
Research and Analysis of Simulation-based Networks through Multi-Objective Visualization1

J. Mark Belue
Stuart H. Kurkowski

Scott R. Graham
Kenneth M. Hopkinson

Ryan W. Thomas
Joshua W. Abernathy

Department of Electrical and Computer Engineering
Air Force Institute of Technology 2950 Hobson Way

Wright-Patterson AFB, OH 45433, U.S.A.

ABSTRACT

Visualization of individual network events is a crucial part
of testing new network designs and analyzing network per-
formance and efficiency. This research designed and de-
veloped a framework for visualizing complex military and
non-military wired and wireless networks. Our framework
provides a robust network simulator trace file parser, mul-
tiple network visualization layouts–including user-defined
layouts, and precise visualization controls. The parser ar-
chitecture is capable of accepting trace files from different
network simulators and provides one common visualization
environment to study network scenarios run on different sim-
ulators. The many dynamic multi-objective network views
add to the analyst’s suite of tools available for analyzing
networks. Analysts can toggle between the different views
to provide even greater analysis capability. We describe our
methodologies for the design and provide example analysis
scenarios. Our framework will allow researchers to advance
the state of network simulation-based analysis.

1 INTRODUCTION

The World Wide Web enables people from all over the
world to view web pages filled with a wide range of con-
tent with high availability and low delay. The phenomenal
and seemingly ever-present capability, built upon the fixed
infrastructure of the Internet, has fostered tremendous in-
novation in the way business is conducted. A side effect
is that it has created a voracious human appetite for data
and connectivity and impatience with systems which fail to
provide it. A natural result of this capability is that military
leaders desire the equivalent capability for military opera-

tions. Indeed, Net-Centric Warfare is repeatedly touted as
key to continuing US military superiority.

For military networks, mobility exists not just at the
edge of the network, but at the core, where aircraft, ships,
and trucks would be the equivalent of mobile cell-towers.
This presents many significant problems, from a mixture
of wired and wireless links, to a majority of wireless links,
to dynamic topologies—each of which causes significant
disruptions in connectivity. The forward or deployed military
network is a harsh environment. While messages are rarely
corrupted in wires and fiber optic cables, bandwidth can
be limited; wireless communications must employ a vast
array of error correcting schemes for successful connections.
Additionally, as mobile nodes move around, the wireless
channel changes frequently. Nodes may move in and out
of range, resulting in persistently intermittent connections.
Dynamic and adaptive protocols, devices, and operational
strategies must be researched and analyzed.

Research to address these areas is done primarily with
simulation. Using simulation, network architects can de-
sign a network inside a network simulator and then analyze
through summary statistics, how the network will perform
under specific scenarios. Visualization of individual net-
work events is a crucial part of testing new network designs
and analyzing network efficiency. Visualization quickly re-
veals sources of network inefficiencies such as: queuing de-
lays, dropped packets, network congestion, and insufficient
bandwidth. Additionally, network visualizations provide
protocol developers a powerful method to quickly evaluate
their protocols by visually analyzing network packet traffic.

Our research provides a visualization framework, that
enables researchers to render multiple layouts of the network
events and activities highlighting different aspects of their

1216 978-1-4244-2708-6/08/$25.00 ©2008 IEEE

Proceedings of the 2008 Winter Simulation Conference
S. J. Mason, R. R. Hill, L. Mönch, O. Rose, T. Jefferson, J. W. Fowler eds.

Belue, Kurkowski, Graham, Hopkinson, Thomas and Abernathy

scenarios. We provide at least three major contributions
with this new framework. First, a trace file parsing archi-
tecture that is easily extensible to include traces in numerous
formats. We have currently tested it on NS-2 and OPNET
simulation trace files. Second, a multi-objective network
topology visualization layout that can be easily extended to
highlight specific user network behavior interests. Finally,
an analysis-based user interface to control the visualizations.

