was performed in order to de-

termine general parameters for the algorithm. The surfaces 
described earlier were used as true relationship between the 
decision variables and the response, of course for the ob-
jective of the experiment this relationship is assumed to be 
unknown. The initial experiment is summarized in the Ta-
ble 1. 

 
Table 1: Experimental settings for parameters optimization 

Factor Low High Spacing 
Agents 1 7 1 
Learning rate (α) 0.05 0.5 0.025 
Exploration rate 0.05 0.5 0.025 
Search-converge par. 0.05 0.5 0.025 
Initial step size 0.05 0.25 0.025 
 
Agents correspond to the number of starting solutions 

and as suggested the number of decision makers; α is the 
learning rate; the exploration rate is the probability of se-
lecting a random action at each iteration. Search-converge 
parameter is equivalent to the term τ in the Darken and 
Moody formulation; in this case this parameter is ex-
pressed as a percentage of the maximum number of itera-
tions. Initial step size is the value at the beginning of the 
algorithm of the increment for the decision variables ex-
pressed as a percentage of the range or length of their 
search domain. The search space was fixed in 1000 data 
points for each decision variable giving 1x106 trial solu-
tions to be tested. 

The most significant parameters across all the cases 
were the Search-Converge (τ) parameter and the initial step 
size. The learning rate was the third factor and finally the 
number of agents and neurons.  Further experimentation on 
the two most significant parameters gave τ=0.9 of the max-
imum number of iterations, initial step size 0.3 of the range 
of the length of the search domain, learning rate of α=0.2, 
exploration rate 0.2. 

The benchmarking was carried out by comparing the 
results for the application of the reinforcement learning 
procedure with the definitive parameters against Op-
tQuest® over the 4 cases previously defined and imple-
mented as simulation models using Arena®. The general 
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results on the number of model evaluations are presented in 
Figure 3. 

 

 
Figure 3: Results of the benchmarking against OptQuest® 

on mathematical functions 

5 EXPERIMENTS USING AN INVENTORY 
CONTROL PROBLEM 

The benchmarking was also carried out on practical appli-
cations in order to gain more validity of the results, over-
coming the effects due to overfitting to the particular in-
stances used to fix the definitive parameters. 

 
5.1 Single-item inventory model 

The first application was on a single item inventory model. 
In this instance the response variable was the average cost 
and the decision variable were the reorder point (R) and the 
order quantity (Q) . The objective function can be ex-

pressed as 
⎭
⎬
⎫

⎩
⎨
⎧ ++=

T
s

T
bhC κφμ **min , where μ is 

the average storage level, Φ is the number of non fulfilled 
orders, Κ is the number of orders, T is the time horizon, 
and C  is the average cost. 

To resemble the previous experiments the model was 
evaluated on fine grid in order to generate a response sur-
face of the cost versus the decision variables R and Q (see 
figure 4). The noise for the response surface was added by 
a random demand per period (uniformly distributed) and a 
random lead time for the ordered quantities (triangular dis-
tribution). Again, the simulation model was implemented 
in Arena® and it was optimized with OptQuest®. 

Both procedures reach the same value of the response 
but in a variable number of evaluations of the model. Op-
tquest® has an average number of model evaluations of 
343 with a half with of the confidence interval of 194. The 
RL-opt procedure has an average number of model evalua-
tions of 297 with a half with of the confidence interval of 
52. The average cost was found to be 1.09×104 which is 
reasonable according to the response surface on the above 
plot. Figure 5 illustrates those results. 

