Proceedings of the 2008 Winter Simulation Conference

S. J. Mason, R. R. Hill, L. Ménch, O. Rose, T. Jefferson, J. W. Fowler eds.

Service-Oriented-Architecture based Framework for Multi-User Virtual Environments

Xiaoyu Zhang and Denis Gracanin
Department of Computer Science
Virginia Tech
Blacksburg, VA 24060, USA

ABSTRACT

Service-Oriented Architecture (SOA) is an application
framework used for creating complex enterprise systems
by integrating distributed services. The SOA standards are
primarily focused on the service composability and data in-
teroperability. Because of the featured capabilities of SOA,
it is also used in distributed simulations. However, SOA
has its limitations in terms of the performance of real-time
message exchanging. In order to address the disadvan-
tages and improve the application performance, we propose
a framework that combines the streaming technology and
SOA. The proposed framework is used for constructing
multi-user Virtual Environment (VE) applications by inte-
grating the application content from distributed services.
The additional streaming channels applied to SOA enable
the services to actively propagate the real-time messages.
The VE applications constructed using the framework have
better performance. However, due to the distributed archi-
tecture of SOA and the heavy payload of message exchange
in the framework, the application performance needs to be
evaluated. We describe the metrics used to evaluate the
performance and present the evaluation results. Based on
the interaction latency we collected from the experiments,
we discuss the categories of applications that can fit well
in our framework.

1 INTRODUCTION

Internet based virtual world applications, such as Second
Life™ | have gained more and more popularity recently.
The massive multi-user virtual world applications are typical
of Distributed Virtual Environments (DVEs). The DVE ap-
plications provide computer simulated virtual worlds where
users gather together in a shared space and interact with
each other. The growing population of the application users
brings great challenges for the developers to expand the
content of the virtual world. Outsourcing the implemen-
tation via open application programming interfaces (APIs)

978-1-4244-2708-6/08/$25.00 ©2008 IEEE

1139

and integrating third party components into the application
have proven to be successful in popular web applications,
such as Facebook (Facebook 2008) and Second Life (Linden
Lab 2008).

Outsourcing the implementation of the application con-
tent encourages the participants’ creativity which leads to
more “attractive” applications. With provided development
toolkits and open APIs, the developers can implement and
upload their scripts to the application platform where the
application loads the scripts as components and runs them on
demand. Therefore, the seamless integration of third party
components is feasible. However, such approach lacks stan-
dardization which limits the reusability of the developed
components. Meanwhile, the cost of deploying the compo-
nents on the target platform limits the ability of the third
party developers to fully utilize and maintain their own
resources.

Applying Web Service technology to incorporating ser-
vices as components in the applications has been explored
in distributed simulations. The application components are
distributed services that maintain their own states and gener-
ate messages corresponding to the invocations. Integrating
services as application components is the feature of Service-
Oriented-Architecture (SOA).

SOA treats services as macro level components for the
constructed application (Papazoglou, Traverso, Dustdar, and
Leymann 2007). It expands the Web as the open platform
for application development and deployment. The service
integration and interoperation have been the major focuses
for distributed simulations and other SOA applications. SOA
has its advantage in terms of cross-platform integration and
open standards for interoperation. However, the processing
efficiency sets a big performance barrier for SOA because of
its distributed architecture and the XML-based messaging.
In the meantime, SOA treats most services as stateless
services. It is difficult for stateful services to push the
updates when their internal states have changed.

Our research is focused on creating a framework using
SOA for dynamically constructing DVE applications from

Zhang and Gracanin

services. With the assistance of the framework, the third
party developers can contribute the DVE application by
providing “active” services. Meanwhile, the framework
provides a shared platform where users can gather in a virtual
world and seamlessly interact with the content sourced from
various services. The framework we propose adapts both
the SOA and EDA (Event-Driven-Architecture) and applies
the streaming technology to address the real-time interaction
challenge. The framework applies standards such as Web
Service, X3D, MPEG-4 so that the applications can be
developed and accessed with reduced cost.

