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ABSTRACT

Combinatorial auctions, where buyers can bid on bundles
of items rather than bidding them sequentially, often lead
to more economically efficient allocations of financial re-
sources. However, the problem of determining the winners
once the bids are submitted, the so-called Winner Determi-
nation Problem (WDP), is known to be NP hard. We present
two randomized algorithms to solve this combinatorial op-
timization problem. The first is based on the Cross-Entropy
(CE) method, a versatile adaptive algorithm that has been
successfully applied to solve various well-known difficult
combinatorial optimization problems. The other is a new
adaptive simulation approach by Botev and Kroese, which
evolved from the CE method and combines the adaptive-
ness and level-crossing ideas of CE with Markov Chain
Monte Carlo techniques. The performance of the proposed
algorithms are illustrated by various examples.

1 INTRODUCTION

An auction is a common method of determining the value
of commodities that have an undetermined price. This
mechanism is often used when there is a large number of
bidders who are interested in acquiring certain items. These
items are auctioned in sequence until they are all sold. In
this type of auction, determination of the winner is trivial,
as the highest bid “wins” (gets the item). However, in many
situations a bidder’s valuation for a combination of items
for sale is not the sum of the individual items’ valuations.
It is because related assets often have what economists
call complementarity and substitution effects, and economic
efficiency is improved if bidders are allowed to bid on
combinations of different assets, rather than bidding them
sequentially. Complementarity occurs when two items have
features that complement each other, and their combined
value for the bidder is higher than the sum of the individual
values. Substitutability is the opposite situation, where two
items substitute each other, and their combined value is

less than the sum of individuals’. To avoid the problem of
complementarity and substitutability, combinatorial auction
is introduced where buyers bid on sets of items, instead of
single items.

Combinatorial auction was first proposed by Jackson
(1976) for the allocation of radio spectrum. Rassenti et al.
(1982) applied the idea to auctioning airport time slots.
Other examples include Federal Communications Commis-
sion auctions for wireless communication spectrum (Cram-
ton 1998), auctions for railroad segments (Brewer 1999), and
applications in electronic business (Narahari and Dayama
2005). A recent survey on the topic is given by de Vries and
Vohra (2003); Cramton et al. (2006) wrote a comprehensive
book on the topic that also deals with other aspects of combi-
natorial auctions. Despite its potentially wide applicability,
combinatorial auction presents some new challenges. The
most obvious one being the so-called Winner Determination
Problem (WDP): how to efficiently determine the winner
once the bids have been submitted to the auctioneer? Since
each bid in a combinatorial auction can be made on an ar-
bitrary set of items, the number of bids grow exponentially
with the number of items, making the evaluation difficult
for a relatively large auction. In fact, it is known that the
problem is NP-hard (de Vries and Vohra 2003).

The purpose of this paper is to present two different
randomized algorithms to solve two versions of the WDP.
The first is based on the Cross-Entropy (CE) method, a
versatile adaptive algorithm that has been successfully ap-
plied to solve various well-known difficult combinatorial
optimization problems. The other is an adaptive simulation
approach proposed by Botev and Kroese (2008), referred to
here as the BK method, that evolved from the CE method.
Although an efficient deterministic algorithm is developed
for one version of the WDP presented below (Sandholm
et al. 2005), its performance is sensitive to the set of bids
submitted, whereas the proposed randomized algorithms are
not. In addition, the proposed algorithms are straightfor-
ward and easy to program, and do not require specialized
software. The rest of the article is organized as follows. We
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formally introduce the WDP in Section 2 and discuss the
CE and the BK methods in Sections 3 and 4 respectively.
Numerical experiments are presented in Section 5 and the
last section concludes the article.