Our effort seeks to advance network analysis and re-
search with a framework designed to allow visualization
customization for network topology and network events.
Our toolkit is currently being used for Air Force network
planning, design, and analysis.

This paper is made up of the following areas. We will
discuss other network visualizations and toolkits in Sec-
tion 2. In Sections 3 we discuss our design methodology
and techniques. In Section 4 we detail our multi-objective
dynamic layouts. Then in Section 5 we present two net-
work simulator scenarios and a validation to show how
multi-objective layouts increases researcher awareness and
understanding. Finally Section 6 provides some conclusions
and future work.

2 NETWORK SIMULATION & VISUALIZATION

Simulating network events through network simulation is a
well established method used in network research endeavors
to understand and test network events, network traffic and
protocols. According to (Kurkowski, Camp, and Colagrosso
2005a) over 75.5% of mobile ad hoc Network research is
done with simulation. In addition to network event sim-
ulations network event visualizations provide insight and
understanding of simulated network events. Combining sim-
ulation with visualization provides an effective and efficient
method for network research and analysis.

The existence of several different visualizers built from
the ground up for each simulator raises the questions: Can a
single network visualization framework be created to effec-
tively visualize both wired and wireless network simulator
scenarios? What about network scenarios created in different
simulators (NS-2, OPNET, etc.)? This framework combines
network simulator trace data with a well-established visual-
ization toolkit to create an efficient and robust framework.
This new visualization framework accurately animates net-
work events contained in a simulation trace file.

2.1 Network Simulator Visualizations

A short review of existing network simulator visualizers
motivates the creation of a new visualization framework.
We reviewed the Network Animator (Nam) (Estrin et al.
2000), interactive NS-2 protocol and environment confir-
mation tool (iNSpect) (Kurkowski, Camp, and Colagrosso
2005b), Georgia Tech Network Simulator (GTNets) (Geor-
gia Institute of Technology 2008) and the Optimized Net-

Figure 1: Nam visualization showing node broadcast rings.

work Evaluation Tools (OPNET) (OPNET Tech 2008). The
strengths and weaknesses of these visualizers provided the
basics requirements for the development of a new network
visualization framework.

When NS-2 executes a network scenario it produces a
trace file, containing the timed stamp network events that
occurred during the scenario. The general practice among
researchers is to use the trace file to calculate summary
statistics and scenario averages. Both Nam and iNSpect are
network visualizers that playback NS-2 trace files. Nam
provides packet-level animation, protocol graphs, traditional
time-event plots of protocol actions and scenario editing
capabilities (Estrin et al. 2000). Additionally, Nam allows
user interaction with the simulator through the scenario
input facility, but is limited to setting up network scenarios
prior to execution. The scenario input facility uses traditional
drawing approaches to add nodes, links, and protocol agents
(Estrin et al. 2000).

Originally built to support wired network visualization
Nam has limited wireless network animation capabilities.
Nam visualizes wireless traffic as broadcast rings moving
outward originating from the center of wireless nodes (see
Figure 1). The rings make wireless traffic difficult to track
during a network scenario.

The iNSpect program visualizes wireless network events
such as packet hops, wireless node links, and packet delivery
success (Kurkowski, Camp, and Colagrosso 2005b). The
iNSpect program uses colored arrows to better highlight
wireless routes and eliminate confusion, but iNSpect only
visualizes wireless traffic. These drawbacks of Nam and the
iNSpect program motivate the need for a new and robust
network visualization for both wired and wireless networks.

Unlike Nam and iNSpect, GTNets combines a full-
featured network simulation environment with graphical
viewing of the simulation. The network simulation suite
shows the network topology along with network traffic.
GTNets also provides fine-grain control mechanisms, but

1217

Belue, Kurkowski, Graham, Hopkinson, Thomas and Abernathy

the visualizer is tightly coupled to the simulator as the means
of running the simulation (Georgia Institute of Technology
2008). As a result, the visualizer cannot be separated from
the simulator nor can it work with other simulators’ outputs.