As the performance of SOA remains a big issue, applica-
tions that require real-time response might face performance
challenges on our platform. In order to verify the real-time
performance of our SOA, we designed an experiment to
evaluate the interaction latency of the developed application.
Based on the experiment results, we discuss the applications
that can fit well on the our framework.

2 Related Work

Using framework in VE application development can greatly
reduce the cost by integrating reusable code units as
application components. Application centric frameworks
(e.g.DIVERSE, Ygdrasil) provide a component-based de-
velopment and deployment platform (Kelso, Satterfield, Ar-
senault, Ketchan, and Kriz 2003, Pape, Anstey, Dolinsky,
and Dambik 2003). In these frameworks, components de-
veloped as dynamic objects are dynamically integrated in the
application at the deployment time. Application developers
have less effort in the complex application development as
reusable components have implemented most fundamental
functionalities.

Services are coarse-grained components on the Web
versus the dynamic objects which are more fine-grained
components on the framework. In real-time 3D visual-
ization applications, services are mainly used as the data
sources. Zhang et al designed a DVGE system to inte-
grate data services (e.g. data imaging service, 3D object
data service and geo-model service) for creating collabora-
tive geo-information applications (Zhang, Gong, Lin, Wang,
Huang, Zhu, Xu, and Teng 2007). Likewise, the framework
we proposed treats services as coarse-grained components
in our framework (Zhang and Gracanin 2007).

A Web Service is defined as a functionality that can be
programmatically accessible via the Web (Tsur, Abiteboul,
Agrawal, Dayal, Klein, and Weikum 2001). A fundamental
objective of Web Services is to enable the interoperabil-
ity among different software applications that run on a
variety of platforms (Medjahed, Benatallah, Bouguettaya,
Ngu, and Elmagarmid 2003, Vinoski 2002). The inter-
operation has been enabled by the tremendous standard-
ization effort to describe, advertise, discover, and invoke
Web Services (Curbera, Duftler, Khalaf, Nagy, Mukhi, and

1140

Weerawarana 2002). Web Services are increasingly being
adopted as a framework to access Web-based applications.

SOA treats services as more coarse-grained and het-
erogenous components for constructed applications (Papa-
zoglou, Traverso, Dustdar, and Leymann 2007). Incorporat-
ing SOA in the real-time simulations has been explored in
XMSF (Blais, Brutzman, Drake, Moen, Morse, Pullen, and
Tolk 2005) and other projects (Chen, Cai, Turner, and Wang
2006, Tsai, Fan, Chen, and Paul 2006). These projects are
mainly focused on exploring the interoperability between
simulation components by using Web Service technology.

Even though most simulations require critical real-time
communication, the performance has been rarely evaluated
in their infrastructures. Revised SOA such as RTSOA
(Real-Time Service Oriented Architecture) focused on the
efficiency of service composition instead of the application
performance running on the architecture (Tsai, Lee, Cao,
Chen, and Xiao 2006).

One of the major factors preventing widespread use of
SOA is performance. The performance of Web Services
is affected by the process of exchanging information via
service invocation(Zilora and Ketha 2008). That process
includes the following steps: request construction, SOAP
message construction, transmission, server listening, SOAP
message deconstruction, and request processing.

Some argue that the SOAP protocol is too heavyweight
(Suzumura, Takase, and Tatsubori 2005). Other approaches
include using more tightly-couple protocols (RMI, CORBA)
(Juric, Kezmah, Hericko, Rozman, and Vezocnik 2004) or
using streaming message exchanges (Oh and Fox 2007). An-
other alternative approach is using active streaming servers
to push the real-time data (Comet 2008). Extending the
Web Service infrastructure by adding streaming channels to
deliver time sensitive data (e.g.multimedia data) has been
developed in IBM (IBM alphaWorks 2006).

Based on the reviewed literature, we learned that in-
corporating streaming to compensate the service data in-
teraction could take the advantage of both the SOA and
real-time streaming technology. Therefore, we extend our
framework on SOA for constructing DVE applications from
services. As there is little effort in investigating the impact
of the latency in SOA for real-time 3D applications, we
introduce our SOA incorporated framework and evaluate
the performance of the real-time interactions for the VE
applications.

