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ABSTRACT 

Simulation of wildfire spread remains to be a challenging 
task. In previous work, a cellular space fire spread simula-
tion model has been developed based on the Discrete Event 
System Specification (DEVS) formalism. There is a need 
to improve simulation performance of this model for simu-
lating large scale wildfires. This paper develops a partial-
modular implementation of the DEVS-based cellular space 
model that eliminates the large number of inter-cell mes-
sage exchanges for improving simulation performance. 
Both the modular and partial-modular approaches are pre-
sented and experiment results are provided. The results 
show that the partial-modular implementation can signifi-
cantly improve simulation performance of the cellular 
space wildfire spread model.  

1 INTRODUCTION 

Simulation of forest fire spread remains to be a challenging 
task due to factors such as complex fire behavior, dynami-
cal weather condition, and large spatial area that needs to 
be modeled. In previous work (Natimo, Hu, and Sun), a 
discrete event forest fire spread simulation model was de-
veloped. This model uses a cellular space to model a forest 
and each cell corresponds to a sub-area of the forest. Fire 
spreading is a propagation process that burning cells ignite 
their unburned neighbor cells. This model is based on the 
Discrete Event System Specification (DEVS) (Zeigler, 
Kim, and Praehofer 2000) formalism. 

The DEVS formalism is derived from generic dynamic 
systems theory and provides a formal modeling and simu-
lation (M&S) framework. One of the main features of 
DEVS-based modeling is that it emphasizes modular (and 
hierarchical) model construction, where each model is a 
component with input/output ports and supports well-
defined concepts of coupling of components. These cou-
plings allow models to send messages to each other 
through their input/output ports. The modular model con-

struction of DEVS brings major advantages such as model 
interoperability and reuse, multi-formalism capability, and 
dynamic structure change of models. An important type of 
DEVS model is the cellular space model, which is com-
monly used to model complex dynamical systems with 
spatial-temporal behaviors and interactions among their 
subcomponents. A cellular space model includes a grid of 
cells where each cell’s state can affect and be affected by 
its neighbors. Formal specifications of DEVS-based cellu-
lar space models were also developed. For example, Cell-
DEVS (Wainer and Giambiasi 2002) is a specification that 
extended the DEVS formalism to improve the definition of 
cellular space models where each cell is defined as an 
atomic model using transport or inertial delays, and a cou-
pled model that includes a group of these cells constitutes a 
cellular space model. Gabriel (Wainer 2004) introduced the 
main characteristics of Cell-DEVS, showing how to model 
complex cell spaces in an asynchronous environment. Ex-
amples of DEVS-based cellular space modeling and simu-
lation include flow injection simulation (Troccoli et al. 
2002), traffic control simulation (Davidson and Wainer 
2000), forest fire spread simulation (see e.g., Natimo, Hu, 
and Sun 2008, Wainer 2006), and fire containment simula-
tion (Hu, Muzy, and Ntaimo 2005), just to name a few.  

To simulate large scale spatial systems such as forest 
fire, a cellular space model needs to include a large number 
of cells. The large number of cells poses a challenge from 
the simulation performance point of view. In particular, the 
huge number of inter-cell message exchanges that are typi-
cal for large scale cellular space models have a major ef-
fect on simulation performance. In a discrete event simula-
tion such as DEVS, each message is an event and triggers a 
new simulation cycle (also called simulation iteration, see 
the DEVS simulation protocol in Section 3.4 for more de-
tails) for the event handling. The large number of message 
exchanges (referred to as message passing in this paper) 
thus results in a large number of simulation cycles. Fur-
thermore, in DEVS-based modeling, because of the modu-
lar model construction, each cell is an atomic model and 
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cell-to-cell communications can happen only through (indi-
rect) message passing. This slows down the simulation fur-
ther because of the overhead of message passing and mes-
sage handling at the model level. Based on the above 
observations, this paper exploits the pattern of cell-to-cell 
message passing to improve simulation performance from 
two aspects: 1) reduce the number of simulation cycles 
caused by inter-cell message passing; 2) remove the over-
head of message passing between cellular DEVS models. 
We achieve this goal by turning the  modular implementa-
tion of DEVS into a partial-modular DEVS. The partial-
modular DEVS not only removes the overhead of message 
passing, but also significantly reduces the number of simu-
lation cycles for event handling. We carry out this work 
based on the specific application of forest fire spread simu-
lation (Natimo, Hu, and Sun 2008). However, the main 
idea of this approach could be adapted to other DEVS-
based cellular space applications.  