Like GTNets, OPNET (OPNET Tech 2008) combines a
network event simulator with a network event visualization
for network packet events and node movement. The visual-
ization includes node broadcast rings, node movements, and
animated packets moving across wired and wireless links.
Although OPNET is a powerful network simulator suite it’s
proprietary implementation is significantly difficult to alter.
Like GTNets, the visualizer cannot be separated from the
simulator.

Drawing on the successes and shortcomings of NAM,
iNSpect, GTNets, and OPNET we developed a new net-
work visualization framework that visualizes both wired
and wireless network events including: traditional packet
animation across wired and wireless links, queue levels at
each node, dropped packets, node movement, and playback
controls. Additionally, the framework will run independent
of a network simulator and handles multiple trace file for-
mats. By visualizing both wired and wireless networks this
framework provides a single source tool that can be used
to research and analyze network simulation scenarios.

2.2 Visualization Toolkit

The open source prefuse library is an extensible software
toolkit for helping software developers create interactive
information visualization applications using the Java pro-
gramming language. The prefuse library simplifies the
processes of data handling, representation, and mapping to
on-screen displays as well as crafting direct manipulation
interactions with the visualization (Heer 2008).

The prefuse toolkit provides many visualization tools
that are integrated into our framework design. Using the
prefuse toolkit for network visualization provides features
such as panning, zooming, and layout control of visualization
objects. Additionally, integration of these features into our
framework facilitates effective visualization development
and lead directly to our layout aided analysis capabilities.

The prefuse library has four parts to its architecture:
data, filtering, rendering and views, and interaction. The
prefuse data and filtering is accomplished through a trace
file parser, which parses data into the prefuse visual forms.
The prefuse rendering and view handles the animation of
the network events.

3 OUR FRAMEWORK DESIGN

Behind the visualizations, the three major design challenges
for this framework were: network simulator trace file pars-
ing, wired and wireless network event animation, and analyst
interaction.

3.1 Network Trace File Parser

The network visualization framework requires a trace file
produced by the network simulator to visualize network
events. Because NS-2 directly produces trace files with the
needed network event information this research started with
parsing NS-2 trace files.

Figure 2: Parser object design.

The polymorphic parser design creates one consoli-
dated location for specifying parser criteria, making pars-
ing changes simple and straightforward (see Figure 2). In
addition to the ParserFactory the concrete products
are limited to only node, edge, and packet parser objects.
Finally, the Parser abstract class handles updates to the vi-
sualization through the node, edge, and packet parser
objects. This design establishes Parser as the central
manager for updates to different objects held in the prefuse
architecture. We show the design’s extensibility with a
validation using OPNET in subsection 5.3.

3.2 Network Event Animation

Our visualization framework handles the control and
processing required to maintain accurate scenario play-
back and analysis. The framework does this using
a netviz animation thread to parse the trace file
into the Visualization object and update the lay-
out of the VisualItem objects. Meanwhile the
netviz simulationClock keeps track of the virtual
clock in the visualization. This clock is displayed on screen
during the visualization and is synchronized with network
events and framework calculations discussed below (i.e.,
node movement, etc.). Our framework implementation dis-
plays and animates prefuse VisualItem data types to
visualize both wired and wireless networks in the same
framework, overcoming one of the limitations Nam and
iNSpect. Figure 3 shows the visualization interface, with a
10-node military scenario.

1218

Belue, Kurkowski, Graham, Hopkinson, Thomas and Abernathy

Figure 3: Screen shot showing fighter aircraft, an unmanned aerial vehicle, ground station, satellite, and a ship.

To provide an accurate interactive research and analy-
sis visualizer for network simulation, we need to represent
numerous elements of a simulated network scenario. These
elements include wired and wireless nodes, their movement,
and other characteristics (i.e., buffers); both wired and wire-
less links between nodes; and packet animation to include
queues and transmission. Additionally, the analyst needs to
interact with each of these various elements.

