
A METHODOLOGY FOR UNIT TESTING ACTORS IN PROPRIETARY DISCRETE EVENT BASED
SIMULATIONS

Mark E. Coyne
Scott R. Graham

Kenneth M. Hopkinson
Stuart H. Kurkowski

Department of Electrical and Computer Engineering
Air Force Institute of Technology

2950 Hobson Way
WPAFB, OH 45433-7765, U.S.A

1 ABSTRACT

This paper presents a dependency injection based, unit test-
ing methodology for unit testing components, or actors,
involved in discrete event based computer network simu-
lation via an xUnit testing framework. The fundamental
purpose of discrete event based computer network simulation
is verification of networking protocols used in physical–not
simulated–networks. Thus, use of rigorous unit testing and
test driven development methodologies mitigates risk of
modeling the wrong system. We validate the methodology
through the design and implementation of OPNET-Unit, an
xUnit style unit testing application for an actor oriented dis-
crete event based network simulation environment, OPNET
Modeler.

2 INTRODUCTION

Creation of models for discrete event based
simulation engines such as OPNET Mod-
eler(OPNET Technologies 2006), Network Simulator 2
(NS-2), and GloMoSim (Zeng, Bagrodia, and Gerla 1998)
is an implementation exercise worthy of the same respect
given to any large-scale software development effort.
In many instances, models consist of thousands of
lines of code, placing their development solidly in the
realm of software engineering, warranting best practices
development techniques.

However, many individuals involved in the development
of these models are concerned primarily with another course
of research, such as computer network protocol research and

development, not producing robust model implementations.
One commonly used mechanism for increasing quality in
a development effort’s code base is through unit testing.

Unit testing via automated unit testing frameworks such
as JUnit, CppUnit, and others, is arguably an integral part
of any mature software development effort. Indeed, eX-
treme Programming (XP) and other forms of Test Driven
Development (TDD) require the use of automated testing
frameworks, with their strategy of writing a failing test
first, editing the production code to make the test pass, then
refactoring the production code to production quality while
maintaining the passing status of the test (Meszaros 2007).

Many other benefits to unit testing exist as well. Unit
testing has been shown to improve code quality and dra-
matically reduce debugging times through enhanced defect
localization (Meszaros 2003) (Müller and Padberg 2003)
(Francel and Rugaber 1999). Additionally, unit tests serve
as a communication tool by functioning as an automated,
self-checking, technical specification for how the soft-
ware should behave (Meszaros 2007), and a large bat-
tery of unit tests opens the door for “eXtreme Pro-
gramming” (XP) and other agile forms of development
through a robust regression testing process (Fowler 1999)
(Freeman, Mackinnon, Pryce, and Walnes 2004). Lastly,
the unit testing environment allows for easy re-creation
of boundary conditions, useful for verifying correctness of
process model implementations, which might otherwise be
difficult to produce or re-create in a traditional simulation
environment (Meszaros 2007). However, in the domain of
many discrete event simulation platforms, several classes

1012 978-1-4244-2708-6/08/$25.00 ©2008 IEEE

Proceedings of the 2008 Winter Simulation Conference
S. J. Mason, R. R. Hill, L. Mönch, O. Rose, T. Jefferson, J. W. Fowler eds.

Coyne, Graham, Hopkinson, Kurkowski

problems prevent the use of traditional xUnit style testing
frameworks:

1. Many simulation platforms provide a library of
vendor specific API calls. Many of these API have
complex implementations. Abstracting these calls
completely with use of a mock object would be
time consuming, error prone, and impractical.

2. Simulation vendors may specify artificial program-
ming constructs for defining each actor’s behav-
ior. These constructs may not be inherently unit
testable.

3. Proper testing of a given actor may require exe-
cution in the context of a running simulation as
defined by the vendor’s simulation platform.

This paper describes a software engineering approach to
overcoming these impediments, integrating the techniques it
into a testing harness, suitable for unit testing actors with any
xUnit compliant testing framework. We use the OPNET
Modeler discrete event simulation platform to verify the
methodology. OPNET Modeler was chosen for the two
fold condition that it is actor oriented and it is a widely
used, well documented product.