2 THE WINNER DETERMINATION PROBLEM

The central problem arising from combinatorial auctions is
winner determination, which is described as follows. Sup-
pose an auctioneer has a collection of items to auction to a
number of bidders, who submit bids on every combination
of items. Given the set of bids, the auctioneer then de-
termines the allocation of items to bidders that maximizes
her revenue under the constraint that each item is allocated
to at most one bidder (with the possibility that the item is
not sold). This problem can be formally stated as a com-
binatorial optimization problem in the following way. Let
I = {1, . . . ,m} be the set of distinct items to be auctioned
and J = {1, . . . ,n} the set of bidders. For every subset S⊆ I,
each bidder j ∈ J is to submit a bid, denoted as b j(S), he
is willing to pay. Let x(S, j) be equal to 1 if the bundle
S ⊆ I is allocated to j ∈ J, and x(S, j) = 0 otherwise. The
WDP can be formulated as:

max ∑
j∈J

∑
S⊆I

b j(S) x(S, j) (1)

subject to

∑
S:i∈S

∑
j∈J

x(S, j)≤ 1, ∀i ∈ I,

∑
S⊆I

x(S, j)≤ 1, ∀ j ∈ J,

x(S, j) ∈ {0,1}, ∀S ⊆ I, j ∈ J.

The first constraint ensures that each object is allocated at
most once while the second constraint ensures that no bidder
receives more than one bundle. For convenience, let E1 be
the set of all feasible allocations. Thus the problem becomes
maximizing H1(x) = ∑ j∈J ∑S⊆I b j(S)x(S, j) over the set E1.
Call this problem WDP1. The most obvious difficulty of
such an auction is that bidders are required to submit a bid
for every subset of items he is interested it. Thus for an
auction with m items a bidder is required to submit 2m−1
bids. Nisan (2000) discusses various ways in which bids
can be restricted and their consequence. Even when this
enumeration problem can be resolved satisfactorily, WDP1
is still a non-trivial problem. In fact, the above formulation
is an instance of the Set Packing Problem (SPP), a well-
studied integer programming problem that is known to be
NP-hard (de Vries and Vohra 2003).

We present a simple example for illustration. Suppose
an auctioneer has m = 3 items ({b1,b2,b3}) to be auctioned,
and there are n = 4 bidders ({A1,A2,A3,A4}), whose bids

Table 1: Bids submitted for WDP1 with n = 4 bidders and
m = 3 items to be auctioned.

Subset A1 A2 A3 A4
{b1} 1 2 3 2
{b2} 1 1 2 3
{b3} 2 1 1 2

{b1,b2} 3 4 1 3
{b1,b3} 2 4 6 4
{b2,b3} 5 3 5 3

{b1,b2,b3} 6 7 4 5

are given in Table 1. One possible solution is to allocate
items {b1,b3} to bidder A1 and item {b2} to bidder A4,
which earns a revenue of 2+3 = 5. For this simple example
there are altogether 34 = 81 feasible allocations. In general,
for a combinatorial auction with m items and n bidders,
there are altogether nm allocations, making the problem
intractable when either m or n is large.

Since in many empirical applications the number of
items to be auctioned is large and putting a price on every
subset is simply impractical, some researchers looked at
another type of combinatorial auction described as follows.
Suppose the auctioneer has a set of distinct items, I =
{1, . . . ,m}, to sell, and each buyer, instead of submitting
a bid on every subset of I, submits only one bid, denoted
as B j, j = 1, . . . ,n. A bid is a tuple B j = (S j, p j), where
S j ⊆ I is a combination of items the buyer is interested
in and p j, p j ≥ 0 is a price. Given the bids B1, . . . ,Bn,
the auctioneer then decide which bids as winning so as
to maximize her revenue under the constraint that each
item can be allocated to at most one bidder. Formally, the
problem can formulated as

max ∑
j∈J

p j x j (2)

subject to

∑
j:i∈S j

x j ≤ 1, ∀i ∈ I,

x j ∈ {0,1}.

This problem is also known to be NP hard. For convenience,
let E2 be the set of all feasible allocations. Then the problem
becomes maximizing H2(x) = ∑ j∈J p jx j over the set E2. Call
this problem WDP2. Sandholm et al. (2005) provides a
fast algorithm to solve this version of WDP.