3 Framework

The proposed framework is designed to support the follow-
ing functions: 1) dynamic application content integration, 2)
a unified 3D presentation for application content accessing,
and 3) a shared multi-user virtual space. The 3D applica-
tion content is provided by the third party services. The
services are developed independently and distributed over

Zhang and Gracanin

the network. The content of the application is dynamically
assembled by composing the services. The users can access
the application content with 3D browsers.

In our framework, the services from third party providers
are called the component services. Each component service
provides two sets of interfaces. The 3D application content
from the services is delivered through a streaming interface.
The controls that manipulate the content are exposed via
Web Service interface. The 3D content from the services are
collected and integrated into an application by a centralized
server known as the container. A descriptive scene graph
(described in X3D) is used among the container and compo-
nent services. The users access the constructed application
through standalone X3D/MPEG-4 browsers.

The architecture of the framework is shown in Figure 1.
The dashed lines indicate the streaming data.

Component

Component "
Service

Service

Container '

v
Request 'Scene Graph
Delegator Manager
Fof-=-1----»
Client Browser
Application Request -
Integrator Handler

Figure 1: The framework architecture

The design of our framework is based on the follow-
ing principles. We introduced a distributed Model-View-
Controller (MVC) model to indicate the function design of
the services and the container. By following this model,
the control commands are separated from the application
presentation updates in the data stream exchanged between
the container and the services. The framework adapts both
the SOA and EDA (Event-Driven-Architecture) to drive the
service integration and interoperation. The seamless inte-
gration is addressed by introducing an ontology to abstract
the application domain knowledge. The streaming technol-
ogy is applied to reduce the interaction latency and enables
the services to actively push the updates.

3.1 Distributed MVC

Model-View-Controller (MVC) is the classical paradigm
used in user interface (UI) design (Gamma, Helm, Johnson,
and Vlissides 1995). The MVC paradigm can be adapted in
a distributed format for the applications that are composed
from distributed components, as shown in Figure 2.

In the distributed MVC model, the application view is
assembled in a centralized unit as the container. It is a

1141

|
Container ! | Component
Controller [_ } "] Ccontroller
i
|
/ \ H | \
Container [===~~~ >| Assembled | __j________________ Component
Model View | Model
| A
| f 1 , !
O A 1
|
Container Component

Figure 2: Distributed MVC pattern

composition of the views from the components. In order
to hide the data details and hold the data privacy, the data
model for each individual component is not allowed to
be accessed directly. The data model for the composed
application is built from the component data model though
their controllers. The container holds no direct controls
of updating the component views. When a component
view needs to update, the controller of the container will
delegate the requests to the component controller. The
update messages will be propagated to the container and
changes will then apply on the assembled view.

Based on the distributed MVC model, the controller of
each component is the interface to access both the UI data
and the data model data. The controller of the container
interacts with the local data model as well as the controllers
from other components. The controller for each component
should be well designed so that others can retrieve the data
model data, UI data, or request for the state updates on the
components.

3.2 Event Driven Architecture

The container is a composer that integrates the distributed
services. It includes the application logics to coordinate the
interoperation between the services and the container. As
most Ul applications, the composed application is driven by
the events defined in the application logics. The application
logic contains the definition of the events and the actions
corresponding to the events. In this way, the framework
combines the event-driven architecture in the SOA for the
component coordinations.

3.3 Application Content Streaming

The application content for VE applications is generally
presented in scene graph. In the framework, eXtensible 3D
(X3D) is used to describe the scene graph and the Ul interac-
tions. The application content in X3D can be delivered over
the network. X3D is an ISO standard for XML-enabled 3D
file format aimed to facilitate the interactively manipulating,
communicating and displaying scenes (Web3D Consortium

Zhang and Gracanin

2008). The advantage of using X3D is that users can use
a standard X3D browser to access any X3D applications.