Section 3 describes actor oriented systems. Section
4 presents the architecture of OPNET-Unit. Section 5
describes OPNET-Unit’s use of test doubles. Section 6
shows the dependency injection mechanism that allows the
framework to provide a modular and re-usable unit testing
solution for the general case. Section 7 describes the
execution of simulations. Section 8 discusses observation
of simulation state. Section 9 provides a case-study example
and section 10 concludes.

3 UNIT TESTING ACTOR ORIENTED SYSTEMS

3.1 Actor Systems

The unit testing methodology described in this paper assumes
the discrete event simulation is fundamentally actor oriented.
Actor oriented programming defines simple building blocks,
called “actors” with interact with each other along predefined
data paths. Information passing between actors occurs using
“tokens” which actors pass along the data paths. Lastly, each
actor executes, or “fires” according to an external scheduler
(Janneck 2002).

Some discrete event simulators, such as OPNET,
model computer networks as a hierarchy of actor systems
(Lee and Neuendorffer 2004). The top level contains the fa-
miliar network objects, such as clients, routers, and servers.
These network objects compose the top level actor system
as each network object executes concurrently with other net-
work objects and communicates via predefined paths (wired
or wireless connections) with tokens (packets). Each net-

work object is further defined by another actor system which
defined the behavior of each network object. The firing, or
execution, of each actor is defined by a schedule, or in the
case of discrete event simulation, the event queue.

The goal of unit testing is to verify correctness of mod-
ules of implementation. Preferably, these modules should
be as small as possible to facilitate defect localization. Un-
der traditional programming paradigms, this would be the
individual function or method level of an object. In actor
oriented systems, the module of verification is the actor.

To effectively unit test a given actor, a framework must
regulate the following three aspects:

1. The schedule of an actor’s firing.
2. The input, in the form of tokens, along the actor’s

data path.
3. The implementation the actor executes when it

fires.

3.2 Network Simulations as Actor Systems

In the domain of a DES based computer network simulation,
these three aspects manifest them selves as network domain
specific events.

3.2.1 Regulating actor scheduling

To regulate the scheduling of actor firing in a DES, we must
insert individual events in the event queue that result in the
execution of the desired actor. In the domain of network
simulation, these events would correspond to packet arrivals
at the target actor. Thus, the framework must provide a
mechanism for scheduling individual packet arrivals for the
Actor Under Test (AUT).

3.2.2 Creating actor input

As stated, actors communicate by passing tokens. In the
domain of network simulation, these tokes are represented
by packets. Thus, the framework must provide a simulation
platform specific packet creation mechanism for various
packet types (TCP, UDP, etc.).

3.2.3 Controlling actor implementations

When the scheduler decides to fire an actor, the actor must
have an implementation to execute on whatever input tokens
may be present. Because the environment of the actor under
test (AUT) is fixed (not modifiable without re-compilation),
the actual implementation of the actor under test must be
readily “swappable” without need for code re-compilation.

1013

Coyne, Graham, Hopkinson, Kurkowski

4 OPNET-Unit ARCHITECTURE

The overall architecture (Figure 3) of OPNET-Unit consists
of three distinct tiers: 1) specialized modules which execute
as a part of the OPNET simulation, known collectively as
the OPNET Mediator 2) the OPNET framework which
interacts with the specialized modules via an API, and 3)
the application layer–unit tests themselves. The OPNET-
Unit framework defines the entry point for the application,
and thus uses the OPNET simulation platform as an external
library. The top application level contains the actual unit
tests the user wishes to execute on the underlying actor, and
uses two libraries: the OPNET-Unit framework to interact
with the simulation, and the actual unit testing library of
the user’s choosing such as CppUnit or CxxTest to enforce
assertions and collect test results.

4.1 Mediator

Traditionally, the mediator design pattern allows two
objects to depend on the mediator, thus prevent-
ing the objects from depending on each other
(Gamma, Helm, Johnson, and Vlissides 1995). Likewise,
the OPNET Mediator allows the framework and the sim-
ulation kernel to interact while eliminating dependencies
between them. Unlike the traditional mediator, however,
the OPNET mediator performs additional services. First, it
eliminates proprietary constraints generated by the OPNET
simulation platform. This allows the framework layer to
interact with an interface free of proprietary influences. Sec-
ond, the mediator sets up the generic actor system shown in
figure 2, thus opening the door for the generic unit testing
environment. Third, the mediator functions as an observer
server, allowing clients, such as the framework, to register
themselves as observers. The mediator then alerts registered
observers of important events, such as packet transmission
from the AUT, and allows the clients to take appropriate
action.