3 COMBINATORIAL OPTIMIZATION VIA CE

In this section we discuss a CE based algorithm to solve
the combinatorial optimization problems in (1) and (2). We
follow the approach proposed in Rubinstein and Kroese
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(2004). Suppose we wish to maximize a function H(x)
over some discrete set E . Denote the maximum by γ∗, that
is,

γ
∗ = max

x∈E
H(x). (3)

Instead of seeking a solution to the optimization problem
in (3), the CE method recasts the original problem into an
estimation problem of rare-event probabilities. By doing so,
it aims to obtain an optimal parametric sampling distribution
on E , rather than finding the optimal solution directly. To
this end, let {I{H(x)≥γ}} be a collection of indicator functions
on E for various levels γ ∈R. Next, let { f (·;v),v ∈ V } be
a family of probability density functions on E parametrized
by a real-valued parameter vector v. For a fixed vector
u ∈ V we associate with (3) the problem of estimating the
rare-event probability

`(γ) = Pu(H(X)≥ γ) = Eu[I{H(X)≥γ}], (4)

where Pu is the probability measure under which the ran-
dom state X has a discrete pdf f (·;u) and Eu denotes the
corresponding expectation operator. Then the goal of the CE
method is to generate a sequence of pdfs f (·; v̂0), f (·; v̂1), . . .
converging to a degenerate measure (Dirac measure) that
assigns all probability mass to a single state xT , for which,
ideally, the function value is the global optimal.

More specifically, we start with a parametrized sampling
distribution f (·; v̂0) from which a random sample of size
N, X1, . . . ,XN , is generated. For each observation Xi, we
compute its performance, denoted as H(Xi). A fixed number
of the best observations are singled out and referred to as
the elite sample. Operationally, we first compute the sample
(1−ρ)−quantile of the performances as

γ̂t = H(d(1−ρ)Ne), (5)

where H(i) is the i-th ordered observation and d·e is the
ceiling function. Then we select all the observations Xi for
which Xi ≥ γ̂t and call this collection the elite sample. The
elite sample is then used to update the parameters for the
sampling distribution by solving the following maximization
problem

max
v

D(v) := max
v

1
N

N

∑
i=1

I{H(Xi)≥γ̂t} log f (Xi;v). (6)

Instead of updating the parameter vector v directly via
the solution of (6), it is often better to use the following
smoothed version

v̂t = α ṽt +(1−α)v̂t−1, (7)

where ṽt is the parameter vector obtained from the solution
of the maximization program (6) and α ∈ (0,1) is referred
to as the smoothing parameter. Thus the CE algorithm for
optimization can be summarized as follows.

Algorithm 1 [CE Algorithm for Optimization]

1. Choose an initial parameter vector v̂0. Set t = 1.
2. Generate a sample X1, . . . ,XN from the density

f (·; v̂t−1) and compute the sample (1−ρ)-quantile
γ̂t of the performance according to (5).

3. Use the same sample X1, . . . ,XN to solve the
stochastic program (6) and denote the solution
as ṽt .

4. Apply (7) to smooth out the vector ṽt .
5. If for some t = d, say d = 4,

γ̂t = γ̂t−1 = · · ·= γ̂t−d ,

then stop; otherwise set t = t +1 and iterate from
Step 2.

To implement the above CE program to solve the com-
binatorial optimization problems (1) and (2), we first need
a convenient way to represent the set of all feasible allo-
cations E1 and E2 and assign a family of pdfs on them.
For WDP1 with n buyers and m items to be auctioned, a
feasible allocation can be uniquely represented by a vec-
tor X = (X1, . . . ,Xm), where Xi = j indicates that item i is
allocated to bidder j. For example, for a combinatorial
auction with 6 items and 10 bidders (m = 6 and n = 10),
the vector (3,9,8,9,3,3) represents an allocation of items
{1,5,6} to bidder 3, items {2,4} to bidder 9 and item {3}
to bidder 8. Given this convenient representation, a random
allocation can be easily generated from the set E1 simply
by letting X1, . . . ,Xm be independent n-point random vari-
ables such that P(Xi = j) = pi j, i = 1, . . . ,m, j = 1, . . . ,n.
In additional, the stochastic program in (6) can be solved
analytically. Specifically, given the sample X1, . . . ,XN we
update the components of P̂t = (p̂t,i j) as

p̂t,i j =
∑

N
k=1 I{H(Xk)≥γ̂t}I{Xki= j}

∑
N
k=1 I{H(Xk)≥γ̂t}

.

