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ABSTRACT

Event based simulations are an important scientific appli-
cation in many fields. With the rise of cluster computing,
distributed event simulation optimization becomes an essen-
tial research topic. This paper identifies cross-node event
queues as a major source of slow down in practical parallel
event simulations and proposes dynamically moving entities
between nodes to minimize such remote event queues. The
problem statement is formalized and an algorithm based on
an approximation algorithm for the Capacitated Minimum
K-Cut Problem is proposed. The algorithm is simulated
and results are presented that show its effectiveness. For
simulations with reasonably regular structural relationships
between entities, reductions of remote entity queues from
80 to 90 % are demonstrated.

1 INTRODUCTION

Cluster computing is quickly becoming the primary super-
computing method, due to its great and improving cost
effectiveness. Nodes in the cluster are typically common
computers connected via a network and may even be run-
ning different platforms. Cluster computing thus present
challenging problems for software designers: applications
must be effectively parallelized to run on multiple machines
with separate memory and instruction streams, application
execution must be synchronized by the machines commu-
nicating with each other over a relatively slow network
(typically an IP network), and application software may
need to run on multiple platforms to get full utilization
from the network. Because of these challenges, tools are
needed to ease cluster-based application development.

One of the common applications to run in a super-
computing environment is discrete event simulation (DES).
DES is used in a wide variety of applications such as man-
ufacturing models, computer network models, and artificial
intelligence research. Because of this, there has been inter-
est in creating cluster-based discrete event simulators called

parallel discrete event simulators (PDES). Amdahl’s Law
(Amdahl 1967) bounds the effectiveness of parallelization
in applications with sequential components, and DES is
naturally highly sequential; the semantics of DES in fact
demand events are executed in sequential order. Thus DES
is an extremely difficult problem to distribute across a clus-
ter, and is very sensitive to dependencies among simulation
entities. Event simulations must be written specifically with
cluster applications in mind, or else it is not uncommon to
see the total simulation time increase as a result of executing
the simulation on a cluster. In this study, we examine the
problem and propose a method of avoiding this situation.

1.1 Terminology

A quick note on terminology. Throughout this paper we
will use the terms node, entity, and event, for which it will
be useful for all readers to have a common understanding.
A node refers to a single machine on the cluster. An entity
is an autonomous simulation object, consisting of its own
memory and event handling methods. An event is a method
invoked on an entity at a particular simulation time. An
entity invoking an event on another entity is referred to as
the entity queuing an event to the other entity and such an
occurrence is called an event queue.

2 PROBLEM STATEMENT

A distributed event simulation instance consists of a set
of entities E residing on a set of nodes N. These entities
have memory associated with them and contain references
to each other. Using these references, entities queue events
to other entities in the simulation. Running on a single
machine, these associations among entities cause no special
problem. Running on a cluster, entities queuing events to
entities resident on different nodes limits the extent to which
the simulation can be executed in parallel. The best case
event simulation for a distributed environment is when the
entities naturally separate into |N| groups that do not queue
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events between each other, and each node contains all of
the entities in one of the groups. At the other end of the
spectrum, the entities may contain only references to entities
residing on different nodes and all event queues cross node
boundaries. Such a simulation is guaranteed to run slower
on the cluster as a whole than on any single machine in the
cluster. An entity queuing an event to an entity on the same
node is called a local queue, while event queues across
node boundaries are called remote queues. Maximizing the
number of local queues maximizes the benefits of running
the simulation on a cluster.

Clearly the distribution of entities in the cluster can
have a large impact on the performance of the simulation.
If entities that queue events to each other often are located
on different nodes, it will increase the number of remote
queues and slow down the simulation considerably. Previous
PDESs such as DSIM (Chen and Szymanski 2005) provide
simulation APIs to coordinate the placement of entities
at initialization time so the programmer can instruct the
simulator on the optimal distribution. This works well for
simple simulations, but has a number of drawbacks. Existing
simulations designed to run on a single machine must be
modified to place entities optimally during initialization, and
it may not be clear what the optimal distribution is. In some
simulations it may be impossible to know up front what the
best way to place the entities is, or the optimal distribution
of entities may change over time. In such cases, there is
a need for a simulator that can dynamically redistribute
entities during runtime.