The remainder of this paper is organized as follows. In 
section 2, the background and related work is presented. 
Section 3 presents the modular DEVS and partial-modular 
DEVS implantations of the forest fire model. Section 4 
presents the experiment results and performance analysis. 
The conclusion and future work are given in section 5. 

2 BACKGROUND AND RELATED WORK 

The DEVS (Zeigler, Kim, and Praehofer 2000) formalism 
is derived from generic dynamic systems theory and has 
been applied to both continuous and discrete phenomena. It 
provides a formal modeling and simulation (M&S) frame-
work with well-defined concepts of coupling of compo-
nents, and hierarchical modular model construction. These 
features of DEVS bring advantages to modeling and simu-
lation such as easy experimentation, easy testing, and easy 
maintenance. The cellular space DEVS modeling approach 
divides the spatial space into cells where local computa-
tions are done in each cell. A cell is implemented as an 
atomic DEVS model that performs the local computations 
internally based on its own state as well as the neighbor 
states that are received through the external ports. The cell 
space is implemented as a coupled DEVS model that con-
tains a number of cells. The neighbor rule followed in a 
specific application determines the couplings between 
cells. Cellular space DEVS is a special case of conven-
tional DEVS and follows the same structure of DEVS 
framework, e.g., external, internal and output transition 
functions. As discussed before, it suffers the problem of 
performance when a large number of inter-cell communi-
cations exist. This performance issue is significant for 
large cellular space models. 

For DEVS-based simulation, different techniques have 
been researched to improve simulation performance. The 
Dynamic Structure DEVS (DSDEVS) (Barros 2005) is a 
specification for dynamic structure modeling based on the 

DEVS formalism (Zeigler, Kim, and Praehofer 2000). It is 
shown that dynamic structure modeling can potentially im-
prove simulation performance for large scale cellular space 
models (Sun and Hu 2006). Dynamical structure modeling 
changes models’ structure (e.g., adding/removing models) 
and their couplings as a simulation proceeds. It can im-
prove the simulation performance because 1) it reduces the 
initialization time because it does not load all cells at the 
beginning of a simulation; 2) it speeds up the execution 
time of each simulation cycle because it makes a simula-
tion focus only on the “active” cells (non-active cells are 
either unloaded or removed).  On the negative size, dy-
namic structure modeling brings some overhead. More de-
tails can be found  in (Sun and Hu 2006). Several efforts 
developed advanced simulation algorithms for improving 
simulation performance. Examples of such work can be 
found in (Muzy and Nutaro 2005; Hu and Zeigler 2004; 
Wainer and Giambiasi 2001) where the basic DEVS simu-
lation engine was improved to handle messages and cell 
activity scanning in more efficient manner. Other related 
works include the quantized DEVS approach (Kofman and 
Junco 2001, Beltrame and Cellier 2006), which shows that 
quantization helps in improving the performance of DEVS-
based simulations by reducing the number of state transi-
tions as well as the number of messages while introducing 
acceptable errors. Efficient implementation of DEVS-
based models is also studied for the purpose of improving 
performance. One such work is reported in (Hall, Venkate-
san, and Wood 2003), where the authors enhance the im-
plementation by applying techniques such as pre-
computing message destinations, and using a priority 
queue to sort models to achieve performance improvement 
for the Joint MEASURE simulation environment. Another 
technique to improve performance of DEVS models is us-
ing non-modular form that combines multiple cells into 
one for faster simulation. The work (Shiginah and Zeigler 
2006) proposed a non-modular formalism using closure 
under coupling property of DEVS to ensure equivalency of 
the models to their modular counterparts in parallel DEVS. 
The speedup was gained through efficient scanning of ac-
tive cells and combining multiple cells into one atomic 
model.  