The UI on the client side is mirroring a part of the
shared scene graph on the container side. The updates
of the application are rendered on the clients by applying
the scene graph updates from the container. In order to
improve the performance and applying standards, we in-
troduce the additional streaming channel using MPEG-4
for the scene updates propagating. MPEG-4 includes BIFS
(BInary Format for Scene) as a part of its standard (Walsh
and Bourges-Sevenier 2002). BIFS is designed incorporat-
ing with X3D standard. Using MPEG-4 streaming, X3D
UI data and updates can be well synchronized and streamed
from a peer to another. Therefore, X3D is used as the media
for the application content in our framework.

3.4 Ontology for Integration

An ontology can be used in application modeling as it
provides the common vocabularies, nomenclatures and tax-
onomies linked to detailed information resources. We use
ontology to abstract the knowledge that describes the rela-
tionship and the organization of the application elements.
The application elements are associated with the features
of how the application is modeled. We use an ontology an
a top-down approach to coordinate the service integration.

The component services are defined as the instances of
the application elements in the ontology. The integration
and intercommunication between the elements is done by the
event-driven architecture in the framework. The ontology
abstracts the concepts of events, rules, actions, and their
relationships that are used in the EDA. The knowledge of
multi-user controls (e.g. access control and view consistency
control) are also included in the ontology.

Based on the ontology, the semantic information for an
application instance of a certain domain is modeled into what
we call a profile. The profile defines the agreement among
the components providers. Derived from the ontology, we
developed a terminology used for component behavior de-
scriptions and application task descriptions. Incorporating
ontology in our framework, a multi-user 3D application can
be seamlessly constructed from various component services.

4 Framework Workflow

The major focus of this paper is to give a performance
measurement of our proposed framework. In order to present
a clear picture of where the performance thresholds are, we
will first illustrate the workflow in the framework. Figure 3
shows how the framework supports composing and running
a 3D application. There are four main activities in the
framework.

The first activity is application composition. As shown
in Figure 3, the application is composed before users access

1142

Client

Container Component
0 Service
- 1
1

1. Initialize

ser

2. Compose

| e

3. Stream Ul

-
8. Stream updates D

4. Start 5. Load

6. Stream Ul

7. Present

-4

9. Stream Ul

10. Interact >
11.Dispatch request| >
12.Dispatch Request

4
——— 13.
=w 14. Stream updates - Stream response |

15. Present ! ! !

Figure 3: The sequence diagram of the framework workflow

the application. The container initializes the composition
by sending messages to all the available services (message
1) and calling the corresponding methods for application
content (message 2). The Ul data is streamed in MPEG-4
format and delivered to the container (message 3).

The second activity is application accessing. The user
starts the client application to load the scene from the
container (message 4 and 5). The container generates a
subject view for the users based on user’s context, and
it streams the Ul data to the client. As the client is an
interactive X3D browser or MPEG-4 player, it renders the
UI and presents the application to the user (message 6 and
7).

The third activity is active service-status updating.
Whenever the status of a service is updated, it pushes the
updates to the container without the probe messages from
the container (message 8). The container will multicast the
updates to the clients that are interested in the UI changes
(message 9).

The forth activity is the most important activity. It is
the user interaction activity. When the user interacts with
the client and triggers a Ul request, the message will be
sent to the container (message 10 and 11). The container
decides which service holds the responsibility of handling
the request and forwards the message to it (message 12).
Once the service completes handling the request, it streams
the UI updates to the container (message 13). The container
evaluates the change, creates the corresponding updates on
user’s subjective view, and streams the UI updates to the
client (message 14). The client shows the updates when it
receives the messages (message 15).

Zhang and Gracanin

As we can see in Figure 3, the request messages are
rerouted twice before arriving to the component service.
Meanwhile, the responses arrives to the client after being
forwarded by the container. Extra latency is introduced be-
cause of the distributed characteristic of SOA. As any of the
latency happened in the user interaction activity will impact
the application usability, we will only focus on evaluating
the performance of this activity. In our measurement, we
will take the response latency of the user interaction as the
benchmark of the application performance.

