

DESIGN AND IMPLEMENTATION OF AN XML-BASED, TECHNOLOGY-UNIFIED DATA PIPELINE FOR
INTERACTIVE SIMULATION

François Rioux

François Bernier

Denis Laurendeau

Dept. of Electrical and Computer Engi-
neering

Systems of Systems Section, DRDC-
Valcartier

Dept. of Electrical and Computer Engi-
neering

Laval University 2459 boul. Pie-XI Nord Laval University
Québec, QC, G1V 0A6, Canada Québec, QC, G3J 1X5, Canada Québec, QC, G1V 0A6, Canada

ABSTRACT

Providing software that is efficient, flexible, reusable and
easy to work with is a hard task for simulation developers.
In this paper we propose the use of XML and its related
tools (e.g. JAXB, XQuery, XSLT, and Native XML Data-
base) for the implementation of a technology-unified data
pipeline targeted to interactive simulation. We introduce a
technology-independent conceptual data model as the basis
for every simulation framework. We show that XML is a
well-suited technology to be used in that context. We pro-
pose a data modeling methodology that takes its roots from
Model-Driven Engineering (MDE). We also show a sam-
ple implementation that uses XML for transmitting data
over the entire simulation loop. We thus present our ex-
perience in implementing that kind of architecture and dis-
cuss how the use of XML and associated technologies help
in building a unified and generic data pipeline for interac-
tive simulation.

1 INTRODUCTION

Nowadays, simulation is used extensively by scientists and
engineers for designing complex systems or for under-
standing intricate phenomena. Typically, “batch run simu-
lations” are exploited for extracting knowledge from vir-
tual experiments. Many batch run simulations lead to
wasted computation time because errors in simulations or
poor choice of simulation parameters are only discovered
after a run, something that could have been avoided should
interactive simulation be exploited. For being considered
as interactive, a simulation should take a reasonable

amount of time to execute, typically a few seconds to a few
minutes.

Interactive simulation can be seen as the process of
steering a simulation while it is executing. Many ap-
proaches have been proposed for steering simulations
(Parker et al. 1997, Brooke et al. 2003). Interactive simula-
tion is a 3-step process (see Figure 1). Firstly, a model of
the simulation needs to be built in the Simulation Modeling
Module. This step consists of defining the actors participat-
ing in the simulation, the properties of each actor, and the
interactions between actors leading to the desired behav-
iors. The scope of this step depends on the architecture of
the simulator and on the level of detail (and fidelity) re-
quired for the models. In addition to the definition of the
actors and the interactions, a scenario includes the initial
values for the parameters of the actors/models/interactions
and the scheduling of “outside” events that will occur dur-
ing the simulation and whose effect may be, among other
things, to modify behaviors of the actors.

At the second step, the Simulation Execution Module
accepts the scenario and models that were designed at the
modeling stage. It is clear that the Execution Module must
be structured so as to understand both the models and the
scenario in order to execute the simulation properly and to
maintain a coherent internal state. Then, the Execution
Module runs the simulation and updates its internal state
accordingly while taking into account the events scheduled
in the scenario. The “simulation state” is defined as the set
of variables and parameters describing the totality of a si-
mulation at a given time step. This simulation state, which
is available in a given data format, is sent periodically to
the Simulation Analysis Module. The latter module must

Figure 1: Interactive simulation process

1130 978-1-4244-2708-6/08/$25.00 ©2008 IEEE

Proceedings of the 2008 Winter Simulation Conference
S. J. Mason, R. R. Hill, L. Mönch, O. Rose, T. Jefferson, J. W. Fowler eds.

Rioux, Bernier and Laurendeau

provide the user with interfaces that allow him to visualize
what is actually occurring in the simulation, and with tools
that allow him to perform different types of analyses on the
data such as statistical analysis or data mining (Schulz et
al. 2006). A major difference between interactive simula-
tion and batch run simulation is that, for interactive simula-
tion, the user “closes the loop” by providing input to the
models and to the Execution Module based on his interpre-
tation of the results.

