

PARTIAL-MODULAR DEVS FOR IMPROVING PERFORMANCE OF CELLULAR SPACE WILDFIRE

SPREAD SIMULATION

Yi Sun

Xiaolin Hu

34 Peachtree Street
Suite 1450

Dept. of Computer Science
Georgia State University

Atlanta, GA 30303, U. S. A.

ABSTRACT

Simulation of wildfire spread remains to be a challenging
task. In previous work, a cellular space fire spread simula-
tion model has been developed based on the Discrete Event
System Specification (DEVS) formalism. There is a need
to improve simulation performance of this model for simu-
lating large scale wildfires. This paper develops a partial-
modular implementation of the DEVS-based cellular space
model that eliminates the large number of inter-cell mes-
sage exchanges for improving simulation performance.
Both the modular and partial-modular approaches are pre-
sented and experiment results are provided. The results
show that the partial-modular implementation can signifi-
cantly improve simulation performance of the cellular
space wildfire spread model.

1 INTRODUCTION

Simulation of forest fire spread remains to be a challenging
task due to factors such as complex fire behavior, dynami-
cal weather condition, and large spatial area that needs to
be modeled. In previous work (Natimo, Hu, and Sun), a
discrete event forest fire spread simulation model was de-
veloped. This model uses a cellular space to model a forest
and each cell corresponds to a sub-area of the forest. Fire
spreading is a propagation process that burning cells ignite
their unburned neighbor cells. This model is based on the
Discrete Event System Specification (DEVS) (Zeigler,
Kim, and Praehofer 2000) formalism.

The DEVS formalism is derived from generic dynamic
systems theory and provides a formal modeling and simu-
lation (M&S) framework. One of the main features of
DEVS-based modeling is that it emphasizes modular (and
hierarchical) model construction, where each model is a
component with input/output ports and supports well-
defined concepts of coupling of components. These cou-
plings allow models to send messages to each other
through their input/output ports. The modular model con-

struction of DEVS brings major advantages such as model
interoperability and reuse, multi-formalism capability, and
dynamic structure change of models. An important type of
DEVS model is the cellular space model, which is com-
monly used to model complex dynamical systems with
spatial-temporal behaviors and interactions among their
subcomponents. A cellular space model includes a grid of
cells where each cell’s state can affect and be affected by
its neighbors. Formal specifications of DEVS-based cellu-
lar space models were also developed. For example, Cell-
DEVS (Wainer and Giambiasi 2002) is a specification that
extended the DEVS formalism to improve the definition of
cellular space models where each cell is defined as an
atomic model using transport or inertial delays, and a cou-
pled model that includes a group of these cells constitutes a
cellular space model. Gabriel (Wainer 2004) introduced the
main characteristics of Cell-DEVS, showing how to model
complex cell spaces in an asynchronous environment. Ex-
amples of DEVS-based cellular space modeling and simu-
lation include flow injection simulation (Troccoli et al.
2002), traffic control simulation (Davidson and Wainer
2000), forest fire spread simulation (see e.g., Natimo, Hu,
and Sun 2008, Wainer 2006), and fire containment simula-
tion (Hu, Muzy, and Ntaimo 2005), just to name a few.

To simulate large scale spatial systems such as forest
fire, a cellular space model needs to include a large number
of cells. The large number of cells poses a challenge from
the simulation performance point of view. In particular, the
huge number of inter-cell message exchanges that are typi-
cal for large scale cellular space models have a major ef-
fect on simulation performance. In a discrete event simula-
tion such as DEVS, each message is an event and triggers a
new simulation cycle (also called simulation iteration, see
the DEVS simulation protocol in Section 3.4 for more de-
tails) for the event handling. The large number of message
exchanges (referred to as message passing in this paper)
thus results in a large number of simulation cycles. Fur-
thermore, in DEVS-based modeling, because of the modu-
lar model construction, each cell is an atomic model and

1038 978-1-4244-2708-6/08/$25.00 ©2008 IEEE

Proceedings of the 2008 Winter Simulation Conference
S. J. Mason, R. R. Hill, L. Mönch, O. Rose, T. Jefferson, J. W. Fowler eds.

Sun and Hu

cell-to-cell communications can happen only through (indi-
rect) message passing. This slows down the simulation fur-
ther because of the overhead of message passing and mes-
sage handling at the model level. Based on the above
observations, this paper exploits the pattern of cell-to-cell
message passing to improve simulation performance from
two aspects: 1) reduce the number of simulation cycles
caused by inter-cell message passing; 2) remove the over-
head of message passing between cellular DEVS models.
We achieve this goal by turning the modular implementa-
tion of DEVS into a partial-modular DEVS. The partial-
modular DEVS not only removes the overhead of message
passing, but also significantly reduces the number of simu-
lation cycles for event handling. We carry out this work
based on the specific application of forest fire spread simu-
lation (Natimo, Hu, and Sun 2008). However, the main
idea of this approach could be adapted to other DEVS-
based cellular space applications.

