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ABSTRACT 

In this paper we address a dynamic distributed patrolling 
problem  where a team of autonomous unmanned aerial 
vehicles (UAVs) patrolling moving targets over a large 
area must coordinate. We propose a hybrid approach com-
bining multi-agent geosimulation and reinforcement learn-
ing enabling a group of agents to find near optimal solu-
tions in realistic geo-referenced virtual environments. We 
present the COLMAS System which implements the pro-
posed approach and show how a set of UAV can automati-
cally find patrolling patterns in a dynamic environment 
characterized by unknown obstacles and moving targets. 
We also comment the value of the approach based on lim-
ited computational results.  

1 INTRODUCTION 

Over the past few years the use of unmanned aerial vehi-
cles (UAVs) for public safety and military operations has 
grown continuously. Typical applications include recon-
naissance sorties, surveillance of known targets, search-
and-destroy missions and search-and-rescue operations. 
The COLMAS (COordination Learning in Multi-Agent 
System) Project aims at developing a framework, algo-
rithms, and automated advisory decision support capabili-
ties for dynamic distributed resource management in which 
a heterogeneous team of agents drawn from distinct classes 
(static and moving airborne/land vehicles, unmanned/ 
manned vehicles) are engaged in a surveillance mission 
(reconnaissance, target search including detection/ recogni-
tion, information gathering, exploration, etc.) evolving in a 
dynamic uncertain environment with both known and un-
known targets and threats (a mix of moving/static, evad-
ing/non-evading behaviors). In this context, UAVs present 
some special interest for their abilities to coordinate the 
simultaneous coverage of large surveillance areas and to 
cooperate in order to achieve various tasks such as target 
monitoring. 

 In this work we primarily focus on learning team co-
ordination to achieve target allocation and navigation tasks 
for a distributed patrolling problem instantiated as a team 
of UAVs continuously monitoring possibly moving targets 
over a given region. The challenge is to solve such a prob-
lem taking into account the geographic characteristics of 
the environment and the fact that targets may move in an 
unpredictable manner.  

In order to address such a problem, it seems natural to 
use a multi-agent approach to represent UAVs that may 
carry out their tasks autonomously, while trying to coordi-
nate their collective action. In recent years several re-
searchers (Machado et al. 2002; Chevaleyre 2004; Santana 
et al. 2004) proposed multi-agent solutions to a simpler 
version of the patrolling problem, considering that: 1) the 
territory can be represented by an undirected graph; 2) tar-
gets are fixed; 3) the patrolling task consists of continu-
ously visiting all graph nodes in order to minimize the time 
lag between two visits.  

Different techniques have been proposed to coordinate 
patrolling agents such as 1) Formulating the patrolling 
problem as a combinatorial optimization problem and ex-
tending solutions of the Traveling Salesman Problem 
(TSP) to multiple agents (Chevaleyere 2004); 2) Market-
based multi-agent negotiation techniques (Almeida et al. 
2004) where a traveling agent that cannot visit a target in a 
reasonable time, uses an auction mechanism inviting other 
team members to bid; 3) Techniques based on swarm intel-
ligence (Charrier et al. 2007; Nowak et al. 2007); 4) Tech-
niques based on  ant colony optimization (Lauri and Char-
pillet 2006); 5) Multi-agent learning techniques based on 
Reinforcement Learning (RL) which allows agents to con-
tinuously adapt their patrolling strategies (Santana et al. 
2004).  

In the approaches presented above, relative target  po-
sitions are represented by an undirected graph. However, in 
the case of a real geographic environment in which targets 
behave dynamically and obstacles (e.g. dangerous no-flight 
zones) may show up unpredictably, a graph representation 
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is not a suitable representation and graph-based solutions 
to the patrolling problem do not apply.  