4.2 Framework

The framework layer utilizes the mediator’s standard API
to interact with the simulation kernel. Via this API, the
framework provides the fundamental services required of
unit testing an actor system: regulating actor scheduling,
creating actor input, and controlling actor implementations.
The framework layer provides these services through an-
other API to the application layer. These API’s are high
level and sufficiently generic to be usable in a unit test-
ing environment. They contain mechanisms for installing
a given implementation into the AUT, creating packets as
input tokens, advancing the simulation event by event, and
checking for output from the AUT.

Figure 1: Overall OPNET-Unit Architecture. The architec-
ture consists of three tiers: the OPNET mediator, the OPNET
co-simulation, and the actual unit tests as implemented by
the user.

4.3 Application

At the highest layer, the application layer executes the user’s
unit tests. This layer is written by the user utilizing a unit
testing library, such as CppUnit or CxxTest. At this layer,
the user can utilize the framework’s API’s to provide input
packets to the AUT, check the state of the AUT, and verify
correct output from the AUT.

5 SUBSTITUTING PROPRIETARY SUPPORT VIA
A TEST DOUBLE

A fundamental reality of implementing such a unit-testing
framework for an existing discrete event simulator is mitigat-
ing adverse impact caused by the large body of proprietary
libraries necessary to run a simulation, and thus a unit test.
OPNET Modeler is no different. These libraries provide vital
functionality, such as packet creation, inter-actor communi-
cation, and other vendor specific functions. Unfortunately,
proprietary constraints may disallow their use in a purely
unit testing oriented environment. For example, OPNET
enforces strict packet ownership, and its packet creation li-
braries do not permit the creation of a packet independently
of an executing simulation. One mechanism for dealing
with these libraries is to provide “fake” implementations
of all proprietary API calls used by the AUT. Meszaros
(Meszaros 2007) refers such implementations in general as
“test doubles.” Because test doubles that provided simple,
test specific implementations are called “fake objects,” we
refer to our test double implementation as a “fake kernel”
as it satisfies the same intent at the simulation platform’s

1014

Coyne, Graham, Hopkinson, Kurkowski

Figure 2: Conceptual Actor Environment. The OPNET
Mediator creates a standard API that functions as if this were
the executing simulation. This generic actor environment is
suitable for testing actors that have a finite number if input
actors and a finite number of output actors. The Framework
allows unit tests to control the tokens sent by the input
actors and observe the tokens received by the output actors,
as well as the state of the AUT itself.

kernel level. Using this strategy, the AUT would not be
aware of the fact that an actual simulation may not even
be running, as all of it’s couplings to the proprietary simu-
lation kernel have been removed. While this decoupling is
highly advantageous, it comes at a high cost: duplication
of existing code.

Thus, our strategy is not to provide test oriented im-
plementations for all of the simulator specific API calls,
which would be complicated and unmanageable, but to pro-
vide test-specific implementations for a small subset and
default to the original implementations for the majority of
the required calls. This technique optimizes the ability of
the framework to use the original vendor provided imple-
mentation wherever possible, while still providing testable
access to the AUT for unit test related requirements, such
as AUT initialization and state verification.

In order to allow the default implementations to func-
tion properly, such as packet creation, the framework must
begin an actual simulation. The framework manages the
full lifecycle of simulation execution via proprietary API’s
internally, thus allowing the fake kernel to default to orig-
inal implementations whenever needed, and allowing the
application layer to function without any simulator related
dependencies.

6 DEFINING ACTORS VIA DEPENDENCY
INJECTION

6.1 Introduction

As mentioned in Section 4, the OPNET-Unit framework
contains a module that executes as a part of the OPNET
simulation and provides a standard API, independent of
proprietary constraints. As part of the API, the module
creates, conceptually, the collaboration of actors shown in
Figure 2. This actor relationship consists of three categories
of actors: 1) “input” actors, 2)the AUT, and 3) “output”
actors. Input actors behave as other actors in the system
that might provide input tokens to the AUT. Likewise, the
output actors function as implementations that might receive
tokens produced by the AUT. The framework controls the
functioning of both categories of actors. Additionally, the
quantity of input and output actors is boundless, as this
model is conceptual–implementation details provide for this
abstraction.