2.1 Related Work

To the knowledge of the authors, no PDESs currently exist
that are capable of moving entities between nodes. Many
PDESs have been implemented, such as DSIM (Chen and
Szymanski 2005), Parallel NS-2, SPADES (Riley and Riley
2003), and PARASOL (Pasquini and Rego 1999), but all
of them rely on static entity distribution. One reason for
this is probably that knowing how to move an entity, even
if it is clear one needs to be moved, is not a simple task.
Typically an entity at the simulator implementation level is
a structure or object in C or C++ that may contain pointers
to other objects or variables that are included in the memory
associated with the entity. To move that entity, all that data
has to be rounded up and transported to another node; not
a straightforward task with bare C/C++. Because of this
limitation, there has similarly been no research we are aware
of into algorithms for moving entities between nodes.

2.2 Direct Model

JiST (Java in Simulation Time) (Barr 2004), a sophisticated
Java-based DES recently extended by our research team
to execute in a cluster environment, drastically simplifies

the task of dynamically moving entities. Java natively
supports reflection, allowing developers to programmatically
inspect object structure during runtime. Because of this,
data members of entity objects can be easily examined,
serialized, and transmitted to another node.

The ability to transport entities between nodes then
raises the larger question: when should an entity be moved
from one node to another? How do you determine the
optimal distribution of entities? The direct formalization
of this problem as follows. Let p : E ×E → ℜ be the
probability an entity queues an event to another entity, so

∀i ∈ E : ∑
j∈E

p(i, j) = 1. (1)

Let r : E→ℜ be the rate at which an entity generates events.
Let S : E →ℜ be the size of an entity, U : N→ℜ be the
capacity of a node, and Ni be the set of entities resident
on node i. Let δ : E → N be the mapping of entities to
nodes. Let cm, cl , and cr be the cost of moving an entity,
a local queue, and a remote queue, respectively. Define
the cost functions Cm : E×N → ℜ, Ce : E×N → ℜ, and
C : E×N→ℜ for some time length t:

Cm(e,n) =

{
0 if δ (e) = n
cm o.w.

(2)

Ce(e,n) =

{
cl if δ (e) = n
cr o.w.

(3)

C(e,n) = ∑
i∈E

Ce(e,δ (i))r(e)p(e, i)t +Cm(e,n). (4)

Note that C(e,n) is the cost of moving entity e to node
n, including the expected future costs of events queued by
e. Now we have the optimization problem: find δ (e) to
minimize

∑
e∈E

C(e,δ (e)) (5)

subject to

∀n ∈ N : ∑
e∈Nn

S(e)≤U(n). (6)

This problem as written is a non-linear form of the Gen-
eralized Assignment Problem (GAP). GAP is NP-Hard (Co-
hen, Katzir, and Raz 2006), and approximation algorithms
for the non-linear GAP are only known for cases where the
problem can be written as piecewise linear (Martello and
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Toth 1990). Here, the non-linearity arises because the cost
function C is dependent on the entity mapping δ , and thus
cannot be easily made piecewise linear. There are no known
algorithms for GAP problems with such dependencies, so
our direct model will need to be reformulated.

2.3 Graph Model

Define an interaction graph G with the set of entities E
as vertices. The edges between the vertices have a weight
w : E×E→ℜ defined as

w(u,v) = r(u)p(u,v)+ r(v)p(u,v). (7)

The weight of an edge is the average number of events
queued between the two entities. The weight of an edge
between entities u and v is 0 (the edge does not exist) if
p(u,v) = p(v,u) = 0, meaning the two entities will never
queue events to each other.

Now the problem is to partition the vertices into |N|
sets such that the weight of the edges with vertices in two
different sets is minimized, subject to the constraint of Eqn 6.
This problem is referred to as the Capacitated Minimum k-
Cut Problem (KCUT) and is also NP-Hard (Guttmann-Beck
and Hassin 2000). However, KCUT admits a polynomial
time approximation algorithm if k is fixed (as in this case
where k = |N|) and the global optimum is approximable to
1+1/k (Gaur, Krishnamurti, and Kohli 2005).