As an alternative representation, we propose to use a 
multi-agent geosimulation approach (Moulin et al. 2003) in 
order to simulate the movements and interactions of auto-
nomous agents (in our case UAVs) in a virtual geographic 
environment (VGE) generated from geo-referenced data 
contained in a Geographic Information System (GIS) (Be-
nenson and Torrens 2004). To this end, we need to use a 
multi-agent geosimulation (MAGS) platform in which 
agents possess different capabilities that enable them to: 1) 
perceive other agents as well as the geographic characteris-
tics of the VGE; 2) autonomously navigate; 3) avoid obsta-
cles and 4) make decisions in order to achieve their goals 
(Moulin et al. 2003). Since targets and dynamic obstacles 
can also be represented by simple agents (or at least objects 
with reactive behaviors), we can use such an approach to 
plausibly simulate a dynamic environment in which UAVs 
will track moving land targets.  In addition, we propose a 
hybrid approach based on multi-agent geosimulation and 
reinforcement learning that extends previous works 
(Santana et al. 2004) in order to enable a group of agents to 
autonomously coordinate their movements in order to pa-
trol a large area in which targets may change locations and 
obstacles must be avoided. 

The paper is outlined as follows. Section 2 introduces 
the patrolling problem while Section 3 presents the pro-
posed solution Then, the COLMAS architecture and its 
components are described in Section 4. Section 5 shows 
how a user can define scenarios as an input to the 
COLMAS system.  Section 6 illustrates some experiments 
demonstrating how the system can determine patrolling 
patterns. Section 7 presents some observations and a brief 
discussion. Finally,  a conclusion is given in Section 8. 

2 PROBLEM STATEMENT 

In a surveillance scenario, a team of n agents (UAVs) pa-
trolling  an area continuously monitors a set of M land tar-
gets (shown by symbol  “T” in Figure 1) moving freely and 
non-deterministically. The team objective is to determine 
UAV paths which minimize time lags between consecutive 
target visits over a given time horizon. A suitable UAV 
path solution would ideally correspond to a so-called  pa-
trolling pattern, defined as a semi-periodic sequence of 
agent movements among a subset of targets (pictured as a 
sequence of arrows in Figure 1). Our goal is to develop a 
system which automatically finds a combination of such 
individual patterns in order to find a global and optimal 
surveillance pattern. 
 There is no efficient solution known to such a problem 
since the number of possible combinations of UAVs’ ele-
mentary actions in any realistic situation is very large, and 
there is no straightforward mathematical way of represent-
ing the spatial information (such as moving target locations 

and areas changing in size and locations). The proposed 
idea to take advantage of the analogical representation of 
space allowed by a geosimulation taking place in a geo-
referenced virtual world (Moulin et al. 2003; Benenson et 
Torrens 2004).   
 As a first approximation to solve this problem, we 
consider that the agents’ displacements in the VGE are de-
fined in a simple way by actions of the type: Go from cur-
rent position to target m. Thus, a patrolling pattern be-
comes a spatial trajectory. At every time step of the 
simulation, each agent must autonomously decide about its 
next move. The problem consists of computing the next ac-
tion to be executed by each UAV. The combination of 
UAVs’ patrolling patterns must result in a course of ac-
tions (plan) defining a global surveillance pattern of the 
area which minimizes certain criteria. The main criterion 
used to evaluate the quality of a solution of the patrolling 
problem relies on the notion of Idleness. Target idleness 
represents the time elapsed since it was last visited or simi-
larly the time lag between two successive target visits. 

  
Figure 1: UAV’s patrolling patterns 
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multi-agent graph coverage strategy. Such a strategy must 
optimize a given quality criterion involving the instantane-
ous node idleness (Machado et al. 2002). Simulation is 
used in order to allow agents explore the problem state 
space and the different possible solutions are evaluated in 
order to keep the best ones. A multi-agent patrol strategy 
can be evaluated after T cycles of simulation using either 
the average idleness or the worst idleness criteria. 

Santana et al. (2004) proposed an approach in which 
the agents are able to learn to patrol using Reinforcement 
Learning (RL). Each agent integrates a Markov Decision 
Process (MDP) that is used to determine which action to 
perform in every situation state. An action allows an agent 
to go to the adjacent nodes in the graph. A situation state 
corresponds to the minimal information required by an 
agent to decide what to do. An agent may immediately 
reach the adjacent target in a single cycle of execution. The 
distance it must travel to reach the target is interpreted as a 
cost rather than a distance. This cost is used to compute the 
reward associated with the state. Since the environment is 
represented as a graph where nodes correspond to targets 
and links to transition costs, the model of the environment 
is assumed to be known prior to creating the graph. This is 
not possible in the case of a complex dynamic geographic 
environment in which targets may change positions and 
obstacles may appear and move unpredictably. 