The remainder of this paper is organized as follows. In
section 2, the background and related work is presented.
Section 3 presents the modular DEVS and partial-modular
DEVS implantations of the forest fire model. Section 4
presents the experiment results and performance analysis.
The conclusion and future work are given in section 5.

2 BACKGROUND AND RELATED WORK

The DEVS (Zeigler, Kim, and Praehofer 2000) formalism
is derived from generic dynamic systems theory and has
been applied to both continuous and discrete phenomena. It
provides a formal modeling and simulation (M&S) frame-
work with well-defined concepts of coupling of compo-
nents, and hierarchical modular model construction. These
features of DEVS bring advantages to modeling and simu-
lation such as easy experimentation, easy testing, and easy
maintenance. The cellular space DEVS modeling approach
divides the spatial space into cells where local computa-
tions are done in each cell. A cell is implemented as an
atomic DEVS model that performs the local computations
internally based on its own state as well as the neighbor
states that are received through the external ports. The cell
space is implemented as a coupled DEVS model that con-
tains a number of cells. The neighbor rule followed in a
specific application determines the couplings between
cells. Cellular space DEVS is a special case of conven-
tional DEVS and follows the same structure of DEVS
framework, e.g., external, internal and output transition
functions. As discussed before, it suffers the problem of
performance when a large number of inter-cell communi-
cations exist. This performance issue is significant for
large cellular space models.

For DEVS-based simulation, different techniques have
been researched to improve simulation performance. The
Dynamic Structure DEVS (DSDEVS) (Barros 2005) is a
specification for dynamic structure modeling based on the

DEVS formalism (Zeigler, Kim, and Praehofer 2000). It is
shown that dynamic structure modeling can potentially im-
prove simulation performance for large scale cellular space
models (Sun and Hu 2006). Dynamical structure modeling
changes models’ structure (e.g., adding/removing models)
and their couplings as a simulation proceeds. It can im-
prove the simulation performance because 1) it reduces the
initialization time because it does not load all cells at the
beginning of a simulation; 2) it speeds up the execution
time of each simulation cycle because it makes a simula-
tion focus only on the “active” cells (non-active cells are
either unloaded or removed). On the negative size, dy-
namic structure modeling brings some overhead. More de-
tails can be found in (Sun and Hu 2006). Several efforts
developed advanced simulation algorithms for improving
simulation performance. Examples of such work can be
found in (Muzy and Nutaro 2005; Hu and Zeigler 2004;
Wainer and Giambiasi 2001) where the basic DEVS simu-
lation engine was improved to handle messages and cell
activity scanning in more efficient manner. Other related
works include the quantized DEVS approach (Kofman and
Junco 2001, Beltrame and Cellier 2006), which shows that
quantization helps in improving the performance of DEVS-
based simulations by reducing the number of state transi-
tions as well as the number of messages while introducing
acceptable errors. Efficient implementation of DEVS-
based models is also studied for the purpose of improving
performance. One such work is reported in (Hall, Venkate-
san, and Wood 2003), where the authors enhance the im-
plementation by applying techniques such as pre-
computing message destinations, and using a priority
queue to sort models to achieve performance improvement
for the Joint MEASURE simulation environment. Another
technique to improve performance of DEVS models is us-
ing non-modular form that combines multiple cells into
one for faster simulation. The work (Shiginah and Zeigler
2006) proposed a non-modular formalism using closure
under coupling property of DEVS to ensure equivalency of
the models to their modular counterparts in parallel DEVS.
The speedup was gained through efficient scanning of ac-
tive cells and combining multiple cells into one atomic
model.

Other works use parallel and distributed approaches to
improve the performance of DEVS based simulation. Vari-
ous DEVS-based distributed simulation environments have
been developed such as DEVS/CORBA (Zeigler and Sar-
joughian 1999), DEVS/RMI (Zhang, Zeigler, and Ham-
monds 2006), DEVS/HLA (Zeigler, Kim, and Buckley
1999). These distributed DEVS frameworks typically in-
volve a large computation overhead. Some recent tech-
niques (Zacharewicz, Giambiasi, and Frydman 2005,
Glinsky and Wainer 2005) are used to reduce the overhead
of distributed DEVS techniques.

1039

Sun and Hu

3 MODULAR AND PARTIAL-MODULAR
APPROACHES

This section first gives an overview of the forest fire spread
model, then presents the modular and partial-modular im-
plementations of the model, and finally gives an brief per-
formance analysis of the two approaches.

