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ABSTRACT

The global health, threatened by emerging infectious dis-
eases, pandemic influenza, and biological warfare, is be-
coming increasingly dependent on the rapid acquisition, pro-
cessing, integration and interpretation of massive amounts
of data. In response to these pressing needs, new infor-
mation infrastructures are needed to support active, real
time surveillance. Detection algorithms may have a high
computational cost in both the time and space domains.
High performance computing platforms may be the best
approach for efficiently computing these algorithms. Un-
fortunately, these platforms are unavailable to many health
care agencies. Our work focuses on efficient parallelization
of outbreak detection algorithms within the context of cloud
computing as a high throughput computing platform. Cloud
computing is investigated as an approach to meet real time
constraints and reduce or eliminate costs associated with
real time disease surveillance systems.

1 INTRODUCTION

Timely detection of infectious disease outbreaks is critical
to real time disease surveillance. Space-time detection tech-
niques may require computationally intense search in both
the time and space domains (Kulldorff 1997, Kulldorff et al.
2005). The real-time surveillance constraints dictate highly
responsive monte carlo models that may be best achievable
utilizing high throughput computing (HTC) platforms. We
introduce here a system that efficiently parallelizes detection
algorithms for execution in HTC environments, specifically
Cloud Computing environments. A majority of outbreak
detection algorithms are based on the method of monte
carlo modeling (Metropolis and Ulam 1949, Hammersley
and Handscomb 1964, Nance and Jr 1978, Rubinstein 1981)
and can be efficiently parallelized following the work in
(Wilmoth 1992, Nance 1995).

The University of Pittsburgh RODS Laboratory (Real-
time Outbreak and Disease Surveillance) is the most widely
known example of a surveillance system employing high
performance computing (Espino et al. 2004, Espino et al.
2004). Using the Pittsburgh Super Computer, RODS is

capable of monitoring over 3 million visits to over 137
emergency departments. In addition, RODS monitors 1262
retail stores across Pennsylvania for remedy purchases that
could be indicators of outbreak.

Unfortunately, the health care community too frequently
lacks the funding to support special purpose high perfor-
mance computing environments. Health care agencieswould
benefit greatly from nearly zero cost solution that enhances
their ability to perform disease surveillance.

Cloud computing offers a solution based on opportunis-
tic or volunteer computing, where excess computing cycles
are utilized to compute other tasks. Different from volun-
teer computing projects like SETI@Home however, patient
data must be secured according to local, state and federal
legal requirements such as the Health Insurance Portability
and Accountability Act of 1996 (HIPAA). Most health care
agencies already support IT infrastructures for their day to
day operations. Therefore, the computing cloud is con-
structed based on opportunistically scheduling the existing
IT computing resources. An implicit assumption is that
these machines have been sufficiently secured to contain
the patient data.

Opportunistic processing poses some unique challenges
compared with dedicated computing resources. To support
efficient computation of detection algorithms in this context
requires highly parallelized computation in both the data and
computational domains. Our proposed system decomposes
both space-time and purely temporal detection algorithms
in both domains to yield a nearly optimal parallelization
given the available computing resources. While there are
no data hazards that preclude the application from being
embarrassingly parallel, the scheduling algorithm is a form
of the bin packing problem, which is known to be NP-
Complete. We illustrate parallel performance that is nearly
optimal without a priori workload information.

In this paper, we describe the application of parallel
monte carlo modeling methods to support real time disease
surveillance. Whilewe illustrate the efficiency of paralleliza-
tion using a derivation of the scan statistic (Naus 1965)
detection algorithm for disease surveillance in ametropolitan
population, in fact any combination of detection algorithms
is supported.
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Figure 1: Conceptual health care agency IT infrastructure.
Computers in the inner-most section (green) have been
sufficiently secured to contain patient data, and would form
the basis for a Cloud Computing platform.

In Section 2 we outline the high throughput cloud com-
puting platform created within an existing IT infrastructure.
Section 3 describes the architecture and design principles
of the system. Sections 4 and 5 present the scenario and
algorithms used to test the performance of the system. In
Sections 6 and 7 we analyze the ability of the system to
meet real time constraints for this scenario. We summarize
our results in Section 8.