In this paper, we propose a design methodology that
facilitates the implementation of user interaction with new
and existing simulators. The methodology, presented as a
conceptual framework that is a formal way of thinking, is
generic and does not make any assumption on the architec-
ture of the simulator. The paper demonstrates that the data
pipeline must be designed carefully to ensure successful
implementation of interactive simulations. Section 2 intro-
duces a conceptual framework for this data pipeline, which
comprises a data model and a generic data flow. Section 3
presents an instance of the conceptual model based on
XML technology and software engineering design princi-
ples. Section 4 presents a sample implementation of the
methodology and Section 5 includes a discussion on this
implementation and an overview of future work.

2 CONCEPTUAL FRAMEWORK

This section presents a conceptual framework that sets up
the foundation of a methodology for facilitating interaction
with simulations. Figure 2 shows the key building blocks
of the conceptual framework. Large rectangular boxes rep-
resent storage units, whereas rounded boxes represent
processing units. Storage units encapsulate the state of data
at a particular stage in the conceptual framework, whereas
processing units transform input data and outputs the re-
sults.

2.1 Data model of the conceptual framework

The first block of the conceptual framework (Figure 2) is
the simulation scenario, which contains the elements de-
scribed in Section 1 (e.g. actors, models, interactions,
scheduled events). The tools that are used for building the
scenarios may range from sophisticated GUIs to simple
text file editors. The “simulation scenario” box, exploded
in Figure 2, illustrates the data model the scenario must
comply. The scenario “document,” which contains the da-
ta, is an instance of a “document model.” On the other
hand, the “document” validates against a “schema,” a
model defining the document syntax. The schema itself is
an instance of the “schema model,” a meta-model defining
the content of a schema. Once the scenario document is
built and validated against its schema, it must be converted
to a format that is understandable by the simulator.

For that purpose, a “conversion engine” links the si-
mulation scenario and deserialized objects, which are in-
termediate storage elements, by performing appropriate
processing. The reason for feeding the simulator with dese-
rialized objects instead of the scenario as such is that we
want to keep the framework generic and independent of the
architecture of the simulator. This genericity constraint has
a direct impact on the technologies that need to be selected
for ensuring smooth integration of the deserialized objects
and the simulator. Therefore, the addition of the interactiv-
ity feature to a simulator should be transparent to its inter-
nal modules. It is worth noting that a single scenario usu-
ally generates several deserialized objects, each being an
instance of a “class.”

As shown at the bottom of Figure 2, we assume that
simulation entities exist in the internals of a simulator, re-
gardless of its architecture and implementation. These enti-
ties are of several types, e.g. actors, properties, interac-
tions, agents. In object-oriented implementations, they are
instances of a “class,” which has a “class model” (Atkinson
et al. 2003). The simulator executes interactions between
entities, which generates data that must be serialized and
converted back to a format that a user understands in order
to be available for analysis.

The serializable objects are data containers in which
the simulator writes the simulation state. They own the
same data model as deserialized objects. A conversion en-

Figure 2: Technology-independent conceptual frame-
work

1131

Rioux, Bernier and Laurendeau

gine translates serializable objects to simulation data,
which shares the same data model as the simulation sce-
nario.

2.2 Generic dataflow in the conceptual framework

Figure 3 shows a generic dataflow that is suitable for inter-
active simulation. The simulation modeling step shows that
a user exploits a scenario editor to produce a scenario
document. This document is usually a computer file. The
elements contained in the scenario document are converted
to deserialized objects and affected to the simulation state.
The simulation engine performs calculations on elements
composing the simulation state and updates involved enti-
ties of the simulation state accordingly. Then, the simula-
tion state is copied to serializable objects.

We implemented a mechanism to meet the interactive
simulation requirements; serializable objects can be saved
to checkpoint files, which act as simulation state containers
that a user can modify and reload back to the simulator.
We chose the latter mechanism because it is simple to im-
plement, sometimes already part of the features of a simu-
lator, and compatible with many available simulation ar-
chitectures (Brooke et al. 2003). On the other hand, the
developer of the simulation modeling module of an interac-
tive simulator needs to interface existing code with deseri-
alized and serializable objects in order to load and save the
simulation state.

A user is able to control the flow of a simulation with
the simulation analysis step, which includes the following
modules:

• A data manager whose role is to communicate
with the simulation for retrieving simulation data
into a stream, to manage incoming data, and to
process user interaction;

• A database that stores selected information in-
coming from the simulator data streams;

• A data stream query filter that selects, accord-

ing to the user’s needs, information relevant to the
simulation analysis;

• A data analysis module that is exploited by the
user for exploring the simulation and acquiring
knowledge of the phenomenon under study.