3.1 Overview of the forest fire spread model

In the cellular space forest fire spread model, a forest is
modeled as a two-dimensional cell-space composed of in-
dividual forest cells coupled together according to their
relative physical geometric locations. Each cell represents
a sub-area in the forest and is implemented as a DEVS
atomic model. A cell is coupled to its eight neighbors cor-
responding to the N, NE, E, SE, S, SW, W, and NW direc-
tions respectively. Accordingly, for each cell, eight fire
spreading directions are defined. Fire spreading is modeled
as a propagation process as burning cells ignite their un-
burned neighbor cells. Each cell can be in one of the fol-
lowing six states: unburn, burning, burned, unburn-wet,
burning-wet, and burned-wet, where the -wet states model
fire suppression and not used in this paper. When a cell is
ignited, the maximum fire spread speed and direction of a
cell is calculated using Rothermel’s semi-empirical model
(Rothermel 1972) that takes into account factors such as
fuel model, slope, and wind speed and direction. This max-
imum rate of spread is then decomposed along the eight
spreading directions according to an ellipse shape. Figure 1
shows a snapshot of a simulation using real GIS data with
200x200 cells. In the figure, the red cells are burning; the
black cells are burned out; all other cells are unburned with
the different colors representing different fuel models.
More descriptions of this model and the initial conditions
of simulation can be found in (Natimo, Hu and Sun).

Figure 1: Fire spreading under GIS data

From the above description, one can see that the forest

cell space model is composed of a large number of atomic

forest cell models. Each cell executes its internal tasks and
communicates with other neighboring cells by message
passing through inter-connected ports. The process of fire
spreading for both the modular and partial-modular im-
plementations is that a cell (referred to as the source cell),
once ignited, will need to schedule the time for igniting its
eight neighbors (refers to as the destination cells). In the
modular implementation, eight time points are scheduled
and kept in the source cell, which sends out igniting mes-
sages at the appropriate time based on the schedule. This
means for a source cell to ignite its eight neighbors, eight
messages are needed (thus eight simulation cycles). The
design motivation of the partial-modular implementation is
that: the source cell does not keep the time to ignite its
neighbors. Instead, it sets the time to its neighbors and asks
them (the destination cells) to keep track of their own time-
to-burning. This “time setting” happens right after a source
cell is ignited and is realized through function call instead
of messaging passing (each cell has its eight neighboring
cells’ object references). The partial-modular implementa-
tion brings two advantages from the simulation perform-
ance point of view: first, it reduces the message passing
overhead between cells; second and more importantly, be-
cause a source cell sets all its neighboring cells’ time-to-
burn in one step (right after the source cell is ignited), it
reduces the number of simulation cycles that is needed in
the discrete event simulation. These result in simulation
performance improvement. It is worthy to point out that the
change from modular to partial-modular relies on an im-
plementation that allows a cell to directly modify the state
of its neighbor cells (instead of using message passing).
Thus it breaks the modular property of DEVS models. Be-
low we describe these two implementations in detail.

3.2 Modular Implementation

The modular implementation of forest fire spread simula-
tion is based on the classic DEVS framework. A forest cell
model in forest cell space interacts with its neighbor cells
through couplings between cells’ input/output ports. A cell
affects its eight neighbor cells through eight output ports:
outN, outNE, outE, outSE, outS, outSW, outW, and outNW,
which represent eight fire spreading directions correspond-
ing to azimuth (degrees measured clockwise from the
north) of 0, 45, 90, 135, 180, 225, 270, and 315 degrees,
respectively. Accordingly a cell is affected by its eight
neighbor cells through eight input ports: inN, inNE, inE,
inSE, inS, inSW, inW, and inNW (see Natimo, Hu and Sun
for more details). Figure 2 shows the structure of message
passing from a forest cell to its eight neighbor cells. The
dash line in the figure means using message passing to in-
voke a neighbor cell’s external transition functions. The
message passing is handled by the DEVS simulation en-
gine, which invokes a destination cell’s external transition
function at that simulation cycle. In general, messages

1040

Sun and Hu

passing to eight neighbors need up to eight simulation cy-
cles.

 outN W

outNE

outN

outW

outSW
outS

outSE

outE

Message passing to invoke
neighbor cell’s external
tra n sition functions

Up to eight simulation cycles for
passing message s to eight
neighbor cells

send
message

Figure 2: Modular implementation

Below is an informal description of the fire spreading
scenario using the cellular space model.

1. Initially a cell is ignited by an igniter atomic mod-
el. If its fire line intensity is over the ignition
threshold, it begins to burn. Otherwise, it remains
unburned.

2. Once a cell is burning, the fire starts to spread to
eight neighbor cells as shown in Figure 3.

3. An unburn cell will become burning if it receives
a fire ignition message from a neighbor cell (if the
fire line intensity is over ignition threshold as
mentioned earlier). Similarly, once this cell starts
to burn, it begins to spread fire to eight neighbor
cells. This process repeats for all cells in the cell
space during the whole simulation.