5 Performance Evaluation

The distributed architecture of the framework provides flex-
ibility and scalability but it sacrifices the runtime perfor-
mance. The extra network latency between the container and
the service providers might have impacts on the real-time
performance of the composed application. Fast response to
user’s interaction is an important factor in the human infor-
mation processing loop. The delayed response can break the
information processing loop and cause the presence distor-
tion. Therefore, it is critical to evaluate the response latency
to user’s interaction for the real-time VE applications.

We use several techniques in the framework to improve
the performances. In order to present an object view of
the interaction performance for the applications constructed
using the framework, we have defined a set of metrics for
the real-time performance evaluation.

5.1 Metrics

We introduce the concept of inferaction latency to measure
the system performance. The interaction latency is the time
interval from when the user issues the control to the time
when the user perceives the updates from the system. That
is the time interval between message 10 and message 15 in
Figure 3.

The interaction latency (7;) includes three parts: the
network latency, marshaling cost and the process latency.
The network latency (7},) is the time consumed for network
transport. The marshaling cost (7,,) is the time spent in
buffering or parsing the messages. The process latency
(Tp) is the time used (either on the container or service
providers) from when a stimulus is received to the time
when the response is issued.

The interaction latency is the objective metric to measure
whether the system performance meets the human perception
criteria. The latency is expected to be within 1.0s which
is an acceptable usability criteria for most 3D applications.
The network latency and process latency are used for the
resource impact analysis. The marshaling cost is used for
analyzing the efficiency of network communication protocol.

We use the following methods to get T;, T, T, and T),.
We log the time on the client, container, and component

1143

service. For example, on the client side, when message 11
is issued, we log the time as tclient;;. When the message
is parsed and received on container, we record the time
as tcontainery;. After the container sends message 12
to the component service, fcontainer;, is recorded on the
container. Time stamp tservicei; is recorded on the service
when the message 12 is received and parsed. Therefore,
we can calculate the interaction latency (7;) from network
latency between client and container (7,,c¢), network latency
between container and service (7,cs), marshaling cost in
interpreting messages between client and container (7;,cc),
marshaling cost in interpreting messages between container
and service (Ty,cs), process latency in container (7,¢), and
process latency in service (7,s). The data gathered for each
of the parameters can be used to analyze the network and the
computing power impact, providing insights for the future
performance enhancements.

5.2 Preliminary Study Result

We have carried out several preliminary studies on our
available network condition, the performance of service
invocations, and the performance of various service imple-
mentations. The network used in the study using has very
good performance. The network latency between the hosts
is mostly within 10ms.

The performance of a Web Service invocation depends
on the processing time on the service side. The payload
of marshaling/unmarshaling for SOAP messages is very
low with simple method calls. Most of the latency for the
light weight service invocations are equal to the network
latency. The real performance criteria comes from the soft-
ware implementation and levels of service invocations. In
the service implementation, if inter-process communication
is used for forwarding the Web Service invocations to a
3D streaming application, the processing time on service
can be two time expensive than using light-weight threads
communication. Using streaming over RTP requires addi-
tional cost on buffering and marshaling. If a client request
requires additional interoperation between services, the cost
can be very expensive.

Table 1 compares different cost based on our obser-
vation. In the preliminary study, we implemented two
level invocations (service to service invocation) using the
inter-processing communication to see the worst possible
performance (4223ms).

5.3 Evaluation Design

The experiment is implemented using a simple application
created using the framework. The application provides a VE
which hosts various virtual objects sourced from different
service providers.

Zhang and Gracanin

Table 1: Preliminary Study Results

] Cost | Time (ms) |
Network Latency 8
Service Processing Time (Threads) 358
Service Processing Time (Inter-Process) 999
One-Level Service Invocation 2849
Two-Level Service Invocation (Service) 4223
Container

_— \\
Client E Internet 3 | |

Service Provider Service Provider

Figure 4: Experiment Environment

The interaction task is to rendering an information board
for a 3D object. When the user moves the mouse over a 3D
cube in the virtual world, a board with the object information
will be displayed. The board data is loaded based on the
scene updates from a service. This interaction task mirrors
the activity of dynamic loading and replacing/adding virtual
object in the virtual environments. The interaction requires
one-level component service invocation to accomplish the
task.