3 A SOLUTION BASED ON GEOSIMULATION 
AND DISTRIBUTED REINFORCEMENT 
LEARNING 

We propose a hybrid approach combining distributed rein-
forcement learning and geosimulation to handle task allo-
cation (high-level planning) and navigation/routing (low-
level planning) respectively. The hierarchical decomposi-
tion scheme can be characterized as follows. The distrib-
uted RL approach uses a simple problem state representa-
tion in computing an approximate solution to the learning 
problem, significantly reducing computational complexity. 
It promotes emergent behavior through suitable tradeoffs 
between solution space exploration and exploitation. Par-
tial state observability and action execution are modeled 
through geosimulation allowing to capture realistic envi-
ronments using agent visibility models and kine-
matic/collision avoidance/geographical constraints.  
 The internal state representation is an important im-
plementation issue that needs to be solved when consider-
ing reinforcement learning algorithms. Indeed, the repre-
sentation of a learning problem may have an important 
impact on performance, both of the learning algorithm and 
of its results. Due to the simplicity of its implementation, 
the classic total representation where all internal states 
must be known was selected. To use the total representa-
tion, the reinforcement learning problem definition must be 
modeled at a high-level of abstraction, limiting the number 

of internal states as well as the number of actions. This 
high level of abstraction can be reached using a hybrid ar-
chitecture where the RL module is used to make high-level 
decisions and where a geosimulator executes low level ac-
tions. These low level actions must include all spatial ac-
tions like navigation, path finding, and obstacle avoidance. 
 Our solution takes advantage of a state-space represen-
tation similar to the one used by Santana while adding con-
straints from a real-time geosimulation system. The general 
workflow of the proposed system is presented in Figure 2. 
The perception module receives and processes relevant 
data that is obtained from the environment and that will be 
used to make a decision. The memory module takes into 
consideration the simulator’s past state, if necessary, to 
create the RL state entry. This means that the model does 
not need complex learning algorithms to take past states 
into account. It is possible, for the decision module, to 
learn from past information using a simple Q-Learning al-
gorithm.  
 Considering that a patrolling pattern consists of a se-
quence of targets to visit, it is possible to significantly re-
duce the dimension of the state space sent to the RL algo-
rithm. The agent only needs to know the last target it has 
visited in order to decide which one it will visit next. For m 
targets, there will be m states. Once the action is chosen by 
the agent, the simulator executes this action. 

 

 
Figure 2: COLMAS general workflow 

 The RL module plays the following three roles in the 
system: 1) Map abstract system states to abstract actions; 
2) Learn to interact with an unknown environment model; 
3) Control an agent according to a learned behavior. 
 We define an agent behavior as its responses to exter-
nal stimuli. An agent’s responses include actions carried 
out to modify the state of the surrounding world and ac-
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tions that modify its own state (i.e. deciding to remember 
or forget an element of the world). 
 The simulation module provides the following func-
tions to the system: 1) Acts as a state transition function; 2) 
Process and formats simulation data for the decision mod-
ule (RL); 3) Executes action planned by the decision mod-
ule; 4) Acts as a realistic model of the spatial environment. 
 Hence, the simulation allows RL to process high-level 
plans. In the proposed solution, plans are in turn expanded 
to low level navigation actions, being processed by the 
simulation engine. Abstraction of the simulation’s spatial 
dimension through simple state  and action representation 
greatly simplifies the learning process of high level plans. 

4 THE COLMAS ARCHITECTURE 

COLMAS (COordination Learning in Multi-Agent Sys-
tem) is a hybrid system which couples a reinforcement 
learning  approach (namely Q-Learning) for planning, with 
geospatial reasoning (using an agent-based geosimulator) 
for plan execution in order to enable a team of UAVs to 
autonomously navigate in a VGE and to coordinate their 
actions. Each agent is performing a plan (likely to evolve 
toward a stable  patrolling pattern after a number of simu-
lation steps). Key problem and environment characteristics 
include:  
• Decentralization - the system is inherently decentral-

ized, meaning that each agent only observes part of the 
global state of the system (local observation) and 
makes its own decision. Team reward is considered. 

• Autonomy - the agents make their own individual de-
cisions based on the available information, requiring a 
local decision process for each agent. 