4. If a burning cell receives an input of wind speed
and direction, the cell re-calculates its remaining
fire spread delays and re-sends spreading mes-
sages to the neighbor cells.

Implementation of a forest cell’s external, internal

transition functions and output functions are listed below.
As mentioned before, the modular implementation follows
DEVS model’s specification and executes the external, in-
ternal and output functions for handling external message,
internal time event, and generate output. The advantage of
the modular implementation is simple structure and easy to
implement. However, in large cellular space model, all
cells communicate with neighbor cells frequently by a lot
of message passing. This increases the computation time
from two aspects. One is increased computation for exter-
nal transition functions. For each cell, it sends out eight
messages to its neighbors and receives eight external mes-

sages from its neighbors as well. So totally there are 8xN
(N is the number of forest cells in the cell space) external
transition functions being executed in a complete simula-
tion process. For example, if the cell space size is 100*100,
the number of external transition functions being executed
is 80000 if the fire spreads to the entire cell space. The
other aspect is the large number of simulation cycles in the
simulation engine. Since one cell sends out eight fire igni-
tion messages to its neighbor cells at different time, the si-
mulation cycles are large. The larger the number of simula-
tion cycles, the more execution time is needed to run the
simulation.

Pseudo code for a cell’s external transition function

Pseudo code for a cell’s internal transition function

Pseudo code for devs output function

3.3 Partial-Modular Implementation

The partial-modular implementation updates a cell’s state
not through message passing. The structure of the partial-
modular implementation is shown in Figure 3. In the fig-
ure, a cell updates a neighbor cell’s state and sigma di-
rectly (using function call) and all eight neighbor cells’
state (including sigma) updates are accomplished in a sin-

deltext(double e, message x)
 if (receive weather change && state is “burn-
ing”)

re-calculate fire spread delay {di} to the eight
neighbors {ci} i=1,..,8;
cself.state = burning;

cself.spread_delay = smallest {di}
 if (receive ignition message from neighbor cells)

if(cself.state = unburn){
 calculate fire line intensity;
 if (fire line intensity > threshold)

 calculate fire spread delay {di} to
 the eight neighbors {ci} i=1,..,8;

 cself.state = burning;
 cself.spread_delay = smallest {di}

deltint()
 if (state is burning && ! {di} is not empty)
 remove smallest di from {di}
 cself.state = burning;

cself.spread_delay = next smallest di
 if (state is burning and allNeighborCellBurned)

cself.state = burned;

out()
 if (state is burning)
 send message to the corresponding neighbor

1041

Sun and Hu

gle simulation cycle. Compared with the modular imple-
mentation’s eight simulation cycles, the partial-modular
implementation can reduce the simulation cycles up to
eight times.

 NW

NE

 N

 W

 SW

 S

SE

E

Update neighbor cell’s state
and sigma

One simulation cycle for
updating eight neighbor cells’
state and sigma

update state
and sigma

Figure 3: Partial-modular implementation

The fire spreading scenario using the partial-modular
implementation is stated as follows.

1. Initially a cell is ignited by an igniter atomic mod-
el and the state becomes “schedule_to_burn”.

2. When a cell is in “schedule_to_burn” state, it cal-
culates fire line intensity. If the intensity is over
threshold, the cell begins to burn. Otherwise, it
remains unburned.

3. Once a cell begins to burn, its state becomes
“burned”. Before that it calculates the fire spread
delay to eight neighbor cells and then updates
their states to “schedule_to_burn” with the associ-
ated sigma being the delay time (referred to as
time_to_burn afterwards). For each neighbor cell,
it uses a variable “ignitionSet” to remember all
the cells that want to ignite this cell and the corre-
sponding fire delay for later weather update pur-
pose. Multiple cells may try to ignite the same
cell. If that happens, the cell’s time_to_burn is
updated only when the new calculated spread de-
lay is smaller than the existing time_to_burn.
When a cell’s time_to_burn is updated, its tN is
updated by the simulator correspondingly and the
simulator is added to global simulation engine’s
imminent set. This allows the new updated
time_to_burn to be treated properly by the simula-
tion engine. Specifically, in the simulation proc-
ess, the simulation engine updates its data struc-
ture based on the imminents set and gets the
smallest tN from them in each simulation cycle.
Step 2 and step 3 repeat for all cells in the cell
space during the whole simulation process.

4. If a burned cell receives an input of wind speed
and direction, and has more than one neighbor
cells unburned, it re-calculates the fire spread de-
lays. For each unburned neighbor cell, it compares
the new fire delay with all those that want to ig-
nite this neighbor cell (excluding the cell itself)
and selects the smallest one as the new
time_to_burn.

The pseudo codes of the partial-modular implementa-
tion’s external and internal transition functions are listed
below.