In summary, we propose in this section a framework
that simulation practitioners should implement in order to
convert existing software to an interactive simulator. The
proposed framework allows the use of traditional simula-
tion methodologies such as batch simulation because simu-
lation data is stored in a database for later consultation.

3 XML AS A UNIFYING TECHNOLOGY

It is claimed that XML is a technology that is well adapted
for the implementation of the conceptual framework de-
scribed in Section 2. Figure 4 shows how the generic struc-
ture shown in Figure 2 can actually exploit XML technol-
ogy to implement the conceptual framework. The
suggested XML-based implementation makes the assump-
tion that the simulator is implemented in object-oriented
technology. We aim towards a design methodology that
could be used by simulation practitioners to decrease the
development effort when building an interactive simulator
from existing software.

Originally, XML was developed as a subset of SGML,
intended for web applications. It now describes data in

Figure 4: XML-specific conceptual framework. Blue box-
es highlight a modeling framework, whereas yellow ones
highlight a data pipeline Figure 3: Generic dataflow for interactive simulation

1132

Rioux, Bernier and Laurendeau

several application areas such as semantic web, mathemat-
ics, biological simulations, and military decision making
(Wikipedia 2008a). Some authors propose guidelines to
follow, so that researchers use XML technology only
where it belongs (Boyno 2006).

Many tools exist in order to parse and validate XML
files, bind XML entities to objects of different program-
ming languages, store XML data in databases, visualize
XML documents and schemas, transform XML documents,
and query XML files (Wikipedia 2008a). An advantage of
XML over other data formats is its self-description. XML
describes its structure, field names and values. The integra-
tion of metadata in an XML stream is also straightforward.
The resulting plain text is human- and machine-readable,
and fully portable on different system architectures.

On the negative side, XML is verbose, which results in
a waste of bandwidth when transmitted over a network.
However, some binary XML formats compress data, mak-
ing it less redundant and more efficient for processing. Al-
so, every piece of data is a string, eliminating the intrinsic
data type support that is available in most programming
languages. For the conversion between XML and common
data types, the marshalling operation transforms common
data types (e.g. double, float, integer) to XML strings,
whereas the unmarshalling operation transforms an XML
string to common data types. Nonetheless, these conver-
sions require considerable amount of processing time and
need an XML schema that defines the node types and
structure of a given XML file.

3.1 Detailed XML data model

Despite the weaknesses identified above for XML, its
portability and simplicity make it an excellent choice for
developing the framework for interactive simulation. In
addition many tools for processing and handling XML data
are available and reduce the development time. Figure 4
shows how XML is exploited in the conceptual framework
described in Figure 2. More specifically, the scenario is
stored in an XML document. This document must conform
to a set of rules defined in a companion XML Schema. It
should be noted that a schema validates only the syntax of
an XML document, not the semantics. Therefore, a higher-
level mechanism must take care of maintaining the coher-
ence of the scenario.

XML node entities contained in a document are un-
marshalled to objects, which are instances of object-
oriented programming language classes (e.g. C++, Java,
C#), via XML data binding that refers to the process of
representing elements of a XML document as objects in

computer memory. Through an automated procedure,
XML binding libraries create “object classes” according to
the schema of the XML document. Software libraries that
bind and convert XML nodes to objects are available for
many programming languages (Wikipedia 2008b).

When developing a simulation engine from scratch,
designers should adopt sound software engineering prac-
tices by creating a UML static class model of the internal
simulation state data model. In addition, the use of modern
tools offering code generation functionality helps in saving
development time. When existing simulation entity classes
(bottom of Figure 4) do not have an accessible UML mod-
el, reverse-engineering tools can help in recovering this
model.

A simple mechanism transposes deserialized objects
to simulation entities objects. It is usually implemented by
copying class attributes to corresponding fields in simula-
tion entities objects. A similar mechanism transfers the
state of the simulation from the simulator to serializable
objects. Then, the marshalling process, included in the
binding library, transforms objects back to XML format. It
should be noted that deserialized objects and serializable
objects do not necessarily share the same data model.
However, adopting the same model for both concepts is
recommended because of the resulting uniformity in proc-
essing. The same remark applies for the simulation sce-
nario and the simulation data. Both can embody the totality
or a fragment of a global and unique schema.