 

 
Figure 4: Response for single item inventory model using 

fine grid 
 

 
Figure 5: Results of the benchmarking of the average cost 

against OptQuest® on a single item inventory model 
 

5.2 Multiple item inventory model 

The procedure was also tested in a multi-item inventory 
problem, which constitutes a more challenging environ-
ment for any simulation-optimization procedure. The num-
ber of items was chosen to be four with an <S,s> policy, in 
which the production order of an item is triggered when it 
reaches its minimum level s, and is produced until the max-
imum level S is reached. The objective function was the 
total average cost, expressed by the following equation: 

⎭
⎬
⎫

⎩
⎨
⎧

++∑
=

n

i

iiii
ii T

s
T

b
h

1

*
*min

κφ
μ , where μi is the av-

erage inventory level for item i, Φi is the number of unful-
filled orders for item, Κi is the number of replenishment 
order for item i, T is the time horizon. 

The optimization procedure has 8 variables each of 
them with 100 search points in their domain, forming a to-
tal search space of 1×1016 in addition to the complexity of 
the evaluation of the objective function via simulation. 

The response given by OptQuest® was better than the 
found by the proposed methodology, but this difference is 
only of 0.13%. The difference in the average response is 
1.5%. This means the both procedures behave similarly as 
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showed in the previous results. It can be seen in figure 10 
that for this problem OptQuest® has less variance on the 
response than the proposed algorithm but there is an over-
lapping between the confidence intervals in terms of the 
response variable. With respect to the number of iterations 
before the best solution the proposed methodology exhibits 
a better performance as seen in figure 6. This is not surpris-
ing in accordance to its main objective of attempting to 
find a good solution as soon as possible and refine this so-
lution in the remaining iterations available. The variance of 
the Reinforcement Learning procedure (RL-opt) is greater 
than the variance of OptQuest® on this subject. This is also 
a topic for further studies to gain a deep understanding of 
the methodology. 

 

 
Figure 6: Comparison of the number of iterations 

 
One clearly advantage of the proposed methodology 

was a shorter execution time, as it can be observed in fig-
ure 7. The maximum number of iterations was fixed on 
2000 and there was difference of 14 min. 

 
Figure 7: Comparison of execution times for a multiple 

item inventory model 

6 CONCLUDING REMARKS AND FUTURE 
RESEARCH 

Recently, simulation models are being used as descriptive 
and prescriptive tools at the same time, which means that 
not only are capable to estimate performance measures but 
also can find the set of values for the decision variables 
that improve the performance of the system. In this work a 
reinforcement learning based simulation optimization pro-
cedure was developed and tested in several contexts. The 
main objective was to sample intelligently the solutions 
domain in order to avoid excessive evaluations of the mod-
el. The agents updated reward matrix, which was repre-
sented by a neural network approximation due to the com-
plexity of storing all the possible states for the problem. 
This matrix has resemblance with the function of the gradi-
ent on a numerical procedure, given that its purpose was to 
store the directions (actions) taken by the agents and the 
change in the response due to those actions. This is an indi-
rect form of metamodeling. Metamodels are simplified 
models of a simulation model. Once a metamodel is fitted 
to data generated by a simulation model, the simulation 
model can be discarded and use the metamodel for faster 
evaluation of input values, thus making the search for op-
timal input values easier. In this case that principle as well 
as first search then converge strategy, were used optimize 
simulation models. Although, the results of the procedure 
were comparable in quality to those obtained by Op-
tQuest®, further improvements to reduce the variance are 
needed. Since both approaches (OptQuest® and RL-opt) 
use neural networks they are exposed to the effects of peak 
values on the surface of the response variable. For this pur-
poses alternative approaches are needed in the context of 
simulation optimization. 

Further studies could consist in using metamodeling 
techniques more directly, such as smoothing splines. These 
have been suggested in metamodel literature (Keys and 
Rees 2004) as a remedy to some disadvantages of tradi-
tional response surface analysis. Some advantages of 
splines are they ability to manage the tradeoff between the 
fit of the approximation and the smoothness of the result-
ing metamodel, also the ability to divide the domain of X 
into m contiguous intervals and fitting a polynomial for 
each interval. This allows the fitting of multiple peaks with 
a great deal of accuracy. These qualities make smoothing 
splines a desirable metamodeling technique for simulation 
optimization. 
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