3.2.1 Wired and Wireless Nodes

Nodes and their depiction are a key aspect of network visu-
alization. In our framework researchers can use graphical
shapes as well as images to represent nodes. The default is a
circular node. Images, however, provide greater context and
awareness for research and analysis as well as presentation.

Increased use of mobile nodes in networks warrant
the need to accurately show mobile node movement. Our
framework uses the node movement information given in
the trace file using the defined tags ‘-u’ for x-coordinate
velocity, ‘-v’ for y-coordinate velocity, ‘-T’ for duration
of movement (Fall and Varadhan 2002). These lines only
appear when movement changes occur for each node, so our
visualization framework must calculate these node move-
ments, corresponding to the x and y velocity and duration.
Movements must be scaled to accommodated zooming, pan-
ning, as well as the playback speed selected by the analyst.

Another characteristic of nodes in a network is their
buffers. Our framework calculates buffer levels and displays
that graphically for each node (see Figure 3). Additionally,
as packets are dropped from the queue, our framework
displays the dropping packets.

The interaction for a node includes focus (magnification
of the shape or image) when the mouse is moved over the
node. A node can also be selected, displaying amplifying
information in the corner of the display. This information
currently includes statistics for packets sent, received, and
dropped, node position, velocity, and image name (see the
upper left corner of Figure 3).

3.2.2 Network Links

Communication networks are formed based on links between
nodes. For wired and directional antenna-based wireless
networks this requires the display of links between network
nodes. Graphically these links are shown as lines on the
display. Our framework creates the lines based on trace
file information. However, as link status changes and nodes
move, the rendering of the link lines must be maintained.
Our framework calculates the line placement to match the
location of the nodes in the renderer’s coordinate system.

Visualization of omnidirectional wireless links are dif-
ferent from the wired links, because they are not explicitly
listed in the trace file. Wireless packet transmissions (from
nodes with omnidirectional antennas) are not constrained
to a graph-based connection. Wireless packets are broad-
cast and can be received by many different nodes. Nodes
that receive the broadcast can ignore it, process the packet,
or relay the packet to surrounding nodes. Visualizations
of transmission energy rings disseminating from a node,
although realistic, quickly become confusing and do not
highlight a packet’s route from source to destination (see
Figure 1). Additionally, the nature of wireless broadcasts
does not allow a packet’s path to the destination to be known
at the time of initial packet broadcast from the trace file. A

1219

Belue, Kurkowski, Graham, Hopkinson, Thomas and Abernathy

wireless link is not established until the packet is received
at a node. At this point the link can be rendered and is
very useful in protocol route tracing (Kurkowski, Camp,
and Colagrosso 2005b). However, it must be determined
on a per packet basis, see subsubsection 3.2.3.

Like nodes, links have user interactions as well. An
analyst can select a link and get amplifying information
displayed about the link, such as bandwidth, etc.

3.2.3 Packet Transmission

In our framework packets are displayed on the links as
they are transmitted between nodes. The packets are drawn
proportional to their size and the bandwidth of the link.
The packet timing is also accurate from sender to receiver.
To do this the framework calculates the distance and timing
to get accurate scaling. Additionally, our framework tracks
the packets to color code them based on packet flows. This
tracking continues from source to destination and all nodes
and queues in between. This explains the multi-colored
packet buffers in some of the figures in this paper.

(a) Wireless packet events queue, dequeue, and send where
the -d tag does NOT indicate the packet’s final destination.

(b) Packet received at node two, then received at node three
without wireless broadcast.

Figure 4: Wireless traces of four unique packetIDs.