6.2 Motivation

This conceptual model provides a generic environment for
unit testing arbitrary actors. Any number of other test-
controlled actors may provide input, and likewise, any
number of test-observed actors may receive output form
the AUT. Conceptually, when a user wants to test a given
actor, they need only to replace the actor under test with
their particular implementation.

Ideally, developers performing testing want to change
the implementation of the AUT post-compile time. In the
OPNET context, we define post compile time as the two-
fold condition that 1)an actor’s implementation has already
been compiled and 2)the network object that contains the
actor in question has already been saved and cannot be
modified.

This first condition exists because some discrete event
based simulators, including OPNET, allow users to define
any arbitrary actors in terms of “child actors.” These sub-
actors behave as regular actors, with the exception that
their firings are controlled by the parent actor, not the
scheduler. Making liberal use of child actors, the AUT,
acting as a parent actor, could dispatch all incoming tokens
to any particular child actor, making the child actor the
AUT. By switching which child actor received the input
tokens, the parent would effectively be swapping between
different actor implementations to unit test. However, this
mechanism causes unwanted dependencies between the child
actor and the parent actor who must depend on the child.
This technique would require the parent actor to have a
full list of potential child actors to unit test at compile
time. Moreover, this casues the simulator to be dependent
on both the parent and the child; the addition of child

1015

Coyne, Graham, Hopkinson, Kurkowski

c l a s s A c t o r I n t e r f a c e
{
p u b l i c :

v i r t u a l vo id p r o c e s s I n t e r r u p t () =0 ;
v i r t u a l vo id i n i t i a l i z e () =0 ;

A c t o r I n t e r f a c e (vo id) ;
v i r t u a l ˜ A c t o r I n t e r f a c e (vo id) ;

} ;

Listing 1: Actor Interface. This listing shows the interface
used by the AUT in the generic actor framework.

implementations would cause the simulation to likewise
depend on each new implementation. The elimination of
these dependencies is critical, and described in the next
section.

The second condition exists because once could simply
adjust the actor configuration (Figure 2) to contain the actor
desired for testing. However, this is not a viable option
because unit testing requires a generic solution. The actor
configuration is already sufficiently generic to test arbitrary
actors. Re-building the actor collaboration between unit
tests is wasteful, akin to rebuilding a house for purposes
of changing the light bulbs, and likely requires some code
re-compilation. Dependency injection solves all of these
problems by providing a method for swapping the imple-
mentation of the AUT at runtime. This allows a unit test to
swap in its particular actor of interest as apart of test-case
initialization.

6.3 Dependency Injection

The principles of dependency injection (DI) and the more
general term, inversion of control (IoC), have long been
used in many frameworks for the ability to defer estab-
lishing dependencies from compile time to a configuration
period at run-time and to reduce dependencies of com-
ponents on specific implementations of other components
(Fowler 2004) (Meszaros 2007). Frameworks such as Au-
tumn (C++), Spring (Java, .NET), and PicoContainer (Java,
.NET) all utilize DI and IoC (Mürk and Kabanov 2006)
(Autumn 2008) (PicoContainer 2008).

Thus, in order to remove the coupling between the
simulation kernel and the AUT’s implementation, a module
external to the simulation must assume control of choos-
ing the appropriate implementation (in this case, the unit
testing environment) and provide the implementation to the
simulation. Using this method, the AUT depends solely on
an interface that all potential AUT’s must implement–not
an implementation supplied at runtime. OPNET-Unit uti-
lizes type 2 IoC, called “setter injection” by Martin Fowler
(Fowler 2004). In this method of dependency injection,
the assembler module (the unit testing environment) calls

Figure 3: OPNET-Unit Coupling Elimination. In the original
OPNET architecture, the DES simulation kernel depends
directly on actor implementations. OPNET-Unit eliminates
this coupling, allowing the simulation kernel to depend solely
on a generic interface shown in listing 1. A separate module
then “injects” a particular actor implementation at runtime,
thus eliminating the coupling between the simulation kernel
and the actor implementation.

a setter method on the client (OPNET-Unit supporting li-
braries) and sets a field with a reference to the appropriate
implementation.