This model tacitly sets cl = 0 by ignoring all edges
within sets of vertices. The cost of moving entities (cm) is
also ignored, thereby encouraging the algorithm to move
entities no matter the short term fixed cost if the move
will result in continuing long term gains of reduced remote
queues. Thus this model is good for long simulations (t is
large), but could make poor decisions in short simulations or
toward the end of simulations. After the algorithm to solve
the problem is introduced, we will discuss modifications to
the algorithm that can be done to reintroduce the cost of
moving an entity into the decision process.

3 ALGORITHM

The algorithm presented here is based on the one introduced
by Gaur et al. (Gaur, Krishnamurti, and Kohli 2005). It
begins with the vertices of the graph partitioned into feasible
subsets. In this case, this is performed automatically by the
simulator when it initially distributes entities to the nodes.
Let

wuNi = ∑
v∈Ni

w(u,v) (8)

Algorithm 1: An approximation algorithm for ca-
pacitated minimum k-cut

Data: An interaction graph
Result: An approximately optimal distribution of

entities
Partition the graph into feasible subsets
while true do

Find a pair of vertices u ∈ Ni and v ∈ Nl such
that Eqn 9 is satisfied
if no such pair of vertices exist then

break
end
else

Move u to node l and v to node i
end

end

be the total weight of edges between u and the vertices of
Ni. Define the swapping condition for vertices u ∈ Ni and
v ∈ Nl as

|Ni|wuNi + |Nl |wvNl < |Ni|wuNl + |Nl |wvNi . (9)

The condition will be true essentially when the graph after the
switch is more optimal than before the switch. The terms in
the equation are scaled by |Ni| and |Nl | for technical reasons
related to the overall convergence of the algorithm (Gaur,
Krishnamurti, and Kohli 2005). The high level algorithm
then is given in Algorithm 1.

Gaur et al. (Gaur, Krishnamurti, and Kohli 2005) show
that when the swapping condition (Eqn 9) is met for all
pairs of vertices, the resulting solution is within 1 + 1/k
of the global optimum. Additionally, since the space of
pairs of vertices is searchable in polynomial time (there
are
(|N|

2

)
= |N|(|N|−1)

2 pairs of vertices), results from (Orlin,
Punnen, and Schulz 2004) can be applied that show the
algorithm will complete in polynomial time. Note also that
since entities are always swapped as opposed to moved
individually, the capacity constraints of Eqn 6 are always
met.

3.1 Distributed Computation

Since in this application the algorithm will always be ex-
ecuting on a cluster, it is advantageous to distribute the
computations as much as possible across the nodes. Note
that generally r(u) and p(u,v) are only known on the node
containing u. Therefore the quantity w(u,v) is not known
on any node when u and v are resident on separate nodes.
Define the partial edge weight w′ as
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w′(u,v) = r(u)p(u,v) (10)

so that

w(u,v) = w′(u,v)+w′(v,u). (11)

Define also the partial weight sums

w′uNi
= ∑

v∈Ni

w′(u,v) (12)

and

w′Niu = ∑
v∈Ni

w′(v,u). (13)

w′uNi
is the total partial weights of edges beginning at u

and ending in Ni. w′Niu is the total partial weights of edges
beginning in Ni and ending at u. Node i knows w′uNi

for all
u ∈ Ni and w′Niu for all u ∈ N. We can now rewrite Eqn 8
as

wuNi = w′uNi
+w′Niu. (14)

This approach is analogous to converting the interaction
graph into a directed graph with two edges between each
pair of nodes. The edges now represent the cost of remote
queues on an entity (the destination vertex) by another entity
(the source vertex). Each node knows the weight of edges
beginning at entities contained within it.