Other works use parallel and distributed approaches to 
improve the performance of DEVS based simulation. Vari-
ous DEVS-based distributed simulation environments have 
been developed such as DEVS/CORBA (Zeigler and Sar-
joughian 1999), DEVS/RMI (Zhang, Zeigler, and Ham-
monds 2006), DEVS/HLA (Zeigler, Kim, and Buckley 
1999). These distributed DEVS frameworks typically in-
volve a  large computation overhead. Some recent tech-
niques (Zacharewicz, Giambiasi, and Frydman 2005, 
Glinsky and Wainer 2005) are used to reduce the overhead 
of distributed DEVS techniques. 
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3 MODULAR AND PARTIAL-MODULAR 
APPROACHES 

This section first gives an overview of the forest fire spread 
model, then presents the modular and partial-modular im-
plementations of the model, and finally gives an brief per-
formance analysis of the two approaches.  

3.1 Overview of the forest fire spread model 

In the cellular space forest fire spread model, a forest is 
modeled as a two-dimensional cell-space composed of in-
dividual forest cells coupled together according to their 
relative physical geometric locations. Each cell represents 
a sub-area in the forest and is implemented as a DEVS 
atomic model. A cell is coupled to its eight neighbors cor-
responding to the N, NE, E, SE, S, SW, W, and NW direc-
tions respectively. Accordingly, for each cell, eight fire 
spreading directions are defined. Fire spreading is modeled 
as a propagation process as burning cells ignite their un-
burned neighbor cells. Each cell can be in one of the fol-
lowing six states: unburn, burning, burned, unburn-wet, 
burning-wet, and burned-wet, where the -wet states model 
fire suppression and not used in this paper. When a cell is 
ignited, the maximum fire spread speed and direction of a 
cell is calculated using Rothermel’s semi-empirical model 
(Rothermel 1972) that takes into account factors such as 
fuel model, slope, and wind speed and direction. This max-
imum rate of spread is then decomposed along the eight 
spreading directions according to an ellipse shape. Figure 1 
shows a snapshot of a simulation using real GIS data with 
200x200 cells. In the figure, the red cells are burning; the 
black cells are burned out; all other cells are unburned with 
the different colors representing different fuel models. 
More descriptions of this model and the initial conditions 
of simulation can be found in (Natimo, Hu and Sun). 

 
 

 
 

Figure 1: Fire spreading under GIS data 
 
From the above description, one can see that the forest 

cell space model is composed of a large number of atomic 

forest cell models. Each cell executes its internal tasks and 
communicates with other neighboring cells by message 
passing through inter-connected ports. The process of fire 
spreading for both the modular and partial-modular im-
plementations is that a cell (referred to as the source cell), 
once ignited, will need to schedule the time for igniting its 
eight neighbors (refers to as the destination cells). In the 
modular implementation, eight time points are scheduled 
and kept in the source cell, which sends out igniting mes-
sages at the appropriate time based on the schedule. This 
means for a source cell to ignite its eight neighbors, eight 
messages are needed (thus eight simulation cycles). The 
design motivation of the partial-modular implementation is 
that: the source cell does not keep the time to ignite its 
neighbors. Instead, it sets the time to its neighbors and asks 
them (the destination cells) to keep track of their own time-
to-burning. This “time setting” happens right after a source 
cell is ignited and is realized through function call instead 
of messaging passing (each cell has its eight neighboring 
cells’ object references). The partial-modular implementa-
tion brings two advantages from the simulation perform-
ance point of view: first, it reduces the message passing 
overhead between cells; second and more importantly, be-
cause a source cell sets all its neighboring cells’ time-to-
burn in one step (right after the source cell is ignited), it 
reduces the number of simulation cycles that is needed in 
the discrete event simulation. These result in simulation 
performance improvement. It is worthy to point out that the 
change from modular to partial-modular relies on an im-
plementation that allows a cell to directly modify the state 
of its neighbor  cells (instead of using message passing). 
Thus it breaks the modular property of DEVS models. Be-
low we describe these two implementations in detail.  