Pseudo code for a cell’s external transition function

Pseudo code for a cell’s internal transition function

This implementation eliminates the frequent commu-
nications between neighbor cells. Compared to the modular
implementation, the partial-modular implementation re-
duces the execution time from two aspects. On one hand, it

deltint()
if (state is schedule_to_burn)
 calculate fire line intensity;
 if (fire line intensity < threshold)
 cself.state = unburned

 else if (fire line intensity >= threshold)
 cself.state = burned

 calculate fire spread delay {di} to the
 eight neighbors {ci} i=1,..,8;
 for (each neighbor cell ci && ci.state !=
 burned)
 ci.ignitionSet.add(cself , di)
 if(di < ci.time_to_burn)
 ci.time_to_burn = di
 ci.state = schedule_to_burn
 update the simulator by adding ci as
 an imminent;

deltext(double e, message x)
 if (receive ignition message)
 cself.state = schedule_to_burn

if (receive weather change)
 if(state is burned && at least one neighbor
 is not ignited)

re-calculate fire spread delay {di} to the
eight neighbors {ci} i=1,..,8
for (each neighbor cell ci && ci.state!=
burned)

ci.time_to_burn = exclusive_min(di,
min(ci.ignitionSet.delay) //reschedule
time to burn
ci.ignitionSet.add(ci, cself)

1042

Sun and Hu

reduces the execution time of external transition functions.
On the other hand, it reduces the number of simulation cy-
cles in simulation engine. The second aspect is more sig-
nificant (see section 3.4 for more details). From perform-
ance point of view, the major difference lies in that partial-
modular implementation eliminates the frequent execution
of the external transition functions triggered by inter-cell
message passing and thus reduces the number of simula-
tion cycles. A brief comparison and analysis about the exe-
cution time is provided next.

3.4 Execution Time Analysis

To understand how the partial-modular implementation re-
duces the simulation time, it is necessary to look at the si-
mulation protocol of DEVS models. The modular imple-
mentation closely follows DEVS models’ external, internal
and output functions to simulate the forest fire spread
process. The partial-modular implementation directly up-
dates a cell’s state and sigma, and the corresponding simu-
lator’s next event time tN in the simulation engine. Both
these two implementations use the DEVS simulation pro-
tocol shown below. The simulation engine is a heap-based
coordinator.

 while (tN < predefined_fireSpreadTime){

imminents.tellAll("computeOutput“,tN)
imminents.tellAll("sendOutput")
imminents.tellAll("ApplyDelt“,tN)

 UpdateHeap();
 tN = Heap.getMin();
 }

In every simulation cycle, the simulation engine asks
all imminents (whose tN = global tN) to execute the com-
puteOutput, sendOutput and ApplyDelt functions. At the
end of the cycle, the coordinator lets all imminents update
their newest tNs in the heap and get the smallest tN for the
next simulation cycle.

Based on the above simulation protocol, the execution
time of the modular implementation is denoted by formula
(1).

 T = ∑
=

N

i
it

1
 (1)

Where T is the total execution time, N is the number
of simulation cycles, ti is the execution time at every simu-
lation cycle i. ti includes the time to execute output func-
tion, external and internal functions, as well as to find the
smallest tN.

The execution time T of the partial-modular imple-
mentation is denoted by formula (2).

 T = ∑
=

'

1

)'(
N

i
it (2)

Where N' is the number of simulation cycles in the
partial-modular implementation, ti' is the execution time at
each simulation cycle i. Based on the previous analysis, N'
is less than N and the ratio of N/N' can reaches 8 (the exact
ratio will depend on the specific model behavior). On aver-
age, ti' is larger than ti. This is because the partial-modular
implementation accomplishes fire spread operation in one
cycle, which means every simulation cycle involves com-
putation of Rothermel’s fire behavior model. However, in
the modular implementation, some of the cycles does not
need to compute Rothermel’s fire behavior model (e.g.,
when an already ignited cell receives an ignition message).
Therefore the partial-modular implementation’s execution
time in one cycle is larger. But overall the execution time
of the partial-modular method is less than the modular me-
thod as shown by the experiment results next.

4 EXPERIMENT RESULTS AND ANALYSIS

To compare the simulation performance between the mod-
ular and partial-modular approaches, two experiments on
forest fire spread model are conducted using different mea-
surements. The simulations were conducted on a Toshiba
laptop with Intel Celeron (M) 1.6GHZ processor, 1.2G
memory, and Windows XP OS running DEVSJAVA ver-
sion 3.0. The experiments are based on the forest fire mod-
el that uses a dynamically structure implementation (see
Natimo, Hu and Sun for more details) and a Heap based
simulation engine. The same model parameters are used in
both experiments. The first experiment is conducted to
compare the execution time for different cell space size.
The second one compares the execution time for multiple
ignitions behavior.