The application is created using the GPAC (Feuvre,
Concolato, and Moissinac 2007) toolkits and AXIS Web
Services. The service is using thread communication. The
scene update (BIFS update in MPEG) is streamed using RTP
protocol. The experiment environment is shown in Figure 4.
The container server is a Dell Pentium D 2.0G Windows
machine with 2G RAM. The component service that hosts the
object scene data is Dell Pentium 4 3.2G Windows machine
with 2G RAM. The client is a 1.8G Windows laptop with
512M RAM. The client laptop connects the Internet using
a wireless connection. The container and service providers
are connected to the Internet with gigabyte intranet.

5.4 Evaluation Result
The results are shown in Table 2. As the network latency is

very small, we ignore it from the experiment results. The
values in Table 2 are the average value of 40 trials. The total

1144

Interaction Latency (1715ms)
M Service Processing Time
358ms (21%)

OMahsalling Cost
605m s (35%)

W Container Processing Time
TH2ms(d44%)

Figure 5: The Ingredient of Interaction Latency

interaction latency is about 1.7 seconds. The ingredient of
the interaction latency is shown in Figure 5.

Table 2: Experiment Results

Response Latency | Time (ms) |
Interaction Latency 1715
Marshaling Cost 605
Process Latency (Container) 358
Process Latency (Service) 752

From Figure 5 we can tell that the processing latency has
been the major part of the delay. Both the component service
and the container took around 1s (65% of the interaction
latency) which greatly impact the performance. The message
marshaling also pretty expensive. It takes 35% of the time
in the interaction latency. By taking a deeper look into
the marshaling cost, we discover that 59% of the latency
(around 0.3s) is from the service to the container(shown
in Figure 6). The difference between container to service
invocation and client to container invocation is that our
client does not use Web Service to send the requests.

6 Discussion

The SOA architecture has its advantages in terms of com-
posibility. However, the distributed architecture might have
an impact on the real-time performance. The experiment
results show that the network latency and message mar-
shalling/unmarshalling can affect the interaction response.
Therefore, the applications that developed using SOA re-
quire special tolerance of the delayed responses.

Even though the framework is facing challenges on
the real-time performance because of its SOA, there are
several categories of applications that fit smoothly in the
framework. The streaming technology has its advantages

Zhang and Gracanin

Mashalling Cost (605ms)

E Container<->Client
251ms (41%)

@ Senice <-» Container
354ms(59%)

Figure 6: The Ingredient of Network Latency

in broadcasting time-sensitive data to a broad audience.
Therefore, the applications developed on our framework
can also benefit from the feature. Applications with the
following characters can be created using our framework.

3D Live Broadcasting

3D live applications can be used to broadcast a concert, game,
or lecture. Applications of such 3D live shows normally
have a short life cycle. The application ends when the live
session is over. Another feature of such applications is the
goal to attract the largest audience possible. Instead of being
interested in identifying who the users are, they care more
about how many the users are. On the other hand, users still
have the capability of accessing general information about
the show via simple interactions. Such interaction allows a
little more latency which has little impact the presence of
the virtual reality.

The applications have short life cycle and need to at-
tract big numbers of audience. Our framework provides a
suitable platform for these applications because the com-
posed application is generally a 3D portal. Many users
have been gathering in the portal application and exploring
the applications in the virtual world. The live broadcasting
application can dynamically plug into the portal application
and deliver the live content to the users.

Dynamic Animation

Playing dynamic animations on demand is another type
of applications that are capable for our framework. The
animation of the application is unpredictable, and it changes
based on the internal status of the service or the request
parameters from the users. That means the animation cannot
be cached either on the container or on the client side
application. Once users start interacting such applications,
few consecutive demands will be issued.