7 EXECUTING SIMULATIONS WITH PRECISION
CONTROL

Utilizing standard API’s provided by the framework layer,
the application layer controls the execution of the underlying
OPNET simulation with great precision-down to the event
when necessary. Alternatively, the OPNET-Unit framework
makes use of the “observer” design pattern to only inter-
rupt the executing simulation when events of interest occur.
When the framework initializes the simulation, it registers
several call-back methods with the OPNET Mediator. This
way, the simulation can run uninterrupted, notifying the
framework that the AUT has sent a packet, modified a
statistic, or initiated a remote interrupt. When that partic-
ular event has occurred, the framework can then decide to
check the state of the AUT or continue execution. Thus,
the framework can execute the simulation event by event,
checking assertions all along the way, or execute the sim-
ulation until key events, only then pausing the simulation
to check assertions. The framework also recognizes other
key events to pause the simulation and check assertions.

1016

Coyne, Graham, Hopkinson, Kurkowski

8 OBSERVING SIMULATION STATE

In testing a process with OPNET-Unit, there are two im-
portant parts of the simulation that should be observed for
testing purposes. First, the state of the actual implementa-
tion defining the AUT. Second, the state of the surrounding
simulation (other nodes, packets, statistics) that the AUT
might have altered. Observing the state of the AUT is largely
a matter of the way the tester implemented the AUT. What-
ever publicly visible state the implementation possess can
be verified during unit testing. Observing the state of the
surrounding simulation is possible using methods supplied
by the framework. The OPNET-Unit Mediator reports per-
tinent information such as packet arrival and statistic output
to the framework’s published interface for access and use
from a standard unit-testing library. Using these methods, a
test scenario is possible that sends a packet to the AUT, and
then verifies that the node under test forwards the packet
on a given port, and records certain statistics about it’s
operation.

9 A CASE STUDY

9.1 Introduction

In order to validate the methodology and implementation
discussed in this paper, we apply the unit testing mech-
anism to a pedagogical actor implementation. The actor
is implemented as a finite state machine with two states:
an initialization state and a wait state. The test cases will
exemplify OPNET-Unit’s ability to 1) produce packets, 2)
control simulation execution and 3) verify AUT state. Ad-
ditionally, the test cases indirectly utilize the “fake” kernel
to handle proprietary issues in the test implementation.

The case study also explores the advantages of a de-
bugging technique known as “slicing.” A slice is defined as
a the set of statements that affect the value of a variable in
a particular statement (Francel and Rugaber 1999). Thus,
if a variable has an incorrect value at a certain point in
program flow, a debugger should investigate that variable’s
slice for the solution to the bug. Unit testing is particu-
larly valuable to developers utilizing the slicing technique
of debugging, because the specific and focused nature of
unit tests facilitate smaller, more manageable slices.

9.2 Test Cases

Figure 4 shows a simple AUT implementation. This imple-
mentation performs initialization procedures in the “INIT”
state, and then transfers directly to the “WAIT” state where
the implementation blocks until another interrupt from the
scheduler is received. The INIT state initializes all state
variables to 0. The WAIT state performs three simple arith-
metic operations involving the incoming packet: calculating

Figure 4: An Example actor implementation. This finite
state machine implementation contains only two states with
an “INIT” state performing initializations, and the “Wait”
state handling all subsequent interrupts from the executing
simulation.

s i z e t p a c k e t m a x s i z e = 0 ;
s i z e t p a c k e t m i n s i z e = 0 ;
s i z e t num packe ts = 0 ;
s i z e t sum = 0 ;
double a v e r a g e = 0 ;

Listing 2: “INIT” State Proto-C. This listing shows the code
contained in the “INIT” state of the process implementation
under test. Line 2 contains a fault.

the largest, smallest and average packet size. The Code that
executes in the “INIT” state is shown in listing 2 and the
code that executes in the “WAIT” state when an interrupt
is received is shown in listing 3.

To test the implementation, we write several tests to
verify proper functioning. In accordance with good testing
practices, we are particularly interested in boundary condi-
tions. A few simple boundary conditions are the following:

1. No packets sent to the node.
2. One packet sent to the node (size 0).
3. Two packets sent to the node (sizes 0 and

INT MAX).
4. Two packets sent to the node (sizes 1 and

INT MAX)

Using the CxxTest framework, we can implement the
first non-trivial test case, case two (Listing 4).