• Uncertainty - the system must be able to represent un-
certainty in the system and also in each agent’s behav-
ior. Uncertainty in the environment will come from the 
simulation and from the decentralized multi-agent ap-
proach (each agent doesn’t know which actions other 
agents’ intent or current action being executed). 

• Communication and Coordination - agents may not 
communicate explicitly and manage interdependency 
constraints. A supervisory central node mediates 
global (team) reward information-sharing. 

• Spatial environment – the problem includes a dynamic 
spatial environment managed through a geosimulator. 
 

 Spatial information is recorded in a raster mode which 
enables agents to access the information contained in a 
number of bitmaps which encode different kinds of infor-
mation about the terrain characteristics and the objects con-
tained in the VGE. The HeightMap is a 2D matrix (or grid) 
which represents the space of the VGE. It is generated 
from data contained in a digital elevation model and differ-
ent layers of the GIS data base. Every cell contains a single 
value indicating the height of the corresponding point rela-

tive to the point of lowest elevation in the VGE. The Ob-
stacleMap is a 2D matrix based on a bitmap representation 
generated from GIS data in which each obstacle is identi-
fied by a set of cells associated with the same color charac-
terizing the nature of the obstacle.  
 Each agent has a perception capability which enables 
it to collect data about its surroundings in the VGE. The 
agent also reasons on the collected data and chooses its 
next action (or goal) accordingly. Hence, the agent auto-
nomously navigates and avoids collisions and obstacles in 
the VGE. A full radial perception capability enables an 
agent to perceive the three closest visible targets in the 
VGE in its parameterized range of perception. The naviga-
tion algorithm processes the perceived information and en-
ables each agent to choose its next move (in the direction 
of the chosen target) while taking into account obstacles. 
For more details on perception and navigation algorithms 
see (Perron and Moulin 2004). 

 

Figure 3: Specifying a scenario 
 

Two navigation algorithms are used for plan execution: 
• Simple obstacle avoidance: This algorithm tries to 

avoid no-flight zones in an efficient way (reactive 
algorithm). However, it may happen, with a particu-
lar no-flight zones layout, that the algorithm is un-
able to find a valid path between two targets (hence, 
the second algorithm). 

• A* planner: This algorithm plans a path between 
two targets and finds an optimal solution to avoid 
obstacles. It is computationally more expensive.  

 A Q-learning algorithm inspired from (Watkins, 1989) 
and (Schneider et al. 1999) is used for planning (target visit 
selection). It  learns an optimal policy through a  function 
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Q(s,a) describing the quality of each state-action pairs in 
order to prescribe behavior (what action a to select in a 
state s) to maximize team expected cumulative rewards 
(objective function). Agent Q(s,a) update occurs over a 
state transition (s,s’) and is based on reward r obtained by 
executing action a. A separate control policy is used for 
solution space exploration to update the current optimal 
policy being learned through the Q values. The resulting 
learned policy consists in selecting the action a maximiz-
ing Q over a state s. Using state space abstraction, value 
function approximators and limited action sets to reduce 
computational complexity and focus on a given class of so-
lution, the COLMAS learning process iterates as follows:  
 

1. The agent’s perception module processes envi-
ronment sensor data to extract the current local 
state s, then required to run the Reinforcement 
Learning algorithm. In the patrolling task, the 
needed information involves to the 5 next poten-
tial targets to visit, coupled with the last visited 
target stored in the agent’s MemoryState. 

2. The agent’s exploration (control)  policy (e.g. 
SoftMax (Sutton 2004)) selects next action a to 
execute (based on current Q values information). 

3. The action a (high-level plan) is then executed 
(low-level navigation/plan execution) by the geo-
simulator operating state transition (s,s’). Agent 
reward r can then be  computed via a central node. 

4. The learner’s generic RL algorithm updates Q: 
(a) Get current state s 
(b) Get the last executed action  a  
(c) Perceive next state s’ 
(d) Get reward r = RewardFunction(s, s’, a) 

r )/)(( TttI kk Δ−∝  over kth transition (s,s’) 

(e) Update Q values. Q = Q-Function(s, s’, a, r):  
))','((),()(),(

'
asQMaxrasQasQ

a
γαα ++−← 1  

 
In the COLMAS system, the simulation is running con-

tinuously, progressively learning and improving solution 
policy. An interesting characteristic of the approach is a 
technique to detect and extract patterns from the last solu-
tion computed by the simulator. Considering that a greedy 
exploration policy is used in the RL, the system searches 
for a stable pattern executed by each UAV which mini-
mizes idleness. Navigation patterns are identified using a 
history of the 100 latest executed actions for each UAV. A 
pattern is defined by a recurrent trajectory.  