1145

Such applications have continuous responses to users’
single requests. Therefore, users are expecting the latency
as the online VOD (video on demand) applications which
they are already familiar with. Another advantage of using
the framework is that it supports different rendering types.
The animation can be rendered either just for a user or for
all the users accessing the application. The service provider
only needs to declare which rendering type it requires the
container to support. The container can build the scene
graph data as either the part of the global scene graph or
the scene graph for an individual view.

Virtual Touring

For massive multi-user DVE applications, most activities in
the virtual world is the virtual world exploring and peer to
peer communications. Apart from the peer to peer interac-
tion, the activity users spent most time in the virtual world
is navigation. Navigation is a type of 3D user interaction
which requests few frequent interactions with the environ-
ment. Applications designed with navigation intensive tasks
to explore complex 3D models can be integrated using our
framework.

An example of such application is a virtual museum
which offers an automatic tour to the users inside the mu-
seum. When a user starts the tour, her viewpoint is au-
tomatically changed by following the predefined the path.
The activity inside the museum is to explore the virtual
objects by following the consecutive commands streamed
from the service. Whenever the service developers need to
replace the virtual objects or change the paths, they can
apply the new service immediately without bothering the
users to update their applications.

7 Conclusion

Implementation outsourcing brings more opportunities for
the VE applications to integrate resources and creative im-
plementations. Our framework applies SOA to integrate
services as the coarse-grained components for the massive
VE applications. The infrastructure integrates several meth-
ods such as ontology and streaming to address the seamless
integration requirement and the performance challenges.

The pilot study reveals the real-time performance for the
constructed applications on the distributed architecture. It
also brings up the discussion on what the type of applications
fit in the distributed architecture with the trivial interaction
latency. More studies of the framework performance im-
provement and the user study on various application context
will be carried out.

Zhang and Gracanin

REFERENCES

Blais, C., D. Brutzman, D. Drake, D. Moen, K. Morse,
M. Pullen, and A. Tolk. 2005. Extensible modeling and
simulation framework (XMSF) 2004 project summary
report. Technical report, Naval Postgraduate School,
Monterey, California.

Chen, X., W. Cai, S. J. Turner, and Y. Wang. 2006. SOAr-
DSGrid: Service-Oriented Architecture for Distributed
Simulation on the Grid. In PADS ’06: Proceedings
of the 20th Workshop on Principles of Advanced and
Distributed Simulation, 65-73. Washington, DC, USA:
IEEE Computer Society.

Comet, W. 2008. Comet (programming).
//en.wikipedia.org/wiki/Comet_
(programming) [Last accessed: Apr. 2008].

Curbera, F., M. Duftler, R. Khalaf, W. Nagy, N. Mukhi,
and S. Weerawarana. 2002. Unraveling the web services
web: An introduction to soap, wsdl, and uddi. IEEE
Internet Computing 6 (2): 86-93.

http:

Facebook 2008. Facebook developers. http:
//developers.facebook.com [Last accessed:
Apr. 2008].

Feuvre, J. L., C. Concolato, and J.-C. Moissinac. 2007.
GPAC: open source multimedia framework. In MUL-
TIMEDIA °07: Proceedings of the 15th international
conference on Multimedia, 1009-1012. New York, NY,
USA: ACM.

Gamma, E., R. Helm, R. Johnson, and J. Vlissides. 1995.
Design patterns: elements of reusable object-oriented
software. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc.

IBM alphaWorks 2006. IBM web service stream-
ing engine. http://www.alphaworks.ibm.
com/tech/streamingengine [Last accessed:
Feb. 2008].

Juric, M. B., B. Kezmah, M. Hericko, I. Rozman, and
I. Vezocnik. 2004. Java rmi, rmi tunneling and web
services comparison and performance analysis. SIG-
PLAN Not. 39 (5): 58-65.

Kelso, J., S. G. Satterfield, L. E. Arsenault, P. M. Ketchan,
and R. D. Kriz. 2003. DIVERSE: a framework for build-
ing extensible and reconfigurable device-independent
virtual environments and distributed asynchronous sim-
ulations. Presence: Teleoper. Virtual Environ. 12 (1):
19-36.