4.1 Execution Time for Different Cell Space Size

Figure 4 shows the total execution time (in milliseconds)
for different cellular space models on a 40000 simulation
time. Performance results were collected based on every
2000 interval simulation time. The experimental results
were measured on different cellular space sizes from
100*100, 200*200, 500*500 to 1000*1000, which are dis-
played in the figure below. For each cell space size the left
diagram displays the execution time T and the number of
simulation cycles N for the both approaches. The right dia-
gram displays the ratio of T over N of the two approaches.

1043

Sun and Hu

(a) 100*100 Cell Space Size

(b) 200*200 Cell Space Size

(c) 500*500 Cell Space Size

(d) 1000*1000 Cell Space Size

Figure 4: Execution time for different cell space size

The results displayed by the left diagrams in Figure 4
show one principle that the execution time has a positive
relationship with the number of simulation cycles, i.e., the
execution time increases with the increase of simulation
cycles. Note in Figure 4(a) 100*100 cell space, the execu-
tion time remains almost the same after around 22000 si-
mulation time. This is because all cells in the cell space are
in burned state after that. The results displayed by the right
diagrams in Figure 4 show another principle that the exe-
cution time in one simulation cycle (T/N) has the same
trend for the two approaches. When the simulation pro-
ceeds, the number of fire front cells increases, so the exe-
cution time in one simulation cycle increases as well (be-
cause there are more cells are involved in the simulation).

However the partial-modular approach uses more time per
cycle than the modular approach. This is consistent with
our discussion before.

The speedup of the partial-modular implementation
over the modular implementation is given in Table 1 for
the four cellular space sizes respectively. Overall the spee-
dups are significant and are around 4.7 times.

Table 1: Comparison of execution time of modular and
partial-modular implementations

T(s) 100*100 200*200 500*500 1000*1000
Modular 154.6 1088.2 1320.5 1337.6
Partial-
Modular

38.2 232.2 288.2 282.8

Speedup 4.0 4.7 4.6 4.7

4.2 Execution Time for Fire Spread Simulation
With Multiple Ignition Points

The first experiment shows that the number of iterations
(simulation cycles) affects the execution time. As the num-
ber of iterations increases, the execution time increases too.
Another important observation is that the number of ig-
nited cells (fire front cells) affects the average execution
time in each iteration. From Figure 4, one can see that for
both approaches, initially the number of ignited cells per
iteration (T/N) decreases. For example, the initially ignited
cell ignites 8 neighbor cells, while later on each cell only
ignites about 2 to 3 neighbor cells. At the beginning of the
simulation the number of burning cells is small, so the
number of ignited cells in each iteration decreases. But as
the simulation continues, the number of ignited cells in-
creases again. This is mainly because as the fire front in-
creases, the number of burning cells increases, so the total
ignited neighbor cells increases.

Based on these two observations, another experiment
with multiple ignitions is conducted to further support the
results in the first experiment. In this experiment, instead
of using one ignition point to start the fire spread simula-
tion. Forty randomly generated ignition points were used
and the experiment results are displayed in Figure 5. The
left diagram shows that the execution time increases with
the increase of iterations, but the increase rates in the early
stage were much larger than those in the late stage. This is
because in the early stage, a lot of cells are ignited at the
same time, but in the late stage most of the cells are al-
ready burned. In the right diagram, from tN=2000 to 4000,
each ignition cell ignites neighbor cells from initial 8 to
later average 2 to 3. From tN = 4000 the burning area of
each ignition cell overlaps to each other, so the average ig-
nited neighbor cells of each cell is less than 2. Therefore
the execution time of each iteration in right diagraph in-
creases initially and decreases later on.