2 CLOUD COMPUTING

Admittedly, the phrase Cloud Computing is nothing more
than a popular phrase to describe the idea that applications
(typically web applications) can be executed within the
“cloud” of the Internet. The term “cloud” refers to the
concept that the underlying hardware and network details
of the computing platform are not known. Cloud computing
platforms are beginning to emerge in the commercial world,
most notably is Amazon’s Elastic Computing Cloud (EC2).
Amazon data centers are provisioned to handle the heaviest
buying season, Christmas, but for much of the year these
data centers are under utilized. EC2 users can purchase
these excess cycles, as well as storage space, at a fixed unit
cost based on their actual usage. One high profile example is
the popular image-sharing web application Flikr that exists
almost entirely within Amazon’s EC2 platform.

TheHealth Insurance Portability andAccountabilityAct
of 1996 (HIPAA, Title II) restricts the ways in which health
care agencies must manage and control patient information,
typically precluding them from taking advantage of such
commercial offerings as Amazon’s EC2 platform. One
major goal of our distributed system is to create a trusted
computing cloud within the existing IT realm of a health
care agency. To minimize costs associated with software, we

are releasing an open-source, real-time disease surveillance
system that takes advantage of a health care agency’s excess
computing cycles to construct a private cloud computing
platform for high throughput computing and real time disease
surveillance.

Figure 1 conceptualizes an example health care agency
IT infrastructure. The outer section in red contains machines
that are open to access from the Internet. The inner blue
section contains machines internal to the LAN, that are not
accessible via the Internet, but also not trusted to contain
local copies of patient data. The inner-most section in green
indicates machines that have been secured sufficiently to
contain copies of patient data. It is from this inner-most
area that trusted machines could be used to create a secure
Cloud Computing platform.

The main benefits of this approach are two-fold: i) the
creation of a virtually zero-cost, trusted high throughput
computing platform, and ii) the ability to meet the real
time constraints of a disease surveillance system through
efficient parallelization.

3 SYSTEM ARCHITECTURE

Figure 2 illustrates the system architecture of our online
outbreak detection system. Patient complaint is collected
into a patient record database, and information such as
symptoms and spatial coordinates are recorded. The Unified
Search Framework (Ye andKalyanaraman 2003) implements
the detection algorithm, which queries the patient records
for symptoms matching the desired disease for which to
perform outbreak detection. The USF schedules the monte
carlo simulations with the Cloud Computing environment,
and decomposes the patient data for parallelization. The
central cloud node is responsible for scheduling the USF
generated workload over the cloud compute nodes. The
central cloud node schedules work based on an opportunistic
policy that permits computation on a cloud compute node if
and only if the node in question has a fiveminute load average
below 30%. The central cloud node is also responsible for
restarting computations scheduled to cloud compute nodes
that have failed for any reason, as well as re-scheduling
workload elements between compute nodes as they become
tasked over the runtime. For example, if a compute node
initially has a negligible load average, the central node
schedules work to that compute node. If the load average
(external to the model) on that node increases beyond 30%,
the compute node vacates the task and informs the central
cloud node. The central cloud node then can reschedule
that task on any other available machine.

The cloud computing environment relies on the process
scheduling system, Condor (Basney and Livny 1999, Livny
et al. 1997). For completeness, Figure 2 illustrates the
Condor software componentswithin each cloud node type as,
Start, Central Master, Collector, Negotiator and Scheduler
within the Cloud Computing Environment box.

Google Earth is used to visualize the computed data.
The data is stored within the cloud computing storage envi-
ronment, represented in the figure as theDisease Surveillance
Database.
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Figure 2: Conceptual health care agency IT infrastructure. Computers in the inner-most section (in green) have been
sufficiently secured to contain patient data, and would form the basis for a Cloud Computing platform.

4 AN APPLICATION: SPACE-TIME
PERMUTATION SCAN STATISTIC

Variations to both the scan statistic introduced by (Kulldorff
et al. 2005) and the method for fast detection of spatial
over-densities, provided by (Neill and Moore 2004), is im-
plemented here as a suitable method for early detection of
outbreaks in the metropolitan population, particularly for
those time/region-specific increases in case frequency that
are too subtle to detect with temporal data alone. Similar
to the overlapping windows in the method proposed by
(Kulldorff et al. 2005), the scanning window utilizes mul-
tiple overlapping cylinders, each composed of both a space
and time block, where time blocks are continuous windows
(i.e. not intermittent) and space blocks are geographic-
encompassing regions of varying size. However, instead of
circles of multiple radii, a square grid approach, similar to
that provided by (Neill and Moore 2004) is implemented
here.