3.2 Design methodology

Figure 4 highlights important characteristics emerging
from the use of XML as the basic building block of the da-
ta flow. Boxes with a blue background represent the data
modeling methodology of the XML-based framework de-
tailed at the left of Figure 5.

The first step in the methodology consists of building
a static UML simulation model. The UML model should
contain classes associated to every simulation element
(bottom of Figure 4). Each class should contain its attrib-
utes, the set of classes and attributes making what we call a
simulation state, that includes elements part of the initial
scenario (e.g. entities with their initial properties and
links), as well as others essential at runtime (e.g. random
number generators).

Figure 6 shows such a typical UML class diagram.
The “Simulation” class is a root element that includes the
“timeStep” attribute. It aggregates “InitialScenario,” “Ran-
dom,” and “SimulatedEntity” elements. “InitialScenario”
defines initial simulation entities as well as the terrain on

Figure 5: XML data modeling framework (left) and data pipeline (right)

1133

Rioux, Bernier and Laurendeau

which they evolve. Simulated entities store the state of en-
tities being simulated during the process of checkpointing a
simulation. The “Random” element includes information
about random number generators that introduce random-
ness in a simulation. Saving this information is essential in
order to obtain the exact same runtime results when load-
ing back and resuming the execution of a checkpointed si-
mulation.

The second step in the data modeling methodology is
to generate an XML schema from the static UML class di-
agram. Tools exist that perform the conversion from UML
to XSD (Carlson 2006), which conforms to the W3C XML
schema syntax (Wikipedia 2008a). Figure 7 shows the
schema resulting from the static UML diagram in Figure 6.
It starts with the definition of elements, each associated
with a class in the UML diagram. Then, every element is
defined according to the static view specifications. The
XML schema preserves the cardinality as well as types es-
tablished in the UML diagram. It is thus the model of sub-
sequent XML documents, such as initial scenarios or
checkpoint files. It is also the template for object classes
that constitute the data model inside the simulation archi-
tecture.

The third and final step in the data modeling method-
ology is the binding of the XML schema to an object-
oriented programming language. This step consists of gen-
erating a class associated to every element defined in the
schema. Several existing software suites or libraries can
perform this binding task for various object-oriented pro-
gramming languages (Wikipedia 2008b). Figure 8 shows
the Java class that is produced by the Java XML Binding
(JAXB) compiler using the XML schema presented in
Figure 7. It shows protected attributes that are accessible
via public get/set methods. The class also contains several
annotations that help the Java runtime environment and
compiler to perform object serialization and deserializa-
tion.

The methodology described above is an instance of
Model Driver Engineering (MDE) (Kent 2002). The proc-
ess starts off with a platform-independent, user-defined

meta-model (the UML diagram) subsequently transformed
to another platform-independent meta-model, the schema.
The UML model will typically be a copy of an existing
simulator execution model composed of simulation entity
classes. If the latter does not exist, execution and data
models should be developed in parallel in order to mini-
mize inconsistencies. An alternative approach would be to
inherit simulator classes from data model classes. The cor-
respondence between attributes should then be trivial.

When the simulator source code is available, the UML
diagram can be obtained by reverse engineering (IBM
2008). Otherwise, the success in applying the methodology
depends on the possibility to link the internal simulator da-
ta model with the user-defined data model (e.g. through an
Application Programming Interface or a network socket).

We can conclude that the data modeling framework is
better-suited for simulation software under development.
When the source code of the simulator is available, the me-
thodology can be easily adopted; otherwise, it is not likely
to be successful. Nevertheless, the proposed methodology
is the first step towards interactive simulation. The next