Linden Lab 2008. Second Life: Official site of 3D online
virtual world. http://secondlife.com/[Lastac-
cessed: Apr. 2008].

Medjahed, B., B. Benatallah, A. Bouguettaya, A. H. H.
Ngu, and A. Elmagarmid. 2003. Business-to-Business
Interactions: Issues and Enabling Technologies. The
VLDB Journal (to appear).

1146

Oh, S., and G. C. Fox. 2007. Optimizing web service
messaging performance in mobile computing. Future
Gener. Comput. Syst. 23 (4): 623-632.

Papazoglou, M. P., P. Traverso, S. Dustdar, and F. Leymann.
2007. Service-oriented computing: State of the art and
research challenges. Computer 40 (11): 38-45.

Pape, D., J. Anstey, M. Dolinsky, and E. J. Dambik. 2003.
Ygdrasil: a framework for composing shared virtual
worlds. Future Gener. Comput. Syst. 19 (6): 1041-1049.

Suzumura, T., T. Takase, and M. Tatsubori. 2005. Opti-
mizing web services performance by differential de-
serialization. In ICWS '05: Proceedings of the IEEE
International Conference on Web Services, 185-192.
Washington, DC, USA: IEEE Computer Society.

Tsai, W.-T., C. Fan, Y. Chen, and R. Paul. 2006. DDSOS: A
dynamic distributed service-oriented simulation frame-
workl. In ANSS '06: Proceedings of the 39th annual
Symposium on Simulation, 160—167. Washington, DC,
USA: IEEE Computer Society.

Tsai, W. T., Y.-H. Lee, Z. Cao, Y. Chen, and B. Xiao.
2006. Rtsoa: Real-time service-oriented architecture.
In SOSE ’06: Proceedings of the Second IEEE Inter-
national Symposium on Service-Oriented System En-
gineering (SOSE’06), 49-56. Washington, DC, USA:
IEEE Computer Society.

Tsur, S., S. Abiteboul, R. Agrawal, U. Dayal, J. Klein, and
G. Weikum. 2001, September. Are Web Services the
Next Revolution in e-Commerce? (Panel). In VLDB
Conference.

Vinoski, S. 2002, February. Web Services Interaction Mod-
els, Part 1: Current Practice. IEEE Internet Computing 6
(3): 89-91.

Walsh, A. E., and M. Bourges-Sevenier. 2002. The MPEG-4
jump-start. Prentice Hall Professional Technical Ref-
erence.

Web3D Consortium 2008. Communicating with real-time
3D across applications, networks, and XML web ser-
vices. http://www.web3d.org/[Last accessed:
April 2008].

Zhang, J., J. Gong, H. Lin, G. Wang, J. Huang, J. Zhu,
B. Xu, and J. Teng. 2007. Design and development
of distributed virtual geographic environment system
based on web services. Inf. Sci. 177 (19): 3968-3980.

Zhang, X., and D. Gracanin. 2007. From coarse-grained
components to dve applications: a service- and
component-based framework. In Web3D ’07: Proceed-
ings of the twelfth international conference on 3D web
technology, 113-121. New York, NY, USA: ACM.

Zilora, S. J., and S. S. Ketha. 2008, March. Think inside
the box! Optimizing web services performance today
[web services in telecommunications, part ii]. /IEEE
Communications Magazine 46 (3): 112-117.

Zhang and Gracanin

AUTHOR BIOGRAPHIES

Xiaoyu Zhang is a PhD student of Computer Science
Department at Virginia Polytechnic Institute and State
University. His research focuses on the distributed virtual
environment, Web 3D, computer supported collabora-
tive work. His email address for the proceedings is
<zhangxy@vt.edu>.

Denis Gracanin is an Associate Professor of Computer
Science at Virginia Polytechnic Institute and State
University. His research interests include virtual reality
and distributed simulation. He is a member of AAAI,
ACM, IEEE, SCS, and SIAM. Heis email address for the
proceedings is <gracanin@vt .edu>.

1147