5 SCENARIOS AND PROBLEM SPECIFICATION 

Using COLMAS, a user specifies a situation to be solved 
as a scenario which contains the following objects as pic-
tured in Figure 3:   
• Geographic environment: a map of the area of interest.  

• Targets: these objects that are visited by UAVs are rep-
resented by a colored circle positioned in the geographic 
environment. 

• UAV: patrolling agent represented by a colored aircraft 
positioned in the geographic environment. 

• No flight zone: area characterized by UAV flight inter-
diction (red circle). The UAV navigation algorithm im-
poses travel constraints on these areas which are consid-
ered as physical obstacles in the environment.  

• Danger zones: A danger zone (yellow circle) is only in-
formative and represents potential threats (as opposed to 
pure physical obstacles) to be avoided by UAVs. These 
zones are used by a metric in the simulation (danger 
zone metric) to compute how many times UAVs cross 
the danger zone for each solution.  

 
In addition to scenario elements, the user can specify 

specific constraints. As illustrated in Figure 4, an editor al-
lows the user to visually specify three types of constraints 
for each UAV, namely: 
• Desired paths: represented by a colored arrow (a differ-

ent color is used for each UAV) starting from an initial 
target to a final target. The user can specify a set of de-
sired paths for each UAV in the scenario. 

• No-flight paths: represented by a black arrow starting 
from an initial target to a final target. The user can spec-
ify a set of no-flight paths for each UAV in the scenario. 

• No-flight targets: represented by a black target and spe-
cifies a target that must not be visited by a particular 
UAV. The user can specify a set of no-flight targets for 
each UAV in the scenario. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Specifying constraints 
 

1263



 Perron, Hogan, Moulin, Berger and Bélanger 
 

Once the problem and constraints are defined, COLMAS 
computes a solution to the patrolling problem as shown in 
Figure 5. When a solution is completed, it is evaluated by 
the evaluation module. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: A solution with UAV patrolling patterns 
 
The learning module uses the evaluation module as well 

as a background process to find solutions (using it as the 
reward function). The resulting solutions are then pre-
sented to the user as cyclic patterns using different colors, 
one for each UAV (Figure 5).  

6 EXPERIMENTS AND RESULTS 

Experiments have been carried out to test and illustrate the 
system capacity in converging toward good solutions (pa-
trolling patterns)  over various combinations of UAVs and 
numbers of targets. 
Here is the experimentation methodology that we used: 

• A scenario and a problem are specified (positions 
and number of targets, positions and number of 
obstacles in the environment, the number of 
UAVs used for the experiment) 

• Initial parameters are set for the COLMAS sys-
tem: 
(a) Input state is the last visited target. 
(b) The exploration policy used is the Greedy 

policy. 
(c) The available agent action set corresponds to 

respective moves  toward the 3 nearest tar-
gets. 

(d) Reward is the average global idleness com-
puted over 40 simulation cycles or alterna-
tively weighted idleness over time intervals 
separating two successive visits (events). 

(e) Each UAV uses a radial perception which 
gives a complete perception of the environ-
ment in the given radius (1km) 

(f) Each UAV uses the obstacle avoidance navi-
gation algorithm 

• The COLMAS system is started and runs until it 
converges. 

• The patterns are extracted and evaluated 
 

Figure 6 presents the two patrolling patterns that one 
UAV has found to visit 4 targets (Experiment 1) as well as 
the pattern found by 2 UAVs patrolling 4 targets (Experi-
ment 2), and how the patterns are modified when an obsta-
cle is dynamically introduced in the environment (Experi-
ment 3). This experiment shows how the UAVs are able to 
dynamically adapt the patrolling patterns to avoid obstacle 
and maximize the average global idleness.   

 
Figure 6: Experiments 1, 2 and 3 

 
Figure 7 presents the pattern found by 3 UAVs patrolling 

10 targets (Experiment 4), and the pattern found by 4 
UAVs patrolling 16 targets (Experiment 5). 