3.2 Modular Implementation 

The modular implementation of forest fire spread simula-
tion is based on the classic DEVS framework. A forest cell 
model in forest cell space interacts with its neighbor cells 
through couplings between cells’ input/output ports. A cell 
affects its eight neighbor cells through eight output ports: 
outN, outNE, outE, outSE, outS, outSW, outW, and outNW, 
which represent eight fire spreading directions correspond-
ing to azimuth (degrees measured clockwise from the 
north) of 0, 45, 90, 135, 180, 225, 270, and 315 degrees, 
respectively. Accordingly a cell is affected by its eight 
neighbor cells through eight input ports: inN, inNE, inE, 
inSE, inS, inSW, inW, and inNW (see Natimo, Hu and Sun 
for more details). Figure 2 shows the structure of message 
passing from a forest cell to its eight neighbor cells. The 
dash line in the figure means using message passing to in-
voke a neighbor cell’s external transition functions. The 
message passing is handled by the DEVS simulation en-
gine, which invokes a destination cell’s external transition 
function at that simulation cycle. In general, messages 
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passing to eight neighbors need up to eight simulation cy-
cles. 

   

  

    

  

  

  

      outN W 
  

outNE 

outN   

outW   

outSW   
outS   

outSE  

outE  

Message passing to invoke  
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Up to eight simulation cycles for  
passing message s to eight  
neighbor cells    

send  
message 

  

 
 

Figure 2: Modular implementation 

Below is an informal description of the fire spreading 
scenario using the cellular space model. 

1. Initially a cell is ignited by an igniter atomic mod-
el. If its fire line intensity is over the ignition  
threshold, it begins to burn. Otherwise, it remains 
unburned. 

2. Once a cell is burning, the fire starts to spread to 
eight neighbor cells as shown in Figure 3. 

3. An unburn cell will become burning if it receives 
a fire ignition message from a neighbor cell (if the 
fire line intensity is over ignition threshold as 
mentioned earlier). Similarly, once this cell starts 
to burn, it begins to spread fire to eight neighbor 
cells. This process repeats for all cells in the cell 
space during the whole simulation. 

4. If a burning cell receives an input of wind speed 
and direction, the cell re-calculates its remaining 
fire spread delays and re-sends spreading mes-
sages to the neighbor cells. 

 
Implementation of a forest cell’s external, internal 

transition functions and output functions are listed below. 
As mentioned before, the modular implementation follows 
DEVS model’s specification and executes the external, in-
ternal and output functions for handling external message, 
internal time event, and generate output. The advantage of 
the modular implementation is simple structure and easy to 
implement. However, in large cellular space model, all 
cells communicate with neighbor cells frequently by a lot 
of message passing. This increases the computation time 
from two aspects. One is increased computation for exter-
nal transition functions. For each cell, it sends out eight 
messages to its neighbors and receives eight external mes-

sages from its neighbors as well. So totally there are 8xN 
(N is the number of forest cells in the cell space) external 
transition functions being executed in a complete simula-
tion process. For example, if the cell space size is 100*100, 
the number of external transition functions being executed 
is 80000 if the fire spreads to the entire cell space. The 
other aspect is the large number of simulation cycles in the 
simulation engine. Since one cell sends out eight fire igni-
tion messages to its neighbor cells at different time, the si-
mulation cycles are large. The larger the number of simula-
tion cycles, the more execution time is needed to run the 
simulation. 

 
Pseudo code for a cell’s external transition function 

 
 

Pseudo code for a cell’s internal transition function 

 
Pseudo code for devs output function 

 
 

3.3 Partial-Modular Implementation 

The partial-modular implementation updates a cell’s state 
not through message passing. The structure of the partial-
modular implementation is shown in Figure 3. In the fig-
ure, a cell updates a neighbor cell’s state and sigma di-
rectly (using function call) and all eight neighbor cells’ 
state (including sigma) updates are accomplished in a sin-

deltext(double e, message x)  
  if (receive weather change && state is “burn-
ing”)  

re-calculate fire spread delay {di} to the eight 
neighbors {ci} i=1,..,8;  
cself.state = burning; 

cself.spread_delay = smallest {di} 
 if (receive ignition message from neighbor cells) 

if(cself.state = unburn){ 
 calculate fire line intensity; 
        if (fire line intensity > threshold)  

 calculate fire spread delay {di} to
 the eight  neighbors {ci} i=1,..,8; 

      cself.state = burning;  
   cself.spread_delay = smallest {di}

deltint()  
   if (state is burning && ! {di} is not empty)  
 remove smallest di from {di} 
 cself.state = burning; 

cself.spread_delay = next smallest di    
   if (state is burning and allNeighborCellBurned)  

cself.state = burned; 

out() 
  if (state is burning)  
    send message to the corresponding neighbor 
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gle simulation cycle. Compared with the modular imple-
mentation’s eight simulation cycles, the partial-modular 
implementation can reduce the simulation cycles up to 
eight times. 
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Figure 3: Partial-modular implementation 

The fire spreading scenario using the partial-modular 
implementation is stated as follows. 