Figure 6: Sample static class UML diagram

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:element name="Entity" type="Entity"/>
 <xsd:element name="InitialScenario" type="InitialScenario"/>
 <xsd:element name="Position" type="Position"/>
 <xsd:element name="Random" type="Random"/>
 <xsd:element name="SimulatedEntity" type="SimulatedEntity"/>
 <xsd:element name="Simulation" type="Simulation"/>
 <xsd:element name="Terrain" type="Terrain"/>
 <xsd:complexType name="Entity">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="InitialScenario">
 <xsd:sequence>
 <xsd:element ref="Terrain"/>
 <xsd:element maxOccurs="unbounded" minOccurs="0"
name="entitiesList" type="Entity"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="Position">
 <xsd:sequence>
 <xsd:element name="x" type="xsd:int"/>
 <xsd:element name="y" type="xsd:int"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="Random">
 <xsd:sequence>
 <xsd:element name="Seed" type="xsd:int"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="SimulatedEntity">
 <xsd:sequence>
 <xsd:element name="lifeLeft" type="xsd:double"/>
 <xsd:element name="position" type="Position"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="Simulation">
 <xsd:sequence>
 <xsd:element name="timeStep" type="xsd:int"/>
 <xsd:element ref="Random"/>
 <xsd:element ref="InitialScenario"/>
 <xsd:element maxOccurs="unbounded" minOccurs="0"
name="simulationEntitiesList" type="SimulatedEntity"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="Terrain">
 <xsd:sequence>
 <xsd:element name="width" type="xsd:int"/>
 <xsd:element name="height" type="xsd:int"/>
 </xsd:sequence>
 </xsd:complexType>
</xsd:schema>

Figure 7: Sample XML schema file

1134

Rioux, Bernier and Laurendeau

section shows how the use of XML throughout the pipeline
facilitates data integration.

3.3 XML-specific data pipeline

The data modeling methodology presented in the previous
section can be used for setting up a data pipeline. The
right-hand side of Figure 5, composed of the yellow boxes
shown in Figure 4, suggests such a pipeline. It starts off
with an XML document containing the user-defined initial
scenario (or a checkpointed simulation). Then, with the
XML binding library’s unmarshaller, XML elements are
automatically converted to objects that are instances of
XML-bound classes. These intermediate storage elements
format depends on the chosen programming language.
Then, through native calls, simulation entities are filled
with data on which they will execute mathematical opera-
tions. The next step consists of copying, with native calls,
data from simulation entities to serializable objects. Then,
the XML binding library marshaller converts these objects
to XML in the form of streams or documents. The check-
point operation becomes trivial; it consists of writing the
entire simulation state to an XML document.

A user can experiment interactivity with the simula-
tion by modifying the checkpointed simulation file via a
user interface or an XML editor, and by loading back the
file in the simulator. The implementation of such a user in-
terface is simple since a XML file adopts a tree structure.

4 SAMPLE USE OF THE METHODOLOGY

The proposed methodology was applied successfully to the
implementation of an interactive simulator using existing
open-source software. The system is described below.

4.1 Pythagoras as a simulator

Pythagoras is a free, open source, agent-based simulator
that models agent entities having behaviors as well as sev-
eral properties (e.g. life left, position, side color), and
evolving on a terrain having its own properties (e.g. size,
presence of buildings, movement factor) (NPS 2008). This
software was part of Project Albert, which aimed at using
high performance computing in order to “understand the
unexpected” in a military context. Pythagoras employs
brute force computing in order to investigate the proposed
problems. It also includes a utility for batch simulation, but
does not offer facilities for interactive simulation steering.
Pythagoras is implemented in Java and already exploits
XML binding technology to load the scenario into its ker-
nel.

4.2 Applying the methodology

Pythagoras lacks several features that are needed to make it
interactive. Using Pythagoras original source code and
through a thorough reverse engineering process, we im-
plemented various functionalities, in compliance with
Figure 9. According to the diagram in the data modeling
framework (left of Figure 5), UML modeling should be the
first step in the methodology. However, since the simulator
was already programmed, the approach of reverse engi-
neering from source code to UML, then UML to XML
schema, would have slowed down the design process.
Hence, the XML schema was edited by adding essential
elements for dumping a simulation state to a file. The

Figure 9: XML and Java technology-specific dataflow

import javax.xml.bind.annotation.XmlAccessType;
import javax.xml.bind.annotation.XmlAccessorType;
import javax.xml.bind.annotation.XmlElement;
import javax.xml.bind.annotation.XmlType;