1000*1000 Cell Space

0
2
4
6
8

10
12
14
16
18

tN=200
0

tN=600
0

tN=100
00

tN=140
00

tN=180
00

tN=220
00

tN=260
00

tN=300
00

tN=340
00

tN=380
00

Time

TModular/NMo
dular

TPartial-
Modular/NParti
al-Modular

1000*1000 Cell Space

0
20000
40000
60000
80000

100000
120000
140000
160000

tN=200
0

tN=600
0

tN=100
00

tN=140
00

tN=180
00

tN=220
00

tN=260
00

tN=300
00

tN=340
00

tN=380
00

Time

NModular

TModular

NPartial-
Modular
TPartial-
Modular

500*500 Cell Space

0
2
4
6
8

10
12
14
16
18

tN
=200

0

tN
=600

0

tN
=100

00

tN
=140

00

tN
=180

00

tN
=220

00

tN
=260

00

tN
=300

00

tN
=340

00

tN
=380

00

Time

TModular/NMo
dular

TPartial-
Modular/NParti
al-Modular

500*500 Cell Space

0
20000
40000
60000
80000

100000
120000
140000

tN
=200

0

tN
=600

0

tN
=100

00

tN
=140

00

tN
=180

00

tN
=220

00

tN
=260

00

tN
=300

00

tN
=340

00

tN
=380

00

Time

NModular

TModular

NPartial-
Modular
TPartial-
Modular

200*200 Cell Space

0

20000

40000

60000

80000

100000

120000

tN=200
0

tN=600
0

tN=100
00

tN=140
00

tN=180
00

tN=220
00

tN=260
00

tN=300
00

tN=340
00

tN=380
00

Time

NModular

TModular

NPartial-
Modular
TPartial-
Modular

200*200 Cell Space

0
2
4
6
8

10
12
14
16

tN=200
0

tN=600
0

tN=100
00

tN=140
00

tN=180
00

tN=220
00

tN=260
00

tN=300
00

tN=340
00

tN=380
00

Time

TModular/NM
odular

TPartial-
Modular/NPar
tial-Modular

100*100 Cell Space

0
1
2
3
4
5
6
7
8
9

tN=200
0

tN=600
0

tN=100
00

tN=140
00

tN=180
00

tN=220
00

tN=260
00

tN=300
00

tN=340
00

tN=380
00

Time

TModular/NMo
dular

TPartial-
Modular/NParti
al-Modular

100*100 Cell Space Size

0
5000

10000
15000
20000
25000
30000
35000
40000

tN
=200

0

tN
=600

0

tN
=100

00

tN
=140

00

tN
=180

00

tN
=220

00

tN
=260

00

tN
=300

00

tN
=340

00

tN
=380

00

Time

NModular

TModular

NPartial-
Modular
TPartial-
Modular

1044

Sun and Hu

Figure 5: Execution time and iterations for sparse igni-
tions model

The results in Figure 5 point out the fact again that the
number of iterations (simulation cycles) affects the simula-
tion performance. By reducing the number of iterations and
then reducing the message passing, even though the execu-
tion time in each iteration is increased, the total execution
time is reduced.

5 CONCLUSIONS AND FUTURE WORK

The classic modular implementation of DEVS model does
not perform well in simulation speed for simulating large
cellular space application. In this paper, a partial-modular
approach is developed to improve simulation performance
by reducing message passing between cells. The reduction
of message passing decreases the execution time from two
aspects. One is decreasing the overhead time of message
passing and message handling in the model. The other is
reducing the number of simulation cycles. From the analy-
sis and the experiment results, the number of simulation
cycles affects the execution time significantly. For the ex-
periments carried out in this paper, the partial-modular im-
plementation reduces the simulation cycles up to 6-7 times,
correspondingly the speed up of execution time gets up to
4-5 times.

The partial-modular approach, although based on the
forest fire spread model in this paper, provides an example
for improving simulation performance for other types of
DEVS-based cellular space models. For the cases that in-
ter-cell messaging passing increases the simulation itera-
tions and thus reduces simulation performance, the ap-
proach of partial-modular implementation provides a way
for improving performance.

REFERENCES

Barros. F. J. 1997. Modeling Formalisms for Dynamic
Structure Systems. ACM Transactions on Modeling
and Computer Simulation, 7(4): 501-515.

Beltrame, T., and F. E. Cellier. 2006. Quantised state sys-
tem simulation in Dymola/Modelica using the DEVS
formalism. Proceedings 5th International Modelica
Conference, 73-82.

Davidson, A., and G. Wainer. 2000. Specifying truck
movement in traffic models using Cell-DEVS. In Pro-
ceedings of the 33rd Annual Symposium on Computer
Simulation. Washington, D.C. U.S.A.

Glinsky, E. and G.A. 2005. Wainer, DEVStone: a Bench-
marking Technique for Studying Performance of
DEVS Modeling and Simulation Environments, 9-th
IEEE International Symposium on Distributed Simula-
tion and Real Time Applications.

Hall, S. B., S. M. Venkatesan, and D. B. Wood. 2003. A
Faster Implementation of DEVS in the Joint
MEASURE Simulation Environment. Proc. of Sum-
mer Computer Simulation Conference, Montreal.

Hu, X., and B. P. Zeigler. 2004. A high performance simu-
lation engine for large-scale cellular DEVS models.
High Performance Computing Symposium (HPC'04),
Advanced Simulation Technologies Conference.

Hu, X., A. Muzy and L. Ntaimo. 2005. A Hybrid Agent-
Cellular Space Modeling Approach for Fire Spread
and Suppression Simulation, In Proceedings of the
2005 Winter Simulation Conference, ed. M. E. Kuhl,
N. M. Steiger, F. B. Armstrong, and J. A. Joines, 248-
255. Piscataway, New Jersey: Institute of Electrical
and Electronics Engineers, Inc.