For WDP2 with n bids, an allocation can be represented by a
vector X = (X1, . . . ,Xn), where Xi = 1 if buyer i wins the bid
and 0 otherwise. For example, for a combinatorial auction
with n = 5 bids, the vector X = (1,0,0,1,1) represents
the allocation that buyers 1, 4 and 5 win their bids while
buyers 2 and 3 do not. It is worth noting that some of
these vectors might represent infeasible allocations. For
instance, if bids 1 and 2 both contain the same item, then
(1,1, . . .) is not a feasible allocation as one item cannot be
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allocated to both buyers. In that case we can simply set
the performance of such an allocation to be 0. Given this
representation, a random allocation can be easily generated
simply by letting each component of X = (X1, . . . ,Xn) be an
independent Bernoulli random variable such that the success
probability of Xi is pi. Finally, given the sample X1, . . . ,XN ,
the updating rule is simply

p̂t,i =
∑

N
k=1 I{H(Xk)≥γ̂t}I{Xki=1}

∑
N
k=1 I{H(Xk)≥γ̂t}

.

4 COMBINATORIAL OPTIMIZATION VIA BK

In this section we discuss an adaptive simulation approach
proposed by Botev and Kroese (2008), referred to as the BK
method, that has proved to be very useful for rare-event prob-
ability estimation, combinatorial optimization and counting
problems. Evolved from the CE method, the BK method
circumvents the likelihood ratio degeneracy problem by
sampling directly from the minimum-variance importance
density. Specifically, the BK method first associates the
optimization problem (3) with the corresponding rare-event
probability estimation problem (4). But instead of con-
structing a sequence of pdfs f (·; v̂0), f (·; v̂1), . . . converging
to a degenerate measure as in CE, the BK method aims
to directly sample from the minimum-variance importance
sampling density

g∗(x|γ) =
f (x;u)I{H(x)≥γ}

`(γ)
. (8)

As opposed to estimation problems, we are not interested in
obtaining an unbiased estimate for the rare-event probability
per se. Rather, we only wish to approximately sample from
the pdf (8) for as large a value of γ as possible.

Suppose we have a sequence of levels −∞ = γ0 <
γ1 < · · ·< γT = γ∗ judiciously chosen. Heuristically, if we
generate N draws from X(0)

i ∼ g∗(x|γ0) = f (x;u) and accept
only those X(0)

i for which X(0)
i ≥ γ1, then we have a sample

from g∗(x|γ1). Call this sample X (1) and let N1 be the
sample size. Presumably N1 < N. To obtain N draws from
g∗(x|γ1), we first sample uniformly with replacement N
times from the population X (1) to acquire a new sample
Y1, . . . ,YN . For each Yi = (Yi1, . . . ,Yik), we then sample
each component Yi j from g∗(x|γ1) conditionally on the other
components. Since the resampling and conditional sampling
steps do not change the underlying distribution, in this way,
we obtain a sample X(1)

1 , . . . ,X(1)
N from g∗(x|γ1). Now

let X (2) denote the collection of X(1)
i such that X(1)

i ≥
γ2. Obviously X (2) is a sample from g∗(x|γ2). We then
apply the resampling and conditional sampling procedures
to obtain a new sample of size N from g∗(x|γ2). We repeat

this process until we reach γ∗. The BK algorithm for
optimization is summarized below.