@XmlAccessorType(XmlAccessType.FIELD)
@XmlType(name = "SimulatedEntity", propOrder = {
 "lifeLeft",
 "position"
})
public class SimulatedEntity {

 protected double lifeLeft;
 @XmlElement(required = true)
 protected Position position;

 public double getLifeLeft() {
 return lifeLeft;
 }

 public void setLifeLeft(double value) {
 this.lifeLeft = value;
 }

 public Position getPosition() {
 return position;
 }

 public void setPosition(Position value) {
 this.position = value;
 }
}

Figure 8: Sample Java class

1135

Rioux, Bernier and Laurendeau

XML schema compilation thus produces one JAXB class
for every additional element. The new classes own the
same attributes as their counterparts in the simulation ker-
nel, allowing for the implementation of “save” and “re-
store” methods, which copy data back and forth from
JAXB objects to existing simulation models, in a few lines
of code.

In order to modify minimally the existing simulator,
we implemented a network bridge between Pythagoras and
a tailored simulation analysis module, allowing for the
communication between a user interface and the simulator.
The bridge sends commands such as “start,” “pause,”
“checkpoint,” and “load” and receives feedback from the
simulator, such as the current time step and a custom simu-
lation data stream. In the current implementation, the “Py-
thagoras simulation viewer” is used to visualize the execu-
tion of a simulation. In the future work section, we discuss
the implementation of a generic viewer.

Pythagoras includes a graphical scenario editor for ge-
nerating the initial XML scenario file. This editor does not
need any modification for transforming Pythagoras to an
interactive simulator. However, a user interface is needed
for modifying an XML checkpoint file. We thus built a
tree-based XML editor that allows for changing XML leaf
nodes values straightforwardly (Figure 10). The dialog
shows available parameters on the left along with their
values. The user chooses the parameters of interest and in-
puts new values in the corresponding text boxes.

Based on the above tools, we propose a procedure that,
once completed following the correct order in its various
steps, leads to interactive simulation. When the user no-
tices an interesting event he would like to explore with
mode detail, he should:

1. stop the simulation;
2. save the current simulation state to an XML file;
3. open the file with the simulation parameters editor

dialog;
4. perform the changes he wants to bring to the

course of action in the simulation;

5. save the file;
6. load it back into the simulator;
7. resume the execution of the simulation.
We can see from the previous paragraphs that the con-

version of Pythagoras from a batch simulator to an interac-
tive simulator involves some changes in the original code
and the implementation of several utility programs. On the
other hand, the native use of XML as a data format in Py-
thagoras greatly facilitated the use of the proposed meth-
odology. Also, XML libraries were easily found since there
are numerous available implementations for the Java pro-
gramming language in which Pythagoras is programmed.

4.3 Lessons learned

The following lessons were drawn from the experience of
applying the proposed methodology with the Pythagoras
simulator as a test bed:

• Open source code facilitates the application of the
methodology. The more control a user has on
software, the easier it will be for him to modify
existing functionalities and add new ones. For the
current demo, the learning curve was steep. How-
ever, reverse engineering tools help developers to
get a better hand on complex software architec-
tures.

• MDE generally applies if a model is already
available. In completing the current work, we did
not use MDE, but rather did modify the XML
schema manually. It was easier to do so because
the advantage of using current software engineer-
ing tools over manual techniques was not clear.
Future work section discusses the use of auto-
mated tools for solving that problem.

• The use of standard data formats facilitates inte-
gration. Since XML was initially used by Py-
thagoras as the basic data format, the integration
with the proposed methodology was straightfor-
ward. Other data formats should provide serializa-

Figure 10: Simulation parameters configuration dialog

1136

Rioux, Bernier and Laurendeau

tion and deserialization methods in order to allow
for the proposed methodology to be exploited suc-
cessfully. Several data formats other than XML
exist that meet these requirements. However,
XML offers additional functionalities that other
data formats are lacking (e.g. data manipulation
with XQuery and XSLT, direct data binding, sim-
ple visual representation).

• The compiled schema semantics during XML
binding is limited. The XML schema binding
compiler that we used in the current implementa-
tion does not support relations other than “aggre-
gation” and “attribute” between elements. Rela-
tions such as “inheritance” were added through
the development of a compiler plug-in that offers
a richer semantic to be added to the data model.