After running test cases examining all the bound-
ary conditions listed, tests for conditions 3 and 4 fail.
Utilizing the debugging concept of slicing discussed in
(Francel and Rugaber 1999), we narrow the bug search to
lines 13 and 16 and discover empty control statements. We
replace the statement:

(13) if(packet_size > packet_max_size);
(14) packet_max_size = packet_size;

with:

1017

Coyne, Graham, Hopkinson, Kurkowski

/ / r e c o g n i z e s t r e a m i n t e r r u p t s on ly
i f (o p i n t r p t t y p e () == OPC INTRPT STRM) {

/ / g e t t h e p a c k e t
P a c k e t ∗ p k t = o p p k g e t (o p i n t r p t s t r m ())

;
/ / g e t t h e p a c k e t s i z e
p a c k e t s i z e = o p p k b u l k s i z e g e t (p k t) ;

/ / g e t t h e l a r g e s t p a c k e t
i f (p a c k e t s i z e > p a c k e t m a x s i z e) ;

p a c k e t m a x s i z e = p a c k e t s i z e ;

/ / g e t t h e s m a l l e s t p a c k e t
i f (p a c k e t s i z e < p a c k e t m i n s i z e) ;

p a c k e t m i n s i z e = p a c k e t s i z e ;
/ / c a l c u l a t e a v e r a g e
num packe ts ++;
sum += p a c k e t s i z e ;
a v e r a g e = sum / num packe ts ;
o p s t a t w r i t e (AvgSizeHandle , a v e r a g e) ;
d e l e t e p k t ;

}

Listing 3: . “Wait” State Proto-C. This listing shows the code
contained in the “Wait” state of the process implementation
under test. Lines 9 and 13 contain faults.

(13) if(packet_size > packet_max_size)
(14) packet_max_size = packet_size;

and similarly with the “if” statement in line 16. Retest.
Now only test 4 fails. Again, slicing leads the debugging
search directly to line 2 in the initialization state. We
change:

(2) size_t packet_min_size = 0;

with:

(2) size_t packet_min_size = INT_MAX;

and retest. All tests now pass. Even in this small sample
of code there were several common bugs, extra “;’s” and
incorrect initializations, that could have been difficult to
debug without an isolated testing environment in which
to test axioms and re-create boundary conditions where
program faults frequently lie.

10 CONCLUSION

Unit testing has been shown to effectively reduce debugging
times for several reasons, most notably through defect lo-
calization. However, in many simulation environments, unit
testing via traditional unit testing methods quickly becomes
infeasible and unmanageable because of close coupling to
proprietary simulation kernels. OPNET-Unit proposes a
methodology and framework for overcoming these difficul-
ties by building an API around the simulation that makes
it appear as a generic actor oriented system.

vo id t e s t 2 (vo id)
{
/ / g e t t h e f i r s t p a c k e t
P a c k e t ∗ p k t = h a r n e s s−>g e t P a c k e t (0) ;
/ / s end t h e p a c k e t t o t h e node under t e s t on

s t r e a m 0
h a r n e s s−>s e n d P a c k e t (p k t , 0)
h a r n e s s−>inc rementOneE ven t () ;
TS ASSERT EQUALS (manager−>g e t S t a t e V a r i a b l e s ()−>

p a c k e t m a x s i z e , 0) ;
TS ASSERT EQUALS (manager−>g e t S t a t e V a r i a b l e s ()−>

p a c k e t m i n s i z e , 0) ;

TS ASSERT EQUALS (manager−>g e t S t a t e V a r i a b l e s ()−>

num packe ts , 1) ;
TS ASSERT EQUALS (manager−>g e t S t a t e V a r i a b l e s ()−>

sum , 0) ;
TS ASSERT EQUALS (manager−>g e t S t a t e V a r i a b l e s ()−>

a v e r a g e , 0) ;
}

Listing 4: Non-Trivial Test Case. This shows the full
implementation of the test case that ensures axiom 2 holds
true.

Through use of a special mediator that allows access
to the actor system without reliance on the underlying
simulation, we create a framework, suitable for testing in
a traditional C++ development environment using a xUnit
testing framework. With the support of the new framework,
new OPNET development methodologies are now possible
including TDD and agile forms of development. Moreover,
batteries of unit tests could ship with the accompanying actor
implementations and serve as robust regression tests, facil-
itating future OPNET modeler development; researchers
seeking to modify an existing protocol could run the battery
of tests after each modification of the source code, clearly
identifying which specifications the modification no longer
fulfills. Lastly, research efforts can improve, as developers
implement new protocol designs for use with the OPNET
simulation platform, OPNET-Unit can provide a greater de-
gree of confidence that their implementations are true to
their original protocol designs, yielding higher quality and
more meaningful results.