However, rendering these packets is not a trivial reading
of the trace file. A trace file send event indicates the node and
the time a packet is sent. For linked nodes, the packet can
be sent and displayed on the link. However, the information
needed to visualize wireless packets moving from node to
node is not contained in a single event trace. For example
broadcast events do not show the individual recipients, as
shown in Figure 4. Figure 4(a) shows a wireless event (‘h’ for
hop) from node two. The destination (‘-d’) is ‘-1’ meaning
no specific destination, but a broadcast. Therefore, a link
cannot be established at this point. Figure 4(b) illustrates
packet traffic moving from wired links to a wireless link.
The first receive (‘r’) clearly shows the source as one (‘-
s 1’) and the destination as two (‘-d 2’). However, the
second receive (‘r’) is at node three without a previous
send event. Because of the ambiguous nature of NS-2 trace
files for wireless packet events, our framework must pre-
processes trace file data by reading ahead. Reading ahead
enables events which create packet broadcasts to be linked

to a corresponding packet receive event. This allows us to
correctly render the packet trajectory and scale the packet
size, a key for accurate network analysis.

Like nodes and links, packets have user interactions as
well. An analyst can select a packet and get amplifying
information displayed about the packet identification number
and the flow, etc.

3.3 Discussion

The network visualization framework discussed above cre-
ates an accurate improved way to study wired and wireless
network nodes, links, and packet activity. Research on net-
work protocols and network design will be aided by the
ability to see wired and wireless network traffic and commu-
nicate with network simulators. Additionally, because this
framework is built on the prefuse visualization toolkit new
file parsing formats can be added to accommodate other sim-
ulators independently. The network visualization framework
provides new visualization capabilities and a solid basis for
future development, overcoming many limitations of Nam,
iNSpect, GTnets, and OPNET.

4 NETWORK DISPLAY METHODOLOGIES

The previous section detailed the nodes, links, packet ani-
mation, and interactions. Here we explore the visual layout
of the network entities. As networks get more complex,
the question needs to be asked, are there different ways to
visualize a network? We think there are and we discuss
physical as well as other graph-based layouts in this section.

4.1 Physical Network Layout

When implementing a network visualization it is usually a
mechanical concern when it comes to visualizing the network
topology. The obvious layout is a Cartesian coordinate-
based physical rendering. As a result, the framework merely
calculates the x,y, z plot and renders the entities. For our
physical representation of the network, we do just that. The
location of each node is provided in the trace file “node”
event lines as described previously. Our framework then
translates from the simulator’s x,y,z coordinate system to the
display’s x,y,z coordinate system. The translation maintains
proportionality and context. For example, if a wireless node
has a certain transmission range and is communicating with
a particular node at the edge of the range, that should be
displayed proportional to a communication activity of a node
inside that range. Our physical layout provides the researcher
precise user interface controls including: zooming, panning,
node highlighting, and visualization timing controls.

1220

Belue, Kurkowski, Graham, Hopkinson, Thomas and Abernathy

4.2 Graph-based Network Layout

Sometimes a physical layout does not provide sufficient
information about how the network is working or the network
protocol/problem being studied. Nodes can appear on top of
each other and packets can quickly become congested and
blur together. For these reasons, a physical network layout
is not always best for analyzing and observing network
events and a more flexible graph-based layout is needed.
This capability employed on a real network would greatly
increase network situational awareness.

Our framework provides the capability to easily alter
the visualized network layout to analyze different objectives
in a scenario. We currently have two categories of these
multi-objective dynamic displays. The first is a grouped
layout and the second is a force-directed layout.

4.2.1 Grouped Layout

The grouped layout releases the nodes from their physical
x,y,z coordinate-based locations and allows the nodes to
be grouped in virtual clusters. The default behavior of the
framework is to cluster nodes based on communication. So,
as a node exchanges packets with another node, the nodes
will be moved together based on links that exists between
the nodes. The results is these links or more specifically
characteristics of these links contribute to the rendered
visualization. The groups are established by identifying
the nodes that initiate activity and then determine the nodes
which are recipients of that activity. The cohesion of the
group is then applied to the nodes as gravity, so the nodes
move together smoothly.