• The methodology requires a minimal set of essen-
tial functionalities to be supported by the simula-
tor. The only essential feature that a simulator
must implement is the ability to checkpoint and
resume simulations. Other features ease the de-
velopment of advanced interaction, but are not
mandatory.

The lessons demonstrate that, despite limited function-
ality of the demo application described in this section, the
methodology was applied successfully; a non-interactive
simulator was transformed to an interactive one. We dis-
cuss issues that can be improved in the future work section.

Methodologies similar to the one proposed in this pa-
per are found in the literature. For example, (Harrison et al.
2005) suggest a process called KARMA, which aims at
capturing the knowledge of experts into reusable and inter-
operable models that can persist over several applications.
It is based on software engineering concepts, tools, and
best practices to guide modelers in the development of
models through a modular, small-grained configuration
based on XML. This work compares to the one presented
here because a methodology is proposed for developing a
generic framework for modeling and simulation. However,
our work focuses on the issues of analysis and interaction
during a simulation rather than on modeling and interop-
erability issues.

(Kurtev et al. 2005) propose a method for transform-
ing XML documents into an application-specific model.
General transformation concepts that form our generic
conceptual data model were borrowed from this work. For
the current applications, XML is sufficient, but sometimes
XML schema semantics lacks expressiveness.

Several software libraries allow for the implementa-
tion of interactive simulation tools. (Brooke et al. 2003)
developed the RealityGrid computational steering library.
A user must add instrumentation code at well-defined loca-
tions in order to update parameters, retrieve simulation re-
sults and control the execution of the simulation. This ap-
proach is therefore less flexible than ours, because one

must update the source code every time an additional pa-
rameter is added. SciRun (Parker et al. 1997) adopts a
component-based approach for developing simulation
code. This method involves more work when a simulator is
already implemented, as the original simulation software
has to be decomposed into simple components.

In the current implementation, XML was chosen for
several reasons, but the main rationale was the possibility
of exploiting a single technology throughout the entire data
pipeline: from visual representation to data binding or
stream transformation. Several other data formats could
have been used, such as HDF5 or NetCDF, which are bi-
nary data formats (McGrath 2003). However, the latter
technologies do not offer as much flexibility and ease of
use as XML does. Also, the conversion from a technology-
independent data model (e.g. UML) to a technology-
dependent data model (e.g. XML schema) is not as
straightforward as for the XML technology.

(Shi et al. 2002) propose a data pipeline that allows for
the extraction of knowledge from simulation results. They
use principal components analysis and rough sets theory in
order to extract knowledge from the data flow coming
from a simulator. Our approach is more generic as it does
not impose any analysis technique on the data pipeline
processing.

5 FUTURE WORK AND CONCLUSION

We showed that the methodology presented in this paper
can be successfully applied for developing a specific appli-
cation. However, it can be improved in several ways. First,
the data modeling framework could be fully automated
(left of Figure 5). In fact, using a stereotype on appropriate
classes, the UML diagram could be converted to XSD, the
XSD compiled to source code and methods that copy data
to/from objects automatically generated. This process is
relevant for a new simulator design and one that was re-
versed engineered.

Also, we are currently designing and implementing a
generic visualization environment that will allow its users
to manipulate data in an immersive virtual reality environ-
ment. We plan on integrating our entire data pipeline, so
that multiple simulation instances can be visualized simul-
taneously.

Finally, the transformation of Pythagoras from a batch
run type of simulator to an interactive simulator is the be-
ginning of a long term project. We plan on modifying sev-
eral additional simulators and experiment whether or not
users perform better in the understanding of a complex sys-
tem model using the interactive version.

ACKNOWLEDGMENTS

This work was supported in part by a post-graduate schol-
arship from the Natural Science and Engineering Research

1137

Rioux, Bernier and Laurendeau

Council of Canada (NSERC), the “Fonds de recherche sur
la nature et les technologies” (FQRNT), and the IMAGE
project at DRDC-Valcartier. This support is gratefully ac-
knowledged.

REFERENCES

Atkinson, C., and T. Kuhne. 2003. Model-driven develop-
ment: a metamodeling foundation. Software, IEEE 20
(5): 36-41.

Boyno, E. A. 2006. XML: What, What, Who and Where.
ISECON.