1. Initially a cell is ignited by an igniter atomic mod-
el and the state becomes “schedule_to_burn”.  

2. When a cell is in “schedule_to_burn” state, it cal-
culates fire line intensity. If the intensity is over 
threshold, the cell begins to burn. Otherwise, it 
remains unburned. 

3. Once a cell begins to burn, its state becomes 
“burned”. Before that it calculates the fire spread 
delay to eight neighbor cells and then updates 
their states to “schedule_to_burn” with the associ-
ated sigma being the delay time (referred to as 
time_to_burn afterwards). For each neighbor cell, 
it  uses a variable “ignitionSet” to remember all 
the cells that want to ignite this cell and the corre-
sponding fire delay for later weather update pur-
pose. Multiple cells may try to ignite the same 
cell. If that happens, the cell’s time_to_burn is 
updated only when the new calculated spread de-
lay is smaller than the existing time_to_burn. 
When a cell’s time_to_burn is updated, its tN is 
updated by the simulator correspondingly and the 
simulator is added to global simulation engine’s 
imminent set. This allows the new updated 
time_to_burn to be treated properly by the simula-
tion engine. Specifically, in the simulation proc-
ess, the simulation engine updates its data struc-
ture based on the imminents set and gets the 
smallest tN from them in each simulation cycle. 
Step 2 and step 3 repeat for all cells in the cell 
space during the whole simulation process.  

4. If a burned cell receives an input of wind speed 
and direction, and has more than one neighbor 
cells unburned, it re-calculates the fire spread de-
lays. For each unburned neighbor cell, it compares 
the new fire delay with all those that want to ig-
nite this neighbor cell (excluding the cell itself) 
and selects the smallest one as the new 
time_to_burn. 

 

The pseudo codes of the partial-modular implementa-
tion’s external and internal transition functions are listed 
below.  

Pseudo code for a cell’s external transition function 

 
 

 
 
 
 
Pseudo code for a cell’s internal transition function 

 
 

 

 

This implementation eliminates the frequent commu-
nications between neighbor cells. Compared to the modular 
implementation, the partial-modular implementation re-
duces the execution time from two aspects. On one hand, it 

deltint()  
if (state is schedule_to_burn)  
    calculate fire line intensity;  
    if (fire line intensity < threshold) 
        cself.state = unburned  

      else if (fire line intensity >= threshold)  
         cself.state = burned 

 calculate fire spread delay {di} to the  
        eight neighbors {ci} i=1,..,8; 
 for (each neighbor cell ci && ci.state  !=  
         burned) 
     ci.ignitionSet.add(cself , di)  
     if(di < ci.time_to_burn) 
  ci.time_to_burn = di 
  ci.state = schedule_to_burn   
  update the simulator by adding ci as      
                 an imminent; 

deltext(double e, message x)  
 if (receive ignition message) 
  cself.state = schedule_to_burn 

if (receive weather change)  
   if(state is burned && at least one neighbor  
    is not ignited)  

re-calculate fire spread delay {di} to the 
eight neighbors {ci} i=1,..,8 
for (each neighbor cell ci && ci.state!= 
burned)  

ci.time_to_burn = exclusive_min(di, 
min(ci.ignitionSet.delay)  //reschedule 
time to burn 
ci.ignitionSet.add(ci, cself)  
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reduces the execution time of external transition functions. 
On the other hand, it reduces the number of simulation cy-
cles in simulation engine. The second aspect is more sig-
nificant (see section 3.4 for more details). From perform-
ance point of view, the major difference lies in that partial-
modular implementation eliminates the frequent execution 
of the external transition functions triggered by inter-cell 
message passing and thus reduces the number of simula-
tion cycles. A brief comparison and analysis about the exe-
cution time is provided next. 