4.2.2 Force-directed Layout

The prefuse library implements a force-directed visual item
that can allow nodes to be primarily free floating, but
constrained by gravitational forces. The prefuse library
uses the fourth-order Runge-Kutta integration algorithm
(Cartwright and Piro 1992) to calculate the forces of the
spring and drag coefficients as well as the spring length four
times per time step. The actual implementation in prefuse
uses the (Barnes and Hut 1986) method.

The force-directed capability can be applied to any
number of network characteristics. Characteristics applied
to the spring coefficients and length influence how attracted
the nodes are to each other in both a positive or negative
way. For example, if the spring coefficient was κs = Dete,
where κs is the spring coefficient and Dete is the end-to-
end delay, then the links with lower end-to-end delay have
less spring. As a result nodes that share lower end-to-end
delayed links are pulled closer together and nodes that share
higher end-to-end delayed links appear farther apart.

The drag coefficient effects the constraints on the overall
node movement. If the drag is low the nodes tend to

move constantly and spring each other around the display.
Adjustments to the drag and spring coefficients as well as
the average spring length have been made in the framework
to smooth out the movements.

4.3 Discussion

These dynamic views add to the analysts suite of tools
available for researching network performance. Addition-
ally, analysts can toggle between the physical and grouped
layout views to provide even greater analysis capability.
This multi-objective approach of the physical layout tog-
gled with the activity-grouped layout can quickly highlight
packet destinations and network activity, better than sum-
mary scenario statistics like average end-to-end delay, etc.

5 APPLICATION AND VALIDATION

In this section we contrast the physical network layout with
the grouped and force-directed layouts of real scenarios to
highlight the benefit of these dynamic layouts. We also
discuss a brief validation of our frameworks robust file
parser design, by added an OPNET parser capability.

5.1 Application I: Wireless Network Broadcast

Effectively visualizing network events requires the visual-
ization logic to create a picture where users can quickly
and accurately understand what is happening in the net-
work. Wireless networking is a difficult venue for network
analysis. As discussed earlier, wireless packets are often
broadcast to multiple nodes and without link lines high-
lighting a packet’s path it is difficult to know a packet’s
final destination. Tracing wireless packet routes becomes
even more difficult as more and more wireless nodes broad-
cast and the areas around nodes becomes more and more
congested with packet traffic.

Figure 5: 50 wireless nodes prior to any broadcasts.

1221

Belue, Kurkowski, Graham, Hopkinson, Thomas and Abernathy

Figure 6: Packet broadcast from node 1. The grouped layout
causes nodes receiving packets to move closer to node 1.

Our framework overcomes these challenges by using a
grouped layout. Using grouped layout a network of many
nodes will render groups based on node communication not
physical x, y, z location. Nodes that broadcast to one another
group together to make packet destinations obvious. For
example, Figure 5 shows 50 wireless nodes in the scenario-
based layout. If one of those nodes wants to broadcast a
packet this single send event can generate six receive events
at different nodes. In the physical layout packet animation
of small colored boxes ‘floating’ between nodes, although
accurate, can make analysis difficult, especially if the nodes
were far apart or packet traffic was high. Using the grouped
layout in Figure 6, the six receive events can be highlighted
rapidly, because the framework groups the nodes based on
network activity at the time of the event.

This interaction with multiple contexts and linked focus
can aid discovery of network conditions. Network anomalies
may become apparent such as: defective nodes,compromised
nodes, and nodes that are obstructed from sent packet trans-
missions. Ultimately providing explanations for particular
scenario performance observations.