Briefly explained below (see (Kulldorff et al. 2005)
for complete algorithm details), for each grid element, the
expected number of cases, conditioned on the observed
marginals is denoted by μ where μ is defined as the sum-
mation of expected number of cases in a grid element, given
by Equation 1,

μ = ∑
(s,t)∈A

μst (1)

where s is the spatial cluster (e.g., zip codes, census
tracts, individual addresses) and t is the time span used
(e.g., days, weeks, months, etc.) and

μst =
1
N

(
∑
s
nst

)(
∑
t
nst

)
(2)

whereN is the total number of cases and nst is the number
of cases in either the space or time window (according to
the summation term). The observed number of cases for
the same grid element is denoted by n. Then the Poisson
generalized likelihood ratio (GLR), which is used as a
measure for a potential outbreak in the current grid element,
is given by Equation 3 (Kleinman et al. 2005):

(
n
μ

)n( N−n
N−μ

)(N−n)
. (3)

Since the observed counts are in the numerator of the
ratio, large values of the GLR signify a potential outbreak.
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To assign a degree of significance to the GLR value for
each grid element, Monte Carlo hypothesis testing (Dwass
1957) is conducted, where the observed cases are randomly
shuffled proportional to the population over time and space
and the GLR value is calculated for each grid element. This
process of randomly shuffling is conducted over 999 trials
and the random GLR values are ranked. A p-value for the
original GLR is then assigned by where in the ranking of
random GLR values it occurs.

5 MODELING SCENARIO

The San Francisco Department of Public Health (SFDPH),
Tuberculosis Program provided the data. The geospatial
information in the data consist of precise locations of 392
homeless individuals infected with tuberculosis (TB). The
primary residences of these individuals were used to identify
their geographical coordinates (latitudes and longitudes)
using ArcGIS v9.0 (ESRI). The census tract information
for identifying the tracts in which the homeless individuals
reside, were obtained from generalized extracts from the
Census Bureau’s TIGER geographic database provided by
the US Census Bureau (http://www.census.gov/geo/
www/cob/index.html). The total number of unique census
tracts for our metropolitan area is 76, and the total number
of individual addresses is 392.

The scanning window in our scan statistic model uti-
lizes multiple overlapping grid elements, where the space
blocks may be either census tracts, or individual addresses.
We present results for both scenarios as a comparison of
the effective amount of parallelism available in the spatial
domain.

For our space window, we restricted the geographic
squares to sizes ranging from 0.02 km to 1 km in size,
where for each separate sized-square, a neighboring square
was allowed to overlap at half of the width on each side.
For different sized squares that had a perfect intersect of
the same cases, the smallest square was retained. Then, the
total number of space squares sampled for the census tract
centroids was 441, while the total for individual residences
was 4,234.

For our time window case counts we specified time
window ranges of 4 to 48 weeks at an interval of 4 weeks,
spanning a period of ten years. In addition, our experimen-
tation specified starting week intervals of 1 and 4.

We utilize the Unified Search Framework (USF) de-
veloped at RPI for spawning the workload onto the cluster
compute nodes, and collecting the overall runtime of the
model (Ye and Kalyanaraman 2003). Our expectation is
that the spatial blocks will exhibit a uniformly distributed
workload, and that will translate into a highly efficient par-
allel model, although we cannot know the distribution until
runtime.

6 SCALABILITY ANALYSIS

We now present a scalability analysis to determine the best
approach for balancing the computational workload across

multiple processors. This analysis leads to a general form
solution for any problem in the scan statistic algorithm data
domain; we assume no a priori knowledge of the region or
time series data.

The computational workload is defined by the modeling
scenario parameters in Table 1. The data domain for the scan
statistic algorithm has both spatial and temporal elements.
The first set of parameters pertain to the granularity of
the experimentation in each domain. The second set of
parameters pertain to the data used by the scan statistic
algorithm in each domain. Then the maximum resolution for
parallel computation is defined by computing the algorithm
for a single spatial square and a single overlapping region
in the spatial domain, and a single case count and a single
time window step in the time domain.

The goal of the decomposition is to parallelize 343,980
(CT) or 3,302,520 (IA) individual computations efficiently.
The task of scheduling these computations to multiple pro-
cessors, which is known to be an NP-Complete problem.
Because any NP-Complete problem may be restated as any
other NP-Complete problem, we restate the multiprocessor
scheduling problem as the bin-packing problem where the
CPUs are the bins into which the individual computations
must be packed.