3.4 Execution Time Analysis 

To understand how the partial-modular implementation re-
duces the simulation time, it is necessary to look at the si-
mulation protocol of DEVS models. The modular imple-
mentation closely follows DEVS models’ external, internal 
and output functions to simulate the forest fire spread 
process. The partial-modular implementation directly up-
dates a cell’s state and sigma, and the corresponding simu-
lator’s next event time tN in the simulation engine. Both 
these two implementations use the DEVS simulation pro-
tocol shown below. The simulation engine is a heap-based 
coordinator. 

 while (tN < predefined_fireSpreadTime){ 

imminents.tellAll("computeOutput“,tN) 
imminents.tellAll("sendOutput") 
imminents.tellAll("ApplyDelt“,tN) 

    UpdateHeap(); 
    tN = Heap.getMin(); 
 } 

 

In every simulation cycle, the simulation engine asks 
all imminents (whose tN = global tN) to execute the com-
puteOutput, sendOutput and ApplyDelt functions. At the 
end of the cycle, the coordinator lets all imminents update 
their newest tNs in the heap and get the smallest tN for the 
next simulation cycle. 

Based on the above simulation protocol, the execution 
time of the modular implementation is denoted by formula 
(1). 

    T = ∑
=

N

i
it

1
           (1) 

Where T is the total execution time, N is the number 
of simulation cycles, ti is the execution time at every simu-
lation cycle i. ti includes the time to execute output func-
tion, external and internal functions, as well as to find the 
smallest tN.  

The execution time T of the partial-modular imple-
mentation is denoted by formula (2).  

    T = ∑
=

'

1

)'(
N

i
it          (2) 

Where N' is the number of simulation cycles in the 
partial-modular implementation, ti' is the execution time at 
each simulation cycle i. Based on the previous analysis, N' 
is less than N and the ratio of N/N' can reaches 8 (the exact 
ratio will depend on the specific model behavior). On aver-
age, ti' is larger than ti. This is because the partial-modular 
implementation accomplishes fire spread operation in one 
cycle, which means every simulation cycle involves com-
putation of Rothermel’s fire behavior model. However, in 
the modular implementation, some of the cycles does not 
need to compute Rothermel’s fire behavior model (e.g., 
when an already ignited cell receives an ignition message).   
Therefore the partial-modular implementation’s execution 
time in one cycle is larger. But overall the execution time 
of the partial-modular method is less than the modular me-
thod as shown by the experiment results next.  

4 EXPERIMENT RESULTS AND ANALYSIS 

To compare the simulation performance between the mod-
ular and partial-modular approaches, two experiments on 
forest fire spread model are conducted using different mea-
surements. The simulations were conducted on a Toshiba 
laptop with Intel Celeron (M) 1.6GHZ processor, 1.2G 
memory, and Windows XP OS running DEVSJAVA ver-
sion 3.0. The experiments are based on the forest fire mod-
el that uses a dynamically structure implementation (see 
Natimo, Hu and Sun for more details) and a Heap based 
simulation engine. The same model parameters are used in 
both experiments. The first experiment is conducted to 
compare the execution time for different cell space size. 
The second one compares the execution time for multiple 
ignitions behavior. 

4.1 Execution Time for Different Cell Space Size 

Figure 4 shows the total execution time (in milliseconds) 
for different cellular space models on a 40000 simulation 
time. Performance results were collected based on every 
2000 interval simulation time. The experimental results 
were measured on different cellular space sizes from 
100*100, 200*200, 500*500 to 1000*1000, which are dis-
played in the figure below. For each cell space size the left 
diagram displays the execution time T and the number of 
simulation cycles N for the both approaches. The right dia-
gram displays the ratio of T over N of the two approaches.  
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(a) 100*100 Cell Space Size 

 

 

 

 

 

(b) 200*200 Cell Space Size 

 

 

 

 

 

(c) 500*500 Cell Space Size 

 

 

 

 

   

 

(d) 1000*1000 Cell Space Size 

Figure 4: Execution time for different cell space size 

The results displayed by the left diagrams in Figure 4 
show one principle that the execution time has a positive 
relationship with the number of simulation cycles, i.e., the 
execution time increases with the increase of simulation 
cycles. Note in Figure 4(a) 100*100 cell space, the execu-
tion time remains almost the same after around 22000 si-
mulation time. This is because all cells in the cell space are 
in burned state after that. The results displayed by the right 
diagrams in Figure 4 show another principle that the exe-
cution time in one simulation cycle (T/N) has the same 
trend for the two approaches. When the simulation pro-
ceeds, the number of fire front cells increases, so the exe-
cution time in one simulation cycle increases as well (be-
cause there are more cells are involved in the simulation). 