5.2 Application II: Network Link Break

The force-direct graph layout defines network nodes that
repel one another and network links that pull nodes together.
In this example scenario, we have used current bandwidth
utilization as the spring coefficient. You can also get a
similar rendering by using link delay or some other link
characteristic. The physical layout of this example is shown
in Figure 3. In this example, the link between the Unmanned
Aerial Vehicle (UAV) and the uplink site (satellite dish
image) will go down. In a complex network, a link break
can be very difficult to detect visually. For example, if this
link went down in Figure 3 (bottom left-hand link), the
analyst would have to notice packets not flowing, which

might be impossible at worse or take a long time at best,
with a complex network. Figure 7 shows the same scenario,
with the view toggled to the force-directed graph layout.
In this case, the UAV, the uplink site and the satellite are
drawn closer together, based on current bandwidth available
on their links. They have large bandwidth utilization, so a
correspondingly large attraction between the nodes. Figure 8
shows the same scenario a little later in time right after the
link between the UAV and the uplink site went down. Notice,
the bandwidth between the nodes went to zero and so the
spring coefficient also went down and the nodes moved
significantly apart in a spring like motion. In Figure 8 the
UAV is now in the upper right-hand corner of the display.
Because the layout radically changed at the moment the
link went down, the analyst can quickly identify the change
and note the time of the event or even pause the playback.
From here the analyst can select the nodes and packets
or links to review amplifying information to research and
analyze the problem. With the rapid identification of the
event, the researcher can note the exact time. The analyst
can even restart the visualization at that time in a future
session, by using the framework’s “user-input time jump”
to move around in a long scenario. The analyst can also
toggle the view back to the physical layout, providing more
context to the situation.

5.3 Validation

The goals of this research were to develop a framework that
enables researchers to analyze complex dynamic networks
independent of a particular simulator. Secondly we wanted
to provide visualizations that further the research of complex
networks and aid in network analysis of simulated networks.
This section discusses the validation of these two goals.

5.3.1 Framework Validation

To validate the parser design, we used an OPNET toolkit
by (Coyne 2008) to generate an OPNET trace file. For
OPNET the TraceLine abstract class follows the frame-
work’s parsing criteria explained earlier. However, trace
tags used in the OPNET trace are different from those used
in the NS-2 parser. Despite these differences the framework
parser was easily adapted with minor extensions to parse
the OPNET trace file. With the extended parser, the data
was processed and displayed. The OPNET scenario was
validated against the OPNET visualizer to validate that it
displayed the scenario accurately.

As a result, we have now extended TraceLine for
two different network event line traces. NamLine extends
TraceLine to parse network event lines from NS-2 trace
files. OpNetLine extends TraceLine to parse network
events recorded from a scenario run in OPNET.

By using conditional logic based on the file type the
correct TraceLine subclass is instantiated and additional

1222

Belue, Kurkowski, Graham, Hopkinson, Thomas and Abernathy

Figure 7: Wired network topology–arrows point out network links that will go down

subclasses can be added later as necessary. Once the correct
TraceLine subclass is instantiated the developer can add
specific parsing logic as needed by the new subclass in
order to parse the simulator trace line.

5.3.2 General Visualization Validation

Visualizations, by their very nature, are difficult to test.
This research tested numerous visualization scenarios by
visual inspection. The testing was done by visualizing a
network scenario, or trace file, in Nam and comparing the
resultant visualization with the same trace file visualized
by this framework. The network scenario trace files used
during framework testing demonstrate important network
event visualization capabilities.

6 CONCLUSION

Our research studied several current network visualizers to
determine how their positive attributes could be incorpo-
rated into a more robust and effective network visualizer.
As a result we have created a network visualization frame-
work using the prefuse toolkit. Our framework provides a
single network visualizer that runs simulator independent.
It provides seamless wired and wireless visualization with
various layout options.

The dynamic multi-objective layouts provide an excel-
lent foundation for future research and collaboration into
other ways to visualize networks. The framework brings
network simulator research one step closer to comparing
executed network simulator scenarios in a common visu-

alization environment. A comparison that would provide
better understanding on how simulators differ and how those
differences can effect network event simulation. Addition-
ally, network simulator performance could be seamlessly
analyzed and compared from one simulator to another.