A straightforward parallelization approach would be
to schedule each individual computation to the next free
CPU. This heuristic is known as the first-fit algorithm and
solves the bin-packing problem in θ(n log n) time (Johnson,
Demers, Ullman, Garey, and Graham 1974). Unfortunately,
this approach does not workwell because of the start-up costs
associated with initializing and executing the program 105−
106 times (unless you have tens to hundreds of thousands
of CPUs available).

A second parallelization approach, that reduces the
startup costs, would be to schedule all time domain elements
for a centroid to a CPU. This approach yields better results,
but is not optimal. The processing time varies widely over
the set of centroids, and the running time is dominated by
the longest running centroid.

It is clear that for a general form solution wemust have a
parallelization approach that balances the workload in both
the space and time domains, and minimizes the startup
costs of the application. We now formulate the expected
runtime for the spatio-temporal decomposition over multiple
processors:

Runtime=
σ · cstartup+σtotal · cexecution

Ncpu
(4)

where σtotal denotes the total number of computations in the
problem, σ denotes the number of computations per CPU,
and Ncpu indicates the number of CPUs utilized. cstartup
is the average amount of time required to initialize the
program (i.e., the time required to load the input data into
memory, initialize variables, etc.). cexecution is the average
amount of time required to execute a single computational
element (i.e., the scan statistic computation given a single
space square, spatial overlap, time window case count and
time window step).
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Table 1: Scan Statistic Model State Space.

Min Max Step Size
Model Parameters
Spatial Square Overlap 0.02km 1km variable 4,234
Time Window Case Counts (weeks) 4 24 4 6
Data Parameters
Individual Address Regions 1 396 1 392
Time Window Length (weeks) 1 520 4 130
Total State Space Size 3,302,520
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Figure 3: Spatial domain scheduling performance for individual addresses.

Equation 4 states that the runtime of the application is
dependent on the amount of time spent starting the appli-
cation plus the amount of time performing computations,
per CPU. A simple example using a single CPU and σ = 1
leaves us with the sequential runtime:

Runtimeseq = cstartup+σtotal · cexecution. (5)

and the formulation is structurally persistent (Shi 1996)
(i.e., computes the same number of computations in both
the sequential and parallel cases).

Then Equation 4 can be simplified to:

Runtime=
σ · cstartup
Ncpu

+
σtotal · cexecution

Ncpu
(6)

which illustrates that the first term is the only variable for
any problem. The first term in the expression relates to the
cost of parallelization overhead, which can be minimized
by constraint that the ratio σ : Ncpu = 1. Then the optimal
runtime becomes:

Runtimeopt = cstartup+
σtotal · cexecution

Ncpu
(7)
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and when cstartup is very small it can be ignored and our
equation agrees with Amdahl’s prediction for an application
where the sequential portion is zero.

To meet the constraints that σ :Ncpu = 1, the application
can only be started once per CPU. Then the application
must also contain a scheduling algorithm that balances the
workload. We chose round-robin scheduling because it has
a straightforward implementation. We show how we can
apply the first-fit heuristic in this context to arrive at a
nearly optimal, general-form solution for parallelizing the
scan statistic algorithm.

7 PERFORMANCE STUDY

In this section we report the performance results using round
robin scheduling for mapping the model to processors. We
study the decomposition of the problem in both the space
and time data domains, and then apply the first-fit heuristic
to arrive at a near optimal parallelization. We present results
based on both census tracts and the more compute intensive
individual addresses.

To simplify the performance results, we do not perform
measurements with external loads on the cluster computer
used. The goal of the paper is not to study the dynamic nature
of the computing environment, but rather to understand the
parallel performance of the monte carlo models for the
application of outbreak detection.

7.1 Computing Testbed and Experiment Setup

The testbed used is a Red Hat Enterprise Linux 9.0 cluster
consisting of 16 machines or compute nodes, for a total of 64
processors. The nodes are inter-connected via a dedicated
gigabit ethernet switch. Each node’s hardware configuration
consists of a dual-processor, dual-core AMD Opteron 275
server and 8GBs of main memory. The AMD Opteron 200-
series chip enables 64-bit computing, and provides up to
24GB/s peak bandwidth per processor using HyperTransport
technology. The DDR DRAM memory controller is 128-
bits wide and provides up to 6.4GB/s of bandwidth per
processor. Our RAM configuration consisted of 4 2GB
sticks of 400MHz DDR ECC RAM in 8 banks.