Further experiments are needed, but the results obtained 
so far look very promising. We observed that in Experi-
ment 4, agents are able to find patterns which consider ob-

2..  
2 patterns found by 2 UAVs for 4 targets 

1. .  
2 patterns found by one UAV for 4 targets

3. .  
2 patterns found by 2 UAV for 4 targets and 

one obstacle (black box) 
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stacles in the spatial environment layout. In Experiment 5, 
targets are located in the environment in a particular way to 
form clusters. The experiment shows that agents are able to 
find a good solution based on the geographic constraints 
formed by the cluster.  

Agents initial positions have no impact on solution qual-
ity and convergence rate. This may be explained by the 
fact that it takes only a few iterations to the RL algorithm 
to cover all the targets when the exploration begins. 

 

Figure 7: Experiments 4 and 5 

7 DISCUSSION  

In order to provide further insight on the value of our hy-
brid procedure, early results comparing  performance with 
alternate techniques is discussed.  Accordingly, limited 

scenarios involving static and dynamic (moving) targets 
have been considered. for the following algorithms, name-
ly,  the TSP-based procedure proposed by (Chevaleyre, 
2004), a nearest neighbor strategy in which an agent patrol-
ling policy consists in visiting the closest target, and a RL-
based suite of  methods (Schneider et al. 1999) incorpo-
rated to the COLMAS learning module for exploration 
purposes. It is worth mentioning that COLMAS’ current 
implementation provided promising results, in terms of av-
erage global idleness of targets, providing the best solution 
for the 25 targets and 5 UAVs scenario, while showing 
competitive results to the best computed solution in the 
remaining four scenarios.  

Although additional experiments and related improve-
ments to the COLMAS System might be further required, 
computational results conducted so far clearly show that an 
hybrid approach combining reinforcement learning and 
multi-agent geosimulation can efficiently solve the multi-
agent patrolling problem in virtual geo-referenced envi-
ronments involving moving targets and obstacles. This 
pushes a step further previous work relying on  graph-
based environment representation considering small num-
ber of fixed targets only.  

It is believed that multi-agent solution convergence rate  
might be slightly  improved using a biased policy exploit-
ing some prior heuristics knowledge. These heuristics 
could help agents to preferentially explore actions leading 
to good patrolling patterns. Accordingly, a naïve distance-
based heuristic has already been used in which the set of 
available actions only considers a subset of target visits, 
namely the closest ones to an agent. A more sophisticated  
heuristic might consist to select actions most likely to gen-
erate specific patrolling patterns (e.g. circle). 

The main strengths of the proposed approach can be 
summarized as follows: 
• Emergent behavior - agent patterns. Agents learn 

good patrolling solution patterns without prior knowl-
edge of the environment model. That means that low 
level algorithms responsible for step by step naviga-
tion might be changed depending on the application.  

• Abstract state space representation. The reduced state  
space resulting from state aggregation is  polynomial  
in terms of the number of agents and targets due to 
state approximation/abstraction. Accordingly, despite 
uncertainty on solution convergence, agents learn 
their patterns very quickly even when there is a 
change in target configuration. Only few  trials are 
needed to find new patterns. 

• Decentralized solution. Agents do not explicitly 
communicate with one another, they learn patterns 
from their local  perception. 

• Online patterns discovery. RL can adaptively finds 
new patterns online when the number of targets 
evolves dynamically. Shown solution convergence for 
reasonable/practical problem size. 

4. 
 

 
1 pattern found by 3 UAVs for 10 targets 

5. 
 

 
1 pattern found by 4 UAVs for 16 targets 
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• Adaptive method. Despite suboptimal emerging pat-
terns, computation is fast.  

• Realistic environment. Real-world problem can be 
captured using geosimulation. 

The current system weaknesses include: 
• Data translation. The designer needs to code format-

ting algorithms for data which are inputs and outputs 
for the RL algorithm 

• Predetermined behavior patterns. The solution cannot 
explicitly learn desirable patterns in advance; it must 
start from scratch with each target configuration 
change. 

• Credit assignment. Proper reward definition reflecting 
a meaningful team objective contribution when se-
lecting action a in state s, 

• Scaling - curse of dimensionality. The approach has 
difficulties scaling up due to large state spaces, and 
non-determinism associated with concurrent multiple 
agents’ policies learning. Hierarchical problem de-
composition and partitioning may nonetheless miti-
gate that problem. 