Future work will build upon the parser architecture
to handle different network trace formats. Additionally,
the flexible layout architecture will allow developers to
customize the visualization to commander preferences. The
framework provides network event visualization with the
flexibility needed to visualize today’s large and complex
military networks.

DISCLAIMER

The views expressed in this document are those of the
authors and do not reflect the official policy or position of
the United States Air Force, Department of Defense, or the
U.S. Government.

REFERENCES

Barnes, J., and P. Hut. 1986. A hierarchical O(N log N)
force calculation algorithm. Nature 324 (1): 446–449.

Cartwright, J., and O. Piro. 1992. The dynamics of Runge-
Kutta method. International Journal of Bifurcation and
Chaos 3 (2): 427–449.

Coyne, M. E. 2008, March. Hot swapping protocol imple-
mentations in the OPNET modeler development envi-
ronment. Master’s thesis, AFIT.

1223

Belue, Kurkowski, Graham, Hopkinson, Thomas and Abernathy

Figure 8: Altered network topology–arrow points to link that will go down and oval shows links that will go up

Estrin, D., M. Handley, J. Heidemann, S. McCanne, Y. Xu,
and H. Yu. 2000. Network visualization with Nam, the
VINT network animator. Computer 33 (11): 63–68.

Fall, K., and K. Varadhan. 2002. The ns manual.
Georgia Institute of Technology Feb. 5, 2008. GTNets.

www.ece.gatech.edu/research/labs/MANIACS/GTNetS/.
Heer, J. February 5, 2008.. prefuse. www.prefffuse.org/.
Kurkowski, S., T. Camp, and M. Colagrosso. 2005b. A

visualization and animation tool for ns-2 wireless sim-
ulations: iNSpect. Proceedings of the IEEE Interna-
tional Symposium on Modeling, Analysis, and Simu-
lation of Computer and Telecommunication Systems
(MASCOTS):503–506.

Kurkowski, S., T. Camp, and M. Colagrosso. October,
2005a. MANET simulation scenarios: The incredibles.
ACM Mobile Computing and Communications Review
(MC2R) 9 (4): 50–61.

OPNET Tech Feb 5, 2008. Opnet. www.OPNET.com/.

AUTHOR BIOGRAPHIES

J. MARK BELUE is a Master’s graduate of the Depart-
ment of Electrical and Computer Engineering at AFIT,
with a research focus in software engineering, and simu-
lation. His email address is <john.belue@afit.edu>.

STUART H. KURKOWSKI received his Ph.D. in
Mathematical and Computer Science from Colorado
School of Mines in 2006. He is currently an Assistant
Professor of Computer Science at AFIT specializing in
software engineering, visualization, and simulation. His

email address is <stuart.kurkowski@afit.edu>.

SCOTT R. GRAHAM received his Ph.D. in Electrical
Engineering from the University of Illinois in 2004. He is an
Assistant Professor of Computer Engineering at AFIT. His
interests lie in the areas of networking and control systems.
His email address is <scott.graham@afit.edu>.

KENNETH M. HOPKINSON received his Ph.D. in
Computer Science from Cornell University in 2004. He
is currently an Assistant Professor of Computer Science
at AFIT. His research interests include fault-tolerant and
distributed systems, networking, and simulation. His email
address is <kenneth.hopkinson@afit.edu>.

RYAN W. THOMAS received his Ph.D. in Computer
Engineering from Virginia Tech in 2007. He is cur-
rently an Assistant Professor of Computer Engineering
at AFIT specializing in cognitive networks and wire-
less communication systems. His email address is
<ryan.thomas@afit.edu>.

JOSHUA W. ABERNATHY is an undergraduate student
in the Department of Computer Science at Cedarville
University working as a research assistant at AFIT. His
email address is <josh.abernathy@afit.edu>.

1224