Although we expect the surveillance system to execute
within a cloud computing environment, deployed within a
health authorities local area network and utilizing machines
with other primary purposes, we utilize a cluster computer
here to study the performance of the workload balancing.
Before we can be concerned with the latencies associated
with communicating data over the network, and the avail-
ability of computing power over the machines used, we must
first demonstrate that the system can calculate the data in
real-time.

7.2 Spatial Domain Scheduling

The first scheduling algorithm we demonstrate is a decom-
position of the data in spatial domain. Here, each spatial
centroid is mapped to a CPU and computes the complete

time domain. From Table 1, we are performing paralleliza-
tion based on the spatial square overlap parameter. For
census tracts, the total number of centroids, cstartup is 441,
and for individual addresses, 4,234.

Performing detection based on individual addresses al-
lows for a higher degree of parallelismwithin the application,
although the runtime is far greater as there are more cen-
troids to compute. As with census tracts, the efficiency of
the parallelization is high up to 16 CPUs. Figure 3a shows
an efficiency of 70% for 32 CPUs, an improvement over
census tracts, based on a 22-fold speedup in the runtime.

Table 2: Parallel Performance of the Space Domain Sched-
uler.

Data Set # CPU Runtime (secs) Speedup Eff (%)
Census 1 103,129 - -
Census 8 13,672 7.54 94.25
Census 16 6,940 14.86 92.875
Census 32 6,977 14.78 46.18
Census 64 7,055 14.61 22.82
IA 1 267,029 - -
IA 8 33,305 8.0 100
IA 16 14,401 16.0 100
IA 32 11,886 22.4 70.18
IA 64 11,918 22.4 35.0

The histogram in Figure 3b illustrates that the workloads
based on individual addresses are uniformly distributed for
the most part, although there is one address that requires
over 3.3 hours to compute. Because the runtime for the
longest census tract is smaller than the runtime of the
longest individual address (6,977 vs. 11,886 seconds), the
individual address decomposition is not able to complete in
less time. The parallel performance for either are relatively
close; execution times for all experiments are shown in
Table 2.

7.3 Temporal Domain Scheduling

The second scheduling algorithm we illustrate is a data
decomposition in the temporal domain. Here, each CPU
processes a subset of the time series workload for each
centroid in the problem. From Table 1, we are using the time
window parameter for parallelization. Figure 6 illustrates
the decomposition of the time domain by segmenting the
time series into Ncpu equal size subsets. Each CPU is
enumerated from i : 1..Ncpu and computes the algorithm for
the ith position in each subset.

Figure 4a focuses on the temporal decomposition for 64
CPUs. Due to limited resources, we were unable to collect
intermediate results for 8, 16 and 32 processors. However,
the speedup using 64 processors is close to 30-fold, a 50%
improvement over purely spatial scheduling.
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Figure 4: Temporal domain scheduling performance for individual addresses.
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Figure 5: Spatio-temporal domain scheduling performance for individual addresses.
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Figure 6: Decomposition of the time series.

Figure 4b illustrates the per CPU runtime. The perfor-
mance improvement in this scheduling algorithm is due to
the longest running task time reduction from 11,886 seconds
to under 10,000 seconds. However, the workload is still
unbalanced.

7.4 Spatio-Temporal Scheduling

The final scheduling algorithm we illustrate is a data de-
composition in both the spatial and temporal domain. Here,
each CPU processes a subset of the time series workload,
offset for each consecutive centroid computed. This has the
effect of round robin allocating the time domain as well so
that no one CPU ends up computing the longest period for
each time series.

Figure 5a illustrates nearly optimal performance for
64 CPUs based on the longest running task time of 4,119
seconds. Figure 5b shows that the workload is nearly
balanced across all CPUs.

8 CONCLUSIONS & FUTURE WORK

The reality of the situation is that many health services agen-
cies cannot set aside funds for high performance computing
platforms such as cluster computers. We have demonstrated
highly efficient parallel computation for monte carlo models
for outbreak detection. We have shown that high throughput
computing platforms, such as a Cloud Computing environ-
ment based on an existing IT infrastructure, can be low-cost
while still meeting the needs of real time surveillance con-
straints.

In the future, we would like to investigate the possi-
bility of connecting multiple surveillance systems to create
a regional or national surveillance system. Another chal-
lenging area for this work is to investigate the possibility
of constructing computation clouds in developing regions
of the world.
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