Kofman, E., and S. Junco. 2001. Quantized-state systems:
a DEVS Approach for continuous system simulation.
Trans. Soc. Comput. Simul. Int., 18: 123-132.

Muzy A., and J. J. Nutaro. 2005. Algorithms for efficient
implementations of the DEVS & DSDEVS abstract
simulators. 1st Open International Conference on
Modeling & Simulation (OICMS).

Natimo, L., X. Hu, and Y. Sun. 2008. DEVS-FIRE: To-
wards an Integrated Simulation Environment for Sur-
face Wildfire Spread and Containment, submitted to
SIMULATION: Transactions of The Society for Mod-
eling and Simulation International.

Rothermel, R. 1972. A mathematical model for predicting
fire spread in wildland fuels. Research Paper INT-115.
Ogden, UT: U.S. Department of Agriculture, Forest
Service, Intermountain Forest and Range Experiment
Station.

Shiginah, F. A., and B. P. Zeigler. 2006. Transforming
DEVS to non-modular form for faster cellular space
simulation, in Proceedings of 2006 DEVS Symposium.
86-91.

Sun, Y., and X. Hu. 2006. Performance Measurement of
DEVS Dynamic Structure on Forest Fire Spread Simu-
lation, Proc.14th AI, Simulation and Planning in High
Autonomy Systems (AIS 2006), 12.

Troccoli, A., J. Ameghino, F. Inon, and G. Wainer. 2002.
A flow injection model using Cell-DEVS. In Proceed-
ings of the 35th IEEE/SCS Annual Simulation Sympo-
sium. San Diego, CA. U.S.A. 292-299.

Sparse Ignitions in 200*200 Cell
Space

0

50000

100000

150000

200000

250000

300000

350000

tN=200
0

tN=600
0

tN=100
00

tN=140
00

tN=180
00

tN=220
00

tN=260
00

tN=300
00

Time

NModula
r
TModular

NPartial-
Modular
TPartial-
Modular

Sparse Ignitions in 200*200
Cell Space

0
5

10
15
20
25
30
35
40
45

tN=200
0

tN=600
0

tN=100
00

tN=140
00

tN=180
00

tN=220
00

tN=260
00

tN=300
00

tN=340
00

Time

TModular/N
Modular

TPartial-
Modular/NP
artial-
Modular

1045

Sun and Hu

Wainer G., and N. Giambiasi. 2001. Application of the
Cell-DEVS Paradigm for Cell Spaces Modeling and
Simulation. Simulation, 76: 22-39.

Wainer, G., and N. Giambiasi. 2002. N-Dimensional Cell-
DEVS. Discrete Events Systems: Theory and Applica-
tions 12(1): 135–157.

Wainer, G. A. 2004. Modeling and simulation of complex
systems with Cell-DEVS. In Proceedings of the 2004
Winter Simulation Conference, ed. R.G. Ingalls, M. D.
Rossetti, J. S. Smith and B. A. Peters, 45-56. Piscata-
way, New Jersey: Institute of Electrical and Electron-
ics Engineers, Inc. .

Wainer, G. 2006. Applying Cell-DEVS Methodology for
Modeling the Environment, SIMULATION, 82(10):
635-660.

Zacharewicz, G., , N. Giambiasi, and C. Frydman. 2005.
Improving the Lookahead Computation in G-
DEVS/HLA Environment. Proceedings of the 9th
IEEE International Symposium on Distributed Simula-
tion and Real-Time Applications.

Zeigler, B., D. Kim, and S. Buckley. 1999. Distributed
supply chain simulation in a DEVS/CORBA execution
environment. In Proceedings of the 1999 Winter Simu-
lation Conference, ed. P Farrington, H. Nembhard, D.
Surrock and G. Evans, Phoenix, 1333-1340. Piscata-
way, New Jersey: Institute of Electrical and Electron-
ics Engineers, Inc. .

Zeigler, B., and H. S. Sarjoughian. 1999. Support for hier-
archical modular component-based model construction
in DEVS/HLA. Simulation Interoperability Workshop,
Orlando, FL.

Zeigler, B. P., T. G. Kim, and H. Praehofer. 2000. Theory
of Modeling and Simulation. 2nd ed. New York, NY:
Academic Press.

Zhang, M., B. Zeigler, and P. Hammonds. 2006.
DEVS/RMI – An auto-adaptive and reconfigurable
distributed simulation environment for engineering
studies. Spring Simulation Multiconference – DEVS
Integrative M&S Symposium, Huntsville, AL.

AUTHOR BIOGRAPHIES

YI SUN is a Ph.D. candidate in the Computer Science De-
partment at Georgia State University. Her research inter-
ests include performance improvement of discrete event
systems.

XIAOLIN HU is an assistant professor in the Computer
Science Department at Georgia State University. His re-
search interests include modeling and simulation, agents,
and simulation-based design.

1046

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