Going back to the swapping condition (Eqn 9), we see
that half the information is contained on node i (wuNi , w′uNl

,
and w′Niv) and the other half on node l (wvNl , w′vNi

, and
w′Nlu). We assume that |Ni| is known at all nodes for all i,
and define a partial swapping condition for pair of entities
u ∈ Ni and v ∈ Nl containing only information resident on
node i.

|Ni|wuNi < |Ni|w′uNl
+ |Nl |w′Niv (15)

In order for the swapping condition to be true for a
pair of entities, the partial swapping condition must be true
for the pair of entities on at least one of the nodes holding
one of the entities. Thus each node will search for pairs
of entities for which the local partial swapping condition is
true. When a pair is identified, it is sent to the root node. If
the root node has received that pair from the other node, it
knows it can swap the two entities. If it has not received that
pair, it can either wait to hear from the other node or request
from the other node the values in the partial swap condition.
Thus the algorithm proceeds according to Algorithm 1, but

the data computation and pairwise searching is distributed
evenly across the nodes, with a root node needed only to
perform simple pair aggregation.

3.2 Taking cm Into Account

As mentioned earlier, the graph model of the entity distribu-
tion problem ignores the cost of moving an entity between
nodes. As this cost could be substantial, at least relative to
the expected gain of swapping two entities, it needs to be
accounted for. Thus we bring back t, the window of time
over which we are considering the value of swapping two
entities, and cm, the cost of moving an entity. The swap-
ping condition can be modified to account for the moving
cost as follows. Note that we are assuming without loss
of generality that cr = 1 and cm is given as a multiple of
cr (i.e. cm = 2 means that the cost of moving an entity is
twice that of a remote queue).

|Ni|wuNit + |Nl |wvNl t +2cm < |Ni|wuNl t + |Nl |wvNit (16)

or

(|Ni|wuNl + |Nl |wvNi −|Ni|wuNi −|Nl |wvNl )t > 2cm (17)

This is a stronger condition saying in effect that two
entities will only be swapped if the expected gain from
the swap over t time units exceeds the cost of moving the
two entities. Note that the modified algorithm no longer
solves KCUT, but in fact solves a problem closer to the
direct model. Early in the simulation, t will be large so as
to overpower the factor of cm. However as the simulation
nears the end, t will decrease and cm will become a factor
and unwise entity swapping will be prevented.

3.3 Parameter Estimation

Among the data used in the calculations described above,
r, p, and cm are not known a priori. cm can be discovered
through testing by measuring the time required to move an
entity compared to the time lost due to a remote queue and
will be constant from simulation to simulation. r and p
will vary according to the simulation and therefore must be
measured at runtime.

As the simulation is running, the simulation controller
on each node is aware of all the events queued to and from
entities resident on that node. Therefore, as the simulation
runs node i can keep a running estimate of p(u,v) for u∈Ni
and v ∈ Ni and r(u) for u ∈ Ni. These estimates will always
be imperfect, however, and in the simulation section we
will look at the effect of inaccurate values of r and p.
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Table 1: Performance Simulation Results

Topology Percent Decrease in Remote Queues

Random 32%

Torus 81%

Hypercube 88%

4 SIMULATION RESULTS

To verify the effectiveness of the algorithm, a simple PDES
is created. Each entity contains a set of dependent entities
it sends events to and the probability with which it sends
events to each of these entity. When an entity receives an
event, it randomly selects an entity out of its dependency
set with the given probability and queues an event to it.

The dependency set of each entity is determined by
the topology, a simulation parameter. Three topologies are
used: random, torus, and hypercube. Random topology
assigns each entity a given number of randomly selected
dependencies. Torus topology imagines the entities arranged
in a two dimensional grid with wrap-around (or the surface of
a toroid / donut) and assigns each entity four dependencies:
the entities directly above, below, left, and right in the grid.
Hypercube topology arranges the entities as vertices in a
binary hypercube of given dimension n with the dependency
set of each entity being the n neighbors in the hypercube
structure. These different topologies offer varying amounts
of structure to the optimization algorithm.

In the simulations for which results are presented here,
the random topology contains 1000 entities each with 5
dependencies, the torus topology uses a 25 by 40 grid of 1000
entities, and the hypercube topology has dimensionality 10
constituting 1024 entities. Entities are distributed randomly
across 10 nodes, 1000 random seed events are created, and
then the simulation begins, running for 10000 time steps.