Brooke, J. M., P. V. Coveney, J. Harting, S. Jha, S. M.
Pickles, R. L. Pinning, and A. R. Porter. 2003. Compu-
tational Steering in RealityGrid. UK e-Science All
Hands Meeting: 2–4.

Carlson, D. 2006. Semantic Models for XML Schema with
UML Tooling. 2nd International Workshop on Seman-
tic Web Enabled Software Engineering.

Harrison, N., B. Gilbert, A. Jeffrey, R. Lestage, M. Lau-
zon, and A. Morin. 2005. KARMA: Materializing the
Soul of Technologies into Models. The Interser-
vice/Industry Training, Simulation & Education Con-
ference (I/ITSEC).

IBM 2008. Rational Rose. Available via
<http://www.rational.com> [accessed June
23, 2008].

Kent, S. 2002. Model Driven Engineering. Integratted
Formal Methods. Third International Conference, IFM:
15-18.

Kurtev, I., and K. van den Berg. 2005. Building adaptable
and reusable XML applications with model transforma-
tions. Proceedings of the 14th international conference
on World Wide Web: 160-169.

McGrath, R. E. 2003. XML and Scientific File Formats.
2003 Seattle Annual Meeting.

NPS 2008. Pythagoras. Available via <http://
harvest.nps.edu> [accessed June 23, 2008].

Parker, S. G., D. W. Weinstein, and C. R. Johnson. 1997.
The SCIRun computational steering software system.
Modern software tools for scientific computing table of
contents: 5-44.

Schulz, H. J., T. Nocke, and H. Schumann. 2006. A
framework for visual data mining of structures. Pro-
ceedings of the 29th Australasian Computer Science
Conference-Volume 48: 157-166.

Shi, X., J. Chen, H. Yang, Y. Peng, and X. Ruan. 2002. A
Novel Approach to Extract Knowledge from Simula-
tion Results. The International Journal of Advanced
Manufacturing Technology 20 (5): 390-396.

Wikipedia 2008. Extensible Markup Language (XML).
Available via <http://en.wikipedia.org/
wiki/XML> [accessed June 23, 2008].

Wikipedia 2008. XML Data Binding. Available via
<http://en.wikipedia.org/wiki/XML_dat
a_binding> [accessed June 23, 2008].

AUTHOR BIOGRAPHIES

FRANÇOIS RIOUX received the B.Eng. degree in Elec-
trical Engineering at Laval University in 2003. He received
the M.Eng. degree from McGill University in 2005. He is
completing his Ph.D. degree in Electrical Engineering at
Laval University. He performs research in collaboration
with Defence R&D Canada – Valcartier on the topics of
interactive simulation and visualization applied to solving
complex systems. His email address is <fri-
oux@gel.ulaval.ca>.

FRANÇOIS BERNIER received the B.Eng. degree in
Engineering Physics and the M.Sc. and the Ph.D. degree in
Electrical Engineering at Laval University in 1997, 1999,
and 2008 respectively. In March 2003, he joined the De-
fence R&D Canada – Valcartier as a Defence Scientist in
the Simulation and Comprehension of Complex Situations
group, in the System of Systems (SoS) Section. He has
been involved in SoS related research on capability engi-
neering, lead a project on combat identification and set up
the Virtual Immersive Facility, which explores the poten-
tial of advanced visualization and interactive simulation for
the DND/CF. His email address is
<francois.bernier@drdc-rddc.gc.ca>.

DENIS LAURENDEAU received the B.Eng. degree in
Engineering Physics and the M.Sc. and Ph.D. degrees in
Electrical Engineering at Université Laval in 1981, 1983
and 1986 respectively. He joined the Department of Elec-
trical and Computer Engineering at Laval University in
1987 where he is now a full-time professor and director of
the Computer Vision and Systems Laboratory. He is also
director of REPARTI, a NATEQ-funded (Nature and
Technology Funding Agency, Province of Quebec) re-
search center conducting research on distributed intelligent
environments. Dr. Laurendeau’s research work focuses on
range sensor design, modeling and analysis of 3D data,
modeling for virtual and augmented reality, biomedical ap-
plications of virtual reality, and simulation. His email ad-
dress is <laurend@gel.ulaval.ca>.

1138

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