Algorithm 2 [BK Algorithm for Optimization]

1. Set t = 1. Generate a sample X (0) =
{X(0)

1 , . . . ,X(0)
N } from the nominal density f (x;u)

and compute the sample (1− ρ)-quantile γ̂0 of
the performance according to (5). Let X̃ (0) =
{X̃(0)

1 , . . . , X̃(0)
N0
} be the subset of the population

{X(0)
1 , . . . ,X(0)

N } for which H(X(0)
i )≥ γ̂0. Then we

have

X̃(0)
1 , . . . , X̃(0)

N0

appr.∼ g∗(x|γ̂0).

2. Sample uniformly with replacement N times from
the population X̃ (t−1) to obtain a new sample
Y1, . . . ,YN .

3. For each Y = (Y1, . . . ,Yk) in {Y1, . . . ,YN}, generate
Ỹ = (Ỹ1, . . . ,Ỹk) as follows:

(a) Draw Ỹ1 from the conditional density
g∗(y1|γ̂t−1,Y2, . . . ,Yk).

(b) Draw Ỹi ∼ g∗(yi|γ̂t−1,Ỹ1, . . . ,Ỹi−1,Yi+1, . . . ,Yk),
i = 2, . . . ,k−1.

(c) Draw Ỹk ∼ g∗(yk|γ̂t−1,Ỹ1, . . . ,Ỹk−1).

Denote the resulting population of Ỹ by
X(t)

1 , . . . ,X(t)
N .

4. Let γ̂t be the (1 − ρ) sample quantile of
H(X(t)

1 ), . . . ,H(X(t)
N ) and X̃ (t) = {X̃(t)

1 , . . . , X̃(t)
Nt
}

be the subset of the population {X(t)
1 , . . . ,X(t)

N } for
which H(X(t)

i )≥ γ̂t . Again, we have

X̃(t)
1 , . . . , X̃(t)

Nt

appr.∼ g∗(x|γ̂t).

5. If for some t = d, say d = 4,

γ̂t = γ̂t−1 = · · ·= γ̂t−d ,

then stop; otherwise set t = t +1 and iterate from
Step 2.

6. Deliver the vector X∗ from the set X(T )
1 , . . . ,X(T )

N
for which H(X∗

i ) is maximal as an estimate for the
global maximizer of (3).

To implement the above algorithm, we need a convenient
way to represent the set of all feasible allocations E1 and E2
and assign a nominal pdf on each of them. Here we use the
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Table 2: Synthetic WDP1 example with m = 10, n = 50,
and ρ = 0.1.

method γ∗ mean min max CPU T̄
CE 19.58 19.58 19.55 19.58 0.8 13.6
BK 19.58 19.58 19.58 19.58 0.8 20.6

Table 3: Synthetic WDP1 example with m = 15, n = 100
and ρ = 0.1.

method γ∗ mean min max CPU T̄
CE 29.75 29.75 29.72 29.75 2.6 18.7
BK 29.75 29.75 29.75 29.75 5.2 37.1

same representation as in Section 3: for WDP1 an allocation
in E1 can be represented by a vector X = (X1, . . . ,Xm), where
Xi = j indicates that item i is allocated to bidder j; for WDP2
a typical element in E2 is a vector X = (X1, . . . ,Xn), where
Xi = 1 if buyer i wins the bid and 0 otherwise.

Sampling from the conditional densities in Step 3 is also
straightforward. For WDP1, sampling a random variable Ỹi
from the conditional density can be accomplished as follows.
Let Z be a random variable that follows an n-point distribu-
tion. If H([y1, . . . ,yi−1,Z,yi+1, . . . ,ym])≥ γ̂t−1, then set Ỹi =
Z; otherwise set Ỹi = Yi. For WDP2, the step is analogous:
Let Z ∼Ber(0.5). If H([y1, . . . ,yi−1,Z,yi+1, . . . ,yn])≥ γ̂t−1,
then set Ỹi = Z; otherwise set Ỹi = 1−Z.