4.1 Overall Performance

For each set of simulation parameters, the simulation is run
with both the entity distribution algorithm turned on and
off, so that a comparison can be made in the number of
remote queues. Results are presented as a percent decrease
in remote queues from the baseline simulation with no entity
movements. Table 1 summarizes the results.

The optimization clearly shows the ability to reduce
the number of remote queues in the event simulation. For
simulations with regular structure, such as a torus or hy-
percube, this reduction can be dramatic. To put the results
into perspective, if a parallel event simulator processing
a simulation with hypercube topology spends 50% of its
time recomputing events due to remote queues, an 88%

Figure 1: Hypercube Simulation Algorithm Performance

reduction in remote queues leads to a 400% decrease in
overall simulation time.

4.2 Convergence

Figure 1 shows a plot of the number of event queues and
entity movements versus simulation time for the hypercube
simulation. Results from other simulations are similar. The
algorithm converges fairly rapidly, making 80% of its gains
in the first 40% of the simulation. The number of entity
swaps also decreases quickly with time.

4.3 Effects of Parameter Estimation

First, a series of simulations are run to determine the effects
of estimating p(u,v) and r(u). In this implementation of
the algorithm, nodes wait until an entity has sent 50 events
before they begin using the calculated values of p(u,v) and
r(u). This approach is compared with using the exact value
of p(u,v), which in this case is known by the entities, and
with setting r(u) = 1 for all u, thus taking r(u) out of the
equations altogether.

Results show that these variations have no impact on
the overall results. Figure 2 depicts this for p(u,v), with
the plots of estimated and exact nearly overlapping. In
this case of p(u,v), this shows that exact values (which
practical simulators will never have) are unnecessary to the
convergence of the algorithm. Designers may even be able
to reduce the number of events per node required before
parameter estimation begins in order to speed up conver-
gence. In the case of r(u), it shows that in practical terms
it may be safely excluded, although no extra computational
overhead is required to use it.

4.4 Effects of cm

cm, the ratio of the cost of an entity movement to the cost
of a remote queue, may be difficult to measure in practice
or may vary from simulation to simulation. Thus it is
important to know the effect the value of cm has on the
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Figure 2: Effect of p(u,v) Estimation on Performance

Figure 3: Effect of the Value of cm on Performance

overall performance of the algorithm. A set of simulations
are run that vary cm from very small (1) to very large (1000).

Again results show that the value of cm has no bearing
on the performance of the algorithm. Figure 3 shows the
plots for all 4 test cases nearly overlapping. One can see
why by examining the modified swap condition (Eqn. 17).
The importance of cm is determined in large part by the
value of t, which in this case equal to the current time
subtracted from the end simulation time (10000). Thus for
most of the simulation, the effect t swamps the effect of
cm even if it is very large. The exact value of cm then may
have an impact at the end of simulation, but by that time
nearly all the gains from entity movements have already
been realized.

In real implementations, designers may wish to further
reduce the number of entity movements for practical reasons,
such as reducing network bandwidth consumption. One
option is to remove the factor of t from the swap condition
and replace 2cm with the absolute minimum value at which
entity swaps should occur. In this case, the value of the
constant will have significant impact of the performance of
the algorithm and therefore will need to be carefully tuned.

5 CONCLUSION

Discrete event simulation is an important application in fields
ranging from economics to electronics. It has proven to be
a difficult problem to run in parallel, due to its sequential
nature. This difficulty is embodied by the remote event
queue, which is the source of inter-node dependencies. By
reducing the number of these remote queues, the simulation
will run more freely in parallel.

This paper has proposed moving entities between nodes
during runtime to reduce the number of remote queues. A
formalization of this dynamic entity distribution problem
was presented, then an algorithm to solve the problem was
proposed. The algorithm was simulated and showed that
dramatic reductions in remote event queues are achieved
by employing the algorithm. Additionally, several practical
complications such as estimating the probability with which
entities queue events to other entities bear little importance
to the overall performance of the algorithm.

5.1 Future Research

The main focus of future research in this area will be
incorporating this new technique into a real parallel discrete
event simulator. This will allow evaluation of the algorithm
in a real environment and possibly new practical problems
will be identified and solved. Ultimately this will help speed
up the execution of event simulations in general, which will
aid research in many areas.
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