However the partial-modular approach uses more time per 
cycle than the modular approach. This is consistent with 
our discussion before.  

The speedup of the partial-modular implementation 
over the modular implementation is given in Table 1 for 
the four cellular space sizes respectively. Overall the spee-
dups are significant and are around 4.7 times.  

 
Table 1: Comparison of execution time of modular and 
partial-modular implementations 
 
T(s) 100*100 200*200 500*500 1000*1000 
Modular 154.6 1088.2 1320.5 1337.6 
Partial-
Modular 

38.2 232.2 288.2 282.8 

Speedup 4.0 4.7 4.6 4.7 

4.2 Execution Time for Fire Spread Simulation 
With Multiple Ignition Points 

The first experiment shows that the number of iterations 
(simulation cycles) affects the execution time. As the num-
ber of iterations increases, the execution time increases too. 
Another important observation is that the number of ig-
nited cells (fire front cells) affects the average execution 
time in each iteration. From Figure 4, one can see that for 
both approaches, initially the number of ignited cells per 
iteration (T/N) decreases. For example, the initially ignited 
cell ignites 8 neighbor cells, while later on each cell only 
ignites about 2 to 3 neighbor cells. At the beginning of the 
simulation the number of burning cells is small, so the 
number of ignited cells in each iteration decreases. But as 
the simulation continues, the number of ignited cells in-
creases again. This is mainly because as the fire front in-
creases, the number of burning cells increases, so the total 
ignited neighbor cells increases.  

Based on these two observations, another experiment 
with multiple ignitions is conducted to further support the 
results in the first experiment. In this experiment, instead 
of using one ignition point to start the fire spread simula-
tion. Forty randomly generated ignition points were used 
and the experiment results are displayed in Figure 5. The 
left diagram shows that the execution time increases with 
the increase of iterations, but the increase rates in the early 
stage were much larger than those in the late stage. This is 
because in the early stage, a lot of cells are ignited at the 
same time, but in the late stage most of the cells are al-
ready burned. In the right diagram, from tN=2000 to 4000, 
each ignition cell ignites neighbor cells from initial 8 to 
later average 2 to 3. From tN = 4000 the burning area of 
each ignition cell overlaps to each other, so the average ig-
nited neighbor cells of each cell is less than 2. Therefore 
the execution time of each iteration in right diagraph in-
creases initially and decreases later on.  
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Figure 5: Execution time and iterations for sparse igni-
tions model 

The results in Figure 5 point out the fact again that the 
number of iterations (simulation cycles) affects the simula-
tion performance. By reducing the number of iterations and 
then reducing the message passing, even though the execu-
tion time in each iteration is increased, the total execution 
time is reduced. 

5 CONCLUSIONS AND FUTURE WORK 

The classic modular implementation of DEVS model does 
not perform well in simulation speed for simulating large 
cellular space application. In this paper, a partial-modular 
approach is developed to improve simulation performance 
by reducing message passing between cells. The reduction 
of message passing decreases the execution time from two 
aspects. One is decreasing the overhead time of message 
passing and message handling in the model. The other is 
reducing the number of simulation cycles. From the analy-
sis and the experiment results, the number of simulation 
cycles affects the execution time significantly. For the ex-
periments carried out in this paper, the partial-modular im-
plementation reduces the simulation cycles up to 6-7 times, 
correspondingly the speed up of execution time gets up to 
4-5 times. 

The partial-modular approach, although based on the 
forest fire spread model in this paper, provides an example 
for improving simulation performance for other types of 
DEVS-based cellular space models. For the cases that in-
ter-cell messaging passing increases the simulation itera-
tions and thus reduces simulation performance, the ap-
proach of partial-modular implementation provides a way 
for improving performance. 
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