5 NUMERICAL RESULTS

To demonstrate the performance of the proposed CE and BK
algorithms, we present various numerical examples in this
section. For the WDP1 in (1), we consider two synthetic
examples, one with n = 50 bidders and m = 10 items to be
auctioned and the other with n = 100 and m = 15. Recall
that the total number of possible allocations is nm (i.e.,
9.8×1016 for the first example and 1030 for the second). In
the synthetic examples, the bid for each bundle is generated
randomly from a uniform distribution U[k−1,k+1], where k
is the number of items in the bundle. For the CE method, we
set the sample size to be N = 5,000, the rarity parameter
ρ = 0.1 and smoothing parameter α = 0.9. For the BK
method, we set N = 500 and ρ = 0.1. The experiments were
executed using Matlab 7.4 on a desktop with a 2.66GHz
Intel Core 2 Duo CPU. Each algorithm was run 10 times
and we report the true global maximum γ∗, together with
the mean, minimum and maximum estimated γ̂∗ in Tables 2
and 3. We also report the mean number or iterations T̄ and
CPU times (in seconds) needed for each run.

To monitor the convergence property of the CE algo-
rithm, we introduce the quantity

Pmm
t = min

1≤i≤m
max

1≤ j≤n
p̂t,i j.

Table 4: Evolution of the CE algorithm for the WDP1
example with m = 10, n = 50, N = 5,000 and ρ = 0.1.

t γ̂t Ht,(1) Pmm
t

1 12.47 16.64 0.04
2 14.47 17.70 0.06
3 16.15 18.23 0.10
4 17.45 19.03 0.14
5 18.29 19.23 0.19
6 18.87 19.45 0.23
7 19.25 19.52 0.27
8 19.43 19.56 0.43
9 19.50 19.57 0.49
10 19.53 19.58 0.59
11 19.55 19.58 0.91
12 19.58 19.58 0.97
13 19.58 19.58 0.98
14 19.58 19.58 0.99
15 19.58 19.58 0.99

Table 5: Synthetic WDP2 example with m = 30, n = 50,
and ρ = 0.1.

method γ∗ mean min max CPU T̄
CE 4.15 4.09 4.01 4.15 0.6 7.8
BK 4.15 4.15 4.15 4.15 1.0 8.4

Table 6: Synthetic WDP2 example with m = 50, n = 100
and ρ = 0.1.

method γ∗ mean min max CPU T̄
CE 5.49 5.48 5.47 5.49 1.3 8.4
BK 5.49 5.49 5.49 5.49 2.7 8.9

A typical evolution of the CE algorithm for the WDP1
synthetic example with m = 10 and n = 50 is reported in
Table 4.

For WDP2, we also consider two synthetic examples,
one with n = 50 bids and m = 30 items to be auctioned and
the other with n = 100 and m = 50. Recall that the total
number of possible allocations is 2n (i.e., 1.13× 1015 for
the first example and 1.26× 1030 for the second). In the
synthetic examples, the bids are generated as follows. First
pick the number of items randomly from {1, . . . ,m}. Given
the number of items, choose randomly that many items
without replacement from {1, . . . ,m}. Lastly, generate the
price for the bundle from a uniform distribution U[0,1]. For
the CE method, we set the sample size to be N = 7,000 for
the first example and N = 10,000 for the second; for the BK
method, we set N = 500 for both examples. Each algorithm
was run 10 times and we report the true global maximum γ∗,
together with the mean, minimum and maximum estimated
γ̂∗ in Tables 5 and 6.
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These examples suggest that for both versions of the
WDP, the CE and the BK methods are fast, efficient and
able to locate the global maximum accurately. In fact, the
BK method is able to locate the global maximum in every
run. On the other hand, even though the CE method is less
robust, it is much faster and its estimate is still very close
to the global maximum when it misses it.

6 CONCLUDING REMARKS

In this article we formulate two versions of the Winner Deter-
mination Problem in combinatorial auctions and introduce
two different adaptive simulation approaches, namely the
CE and the BK methods, to solve both problems. We demon-
strate the empirical performance of the proposed algorithms
by various synthetic examples and the results suggest that
the proposed methods are both efficient and able to locate
the maximum rather quickly.
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