• Q-learning convergence. No known proof of Q-
learning convergence for our function approximation 
to the distributed decision patrolling problem investi-
gated. Multi-agent solution convergence rate may ul-
timately depend on multiple parameter settings for  
increasing problem complexity. 

8 CONCLUSION 

A hybrid approach combining distributed reinforcement 
learning and geosimulation to handle target allocation 
(high-level planning) and navigation/routing (low-level 
planning) tasks for the dynamic distributed patrolling prob-
lem has been proposed. The hierarchical decomposition 
scheme can be characterized as follows. The distributed 
reinforcement learning approach uses an abstract problem 
state  representation in computing an approximate solution 
to the learning problem, significantly reducing computa-
tional complexity. It promotes emergent behavior through 
suitable tradeoffs between solution space exploration and 
exploitation. Local state observability and action execution 
are modeled through geosimulation allowing to capture re-
alistic environments using agents' visibility models and  
kinematic/collision avoidance/geographical constraints. A 
computational experiment has shown convergence of the 
proposed hybrid procedure for real-world problem in-
stances providing emergent patrolling behavior patterns.  

As an extension to this work, a separate effort aimed at 
capturing user’s preferences inspired from our hybrid 
framework has been initiated. The proposed approach  in-
tegrates user’s preferences into the reinforcement learning 
solving process proposed in the COLMAS system. User’s 
feedback allows the generation of realistic solutions for the 
patrolling problem. The extended approach enables the 
system to extract user’s preferences and to calibrate the 

system. contributing to significantly reduce computational 
complexity, while providing additional guidance in explor-
ing the solution space. The proposed approach exploits an  
inverse reinforcement learning technique which only relies 
on a single expert solution to automatically extract coeffi-
cients of relative importance which characterize user’s pre-
ferences. More details on early results may be found in 
(Bélanger et al. 2008). 

ACKNOWLEDGEMENTS 

This research has been funded by the Defence Research 
and Development Canada – Valcartier (DRDC Valcartier, 
Quebec, Canada).         

REFERENCES 

Almeida, G., G. Ramalho, H. Santana, P. Tedesco, T. 
Menezes, V. Corruble, and Y. Chevaleyre. 2004. Re-
cent advances on multi-Agent patrolling. Ed. A.L.C. 
Bazzan and S. Labidi, SBIA 2004, Springer Verlag 
Lecture Notes in AI 3171, 474–483. 

Bélanger, M., J. Berger, J. Perron, J. Hogan, B. Moulin. 
2008. Exploitation of user’s preferences in reinforce-
ment learning decision support systems Multidiscipli-
nary Workshop on Advances in Preference Handling 
(W9). Twenty-Third AAAI Conference on Artificial 
Intelligence (AAAI-08). Chicago,  2008. 

Benenson, I., and P. M. Torrens. 2004. Geosimulation: 
Automata-Based Modeling of Urban Phenomena. 
London: John Wiley & Sons. 

Charrier, R., C. Bourjot and F. Charpillet. 2007. In Pro-
ceedings of the IEEE International Conference on 
Self-Adaptive and Self-Organizing Systems - SASO 
2007, 32-44. IEEE.  

Chevaleyre, Y. 2004. Theoretical analysis of the Multi-
agent patrolling problem. In Proceedings of the 
IEEE/WIC/ACM International Conference on Intelli-
gent Agent Technology, 302-308. Beijing, China. 

Lauri, F., and F. Charpillet. 2006. Ant Colony Optimiza-
tion applied to the Multi-Agent Patrolling Problem, In 
the Swarm Intelligence Symposium, Indianapolis, Indi-
ana, USA, IEEE. 

Machado, A., G. Ramalho, J-D. Zucker, A. Drogoul. 2002. 
An empirical analysis of alternative Architectures. In 
Proceedings of the 3rd International Workshop on Mul-
ti-Agent Based Simulation, 155-170. 

Moulin, B, W. Chaker, J. Perron, P. Pelletier and J. Hogan. 
2003. The MAGS Project: Multi-agent geosimulation 
and crowd simulation. In Kuhn, Worboys and Timpf  
eds., Spatial Information Theory, Springer Verlag 
LNCS 2825, 151-168. 