ACKNOWLEDGEMENTS

The views expressed in this document are those of the
authors and do not reflect the official policy or position of
the United States Air Force, Department of Defense, or the
U.S. Government.

REFERENCES

Autumn 2008, January.
http://code.google.com/p/autumnframework/.

1018

Coyne, Graham, Hopkinson, Kurkowski

Fowler, M. 1999. Refactoring: improving the design of exist-
ing code. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc.

Fowler, M. 2004, January. Inversion of control
containers and the dependency injection pattern.
http://martinfowler.com/articles/injection.html.

Francel, M. A., and S. Rugaber. 1999. The relationship of
slicing and debugging to program understanding. In
IWPC ’99: Proceedings of the 7th International Work-
shop on Program Comprehension, 106. Washington,
DC, USA: IEEE Computer Society.

Freeman, S., T. Mackinnon, N. Pryce, and J. Walnes. 2004.
Mock roles, objects. In OOPSLA ’04: Companion to
the 19th annual ACM SIGPLAN conference on Object-
oriented programming systems, languages, and appli-
cations, 236–246. New York, NY, USA: ACM.

Gamma, E., R. Helm, R. Johnson, and J. Vlissides. 1995.
Design patterns: elements of reusable object-oriented
software. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc.

Janneck, J. 2002, December. Actors and their composi-
tion. Technical Report UCB/ERL M02/37, ERL, UC
Berkeley.

Lee, E., and S. Neuendorffer. 23-25 June 2004. Classes
and subclasses in actor-oriented design. Formal Meth-
ods and Models for Co-Design, 2004. MEMOCODE
’04. Proceedings. Second ACM and IEEE International
Conference on:161–168.

Meszaros, G. 2003. Test automation manifesto. XP Universe.
Meszaros, G. 2007. xUnit test patterns: Refactoring test

code. Addison-Wesley.
Müller, M. M., and F. Padberg. 2003. On the economic eval-

uation of xp projects. In ESEC/FSE-11: Proceedings of
the 9th European software engineering conference held
jointly with 11th ACM SIGSOFT international sympo-
sium on Foundations of software engineering, 168–177.
New York, NY, USA: ACM.

Mürk, O., and J. Kabanov. 2006. Aranea: web framework
construction and integration kit. In PPPJ ’06: Proceed-
ings of the 4th international symposium on Principles
and practice of programming in Java, 163–172. New
York, NY, USA: ACM.

OPNET Technologies 1987-2006. Modeler documentation
set. 12.0 ed. 7255 Woodmont Avenue, Bethesda MD
20814-7904 USA: OPNET Technologies.

PicoContainer 2008, January.
http://www.picocontainer.org/.

Zeng, X., R. Bagrodia, and M. Gerla. 1998. Glomosim: a
library for parallel simulation of large-scale wireless
networks. In PADS ’98: Proceedings of the twelfth
workshop on Parallel and distributed simulation, 154–
161. Washington, DC, USA: IEEE Computer Society.

AUTHOR BIOGRAPHIES

MARK E. COYNE is a graduate of the Air Force
Institute of Technology and is currently an active duty
communications officer stationed at Ft. George Meade,
Maryland. His interests lie in the areas of networking,
simulation, and software engineering. He can be contacted
at <mark.coyne@ft-meade.af.mil>.

SCOTT R. GRAHAM is an Assistant Professor of Com-
puter Engineering at the Air Force Institute of Technology.
His interests include mobile network protocols, systems
engineering, and network simulation. He can be contacted
at <scott.graham@afit.edu>.

KENNETH M. HOPKINSON is an Assistant Pro-
fessor of Computer Science at the Air Force Institute
of Technology. His interests include networking, dis-
tributed systems, and simulation. He can be contacted at
<kenneth.hopkinson@afit.edu>.

STUART H. KURKOWSKI is an Assistant Professor of
Computer Science at the Air Force Institute of Technology.
His interests include the modeling of mobile networks,
scientific visualization, and simulation. He can be contacted
at <stuart.kurkowski@afit.edu>.

1019