Nowak, D.J., I. Price and G. B. Lamont. 2007. In Proceed-
ing of the 2007 Winter Simulation Conference, ed. 
S.G. Henderson S. G. Henderson, B. Biller, M.-H 
Hsieh, J. Shortle, J. D. Tew, and R. R. Barton, 1315- 

1266



 Perron, Hogan, Moulin, Berger and Bélanger 
 
1323. New Jersey: Institute of Electrical and Electron-
ics Engineers, Inc. 

Perron, J., and J. Hogan. 2006. COLMAS Project - Tech-
nical survey and COLMAS architecture. Research Re-
port CR 2006-601, DRDC Valcartier. 

Perron, and B. Moulin. 2004. Un modèle de mémoire dans 
un système multi-agent de géo-simulation, Revue 
d’Intelligence Artificielle, 18(5-6) : 647-678. 

Santana, H., G. Ramalho, V. Corruble, and B. Ratitch. 
2004. Multi-agent patrolling with reinforcement learn-
ing. In Proc. of the Third International Conference on 
Autonomous Agents and Multi-agent Systems, 1122-
1129. 

Schneider, J., W.-K. Wong, A. Moore, and M. Riedmiller. 
1999. Distributed value functions. In I. Bratko and S. 
Dzeroski, editors, Proceedings of the Sixteenth Inter-
national Conference on Machine Learning, 371-378. 
San Francisco, CA. 

Sutton, R., and A. Barto. 2004. Reinforcement Learning: 
An Introduction. The MIT press. 

Watkins, C. J. C. H. 1989. Learning from Delayed Re-
wards. PhD thesis. Cambridge University, Cambridge, 
England. 

AUTHOR BIOGRAPHIES 

JIMMY PERRON is a scientist with the research depart-
ment of NSim Technology. He received his BS and MS 
degrees in computer science from Laval University, Qué-
bec, Canada. His research interests include artificial intel-
ligence, multi-agent system and geosimulation applied in 
the field of decision support. jimmy.perron@nsimtech.com 

 
JIMMY HOGAN is a scientist with the research depart-
ment of NSim Technology. He received his BS degree in 
computer engineering and and MBA degree from Laval 
University, Québec, Canada. His research interests include 
artificial intelligence and simulation to help decision sup-
port system. jimmy.hogan@nsimtech.com 

BERNARD MOULIN is a full professor at Laval Univer-
sity, teaching in the Computer Science and Software Engi-
neering Department. He is also a member of the Research 
Center in Geomatics at Laval University and an active re-
searcher of GEOIDE, the Canadian Network of Centers of 
Excellence in Geomatics. He leads several research pro-
jects supported by different Canadian institutions (Geoide, 
NSERC, FQRNT) in various fields: Multi-agent geosimu-
lation, Design methods for multiagent systems and soft-
ware-agent environments; representation of temporal and 
spatial knowledge in discourse; modeling and simulation 
of conversations between artificial agents; modeling and 
design approaches for knowledge-based systems and mul-
tiagent systems, as well as several projects at the intersec-

tion of geomatics and artificial intelligence. Ber-
nard.moulin@ift.ulaval.ca 

JEAN BERGER is a defense scientist with the Decision 
Support Systems Section of Defense Research and Devel-
opment Canada - Valcartier, working in the field of infor-
mation technology. He received BS and MS degrees in en-
gineering physics from Ecole Polytechnique de Montréal, 
Canada. His research interests include artificial intelligence 
and operations research applied to intelligent control, simu-
lation, planning, routing and scheduling problems.  
jean.berger@drdc-rddc.gc.ca 

MICHELINE BÉLANGER is a defence scientist with 
Defence R&D Canada – Valcartier since 1990. As a mem-
ber of the Decision Support Systems Section, she is inves-
tigating artificial intelligence and multicriteria decision aid 
concepts to develop decision support tools for command 
and control applications. Her current research interest is 
the integration of feedback approaches into decision sup-
port systems. She received a master's degree in computer 
science in 1990 from Université de Montréal and a bache-
lor's degree in mathematics and computer science in 1988 
from Université du Québec à Rimouski. micheline. 
belanger@drdc-rddc.gc.ca 

 

 

1267



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.7
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice




