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ABSTRACT 

This study focuses on the development of a conceptual si-
mulation modeling tool that can be used to structure a do-
main specific simulation environment. The issues in Soft-
ware Engineering and Knowledge Engineering such as 
object-oriented concepts and knowledge representations 
are addressed to identify and analyze modeling frame-
works and patterns of a specific problem domain. Thus, its 
structural and behavioral characteristics can be conceptual-
ized and described in terms of simulation architecture and 
context. Moreover, symbols, notations, and diagrams are 
developed as a communication tool that creates a blueprint 
to be seen and recognized by both domain experts and si-
mulation developers, which leads to the effectiveness and 
efficiency in the simulation development of any specific 
domains.    
 
1 INTRODUCTION 
 
In the past ten years, there have been several panel discus-
sions at, e.g., the Winter Simulation Conferences (Zhou, 
Son, and Chen 2004; Heavey and Ryan 2006; Robinson 
2006a), the OR Society Simulation Workshop (Robinson 
2006b, Wang and Brooks 2006), and the BETADE Work-
shop (Verbraeck and Dahanayake 2002), which acknowl-
edge the use of conceptual modeling (CM) approach and 
domain specific simulation environment (DSSE) approach 
as a critical step to improve the quality and efficiency of 
discrete event simulation research studies/projects. The lit-
erature mainly states that good practice of these two ap-
proaches significantly reduce communication barriers, or-
ganize model structure, shorten project time, and improve 
simulation development processes (Vreede, Verbraeck, and 
Eijck 2003; Valentin and Verbraeck 2005; Zhou, Zhang, 
and Chen 2006). Although their advantages are addressed 
and supported in the same direction by several simulation 
studies, CM and DSSE still have so far received little at-
tention from simulation developers because CM is viewed 

as more of an art than science (Brooks 2006), while DSSE 
is lack of trust of those (Valentin and Verbraeck 2005).  
 Numerous articles of, for example, Cyre (1999); Deur-
sen, Klint, and Visser (2000); Pace (2000); Yilmaz and 
Oren (2004); Valentin and Verbraeck (2005); and Robin-
son (2006a, 2006b), propose ideas on definitions, require-
ments, limitations, and methods for the development of 
CM and DSSE to overcome the struggles in those simula-
tion developers’ mind. However, most of them are still re-
luctant to apply CM and DSSE approach to develop their 
simulation projects. This is because only a few number of 
literature demonstrate how to transform and develop those 
concepts into a standard method/tool that can be used to 
capture and describe elements required for both CM and 
DSSE. A research study by Teeuw and van den Berg 
(1997), for instance, introduces the conceptual framework 
as developed in their Testbed project by using symbols and 
notations to describe a system’s behaviors, relations, and 
entities. A conceptual model can also be built by using 
knowledge representation notations such as seman-
tic/logical graphs, where the nodes represent concepts, and 
the arcs represent relationships among concepts (Cyre 
1999; Zhou, Son, and Chen 2004). Furthermore, a selective 
review of a number of current modeling methods/tools car-
ried out by Heavey and Ryan (2006) shows that simulation 
developers have become more aware of  using standard 
methods/tools such as Petri Nets, DEVS, IDEF3, and 
UML, to develop their own conceptual models. As well, 
simulation building block terminology is proposed by a re-
search team, BETADE, at Delft University of Technology, 
The Netherlands, in 2001 to provide a standard methodol-
ogy for the DSSE development (Verbraeck and Dahanay-
ake 2002), instead of relying on old-fashioned program-
ming. It can be said that the trend of the CM and DSSE 
research studies is moving forward to acquiring more so-
phisticated, universal, and user-friendly methods/tools to 
serve both CM and DSSE requirements effectively and ef-
ficiently. However, none of the available methods/tools ex-
ists to satisfy this demand.  
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 One of the critical reasons is that both CM and DSSE 
are viewed from different perspectives that not only isolate 
them into two distinct disciplines but also eliminate an op-
portunity for their collaborative modeling and representa-
tion formalisms in developing simulation projects. The fact 
that the foundations of modeling concepts and processes 
for CM and DSSE are similar allows them to overlap in 
some aspects (see Valentin and Verbraeck 2002; Ver-
braeck and Valentin 2002; Vreede, Verbraeck, and Eijck 
2003; Zhou, Setavoraphan, and Chen 2005). The concepts 
developed by CM processes are transformed into the logi-
cal and structural components for DSSE, whereas the result 
of the implementation of those in DSSE becomes a feed-
back mechanism that provides a better understanding of 
both the problem domain and the simulation domain – to 
allow the problem owners to improve their conceptual 
models for better DSSE (see Figure 1). This iterative CM 
and DSSE development process is performed until DSSE 
generates a complete standard set of the specifications and 
patterns – that can be transformed into basic building 
blocks. Then these building blocks are composed into a 
stand-alone simulation template, which is capable of repre-
senting systems as a domain specific simulation model for 
the simulation builders as well as a domain specific con-
ceptual model for the domain experts. Consequently, the 
simulation template is delivered as the ultimate piece to 
develop (commercial) simulation software and a knowl-
edge-based simulation system.  
 

 
 

Figure 1: The relationship between CM and DSSE 
 
 The main idea of this research study is to specialize 
CM concepts and techniques to further its potentials in ge-
neralizing the behavioral and structural characteristics of a 
specific problem domain to generate a model that contains 
processes, elements, controls, and requirements for simula-
tion – that is generally referred to as conceptual simulation 
modeling (CSM). Thus, the CM approach is determined as 
the backbone of the development of a CSM tool that can be 
used to structure DSSE for discreet-event simulation mod-
eling problems. Section 2 briefly describes the key con-
cepts within Software Engineering (SE) and Knowledge 
Engineering (KE) that baseline the foundations of the CSM 
development. The concepts are formalized into different 
layers and representations to construct standard symbols, 
notations, and diagrams to be used in CSM, which is illus-
trated in Section 3, including an example for illustration. 
Finally, conclusions and further research are given in Sec-
tion 4.  

2 KEY CONCEPTS 
 
The simulation development process is a kind of problem-
solving process that determines a context, environment, or 
boundary of a real-world problem domain to be developed 
and operated. In such the process, CSM plays a critical role 
as a specialized tool to facilitate the understanding of the 
problem, support communication between domain experts 
and simulation developers, and represent the knowledge 
needed by the simulation system to solve the problem. 
CSM also takes advantages from the convergent underly-
ing concepts used to develop conceptual models from both 
SE and KE, which are: first, object-oriented concepts from 
the discipline SE; and second, knowledge representations 
(or levels in some literature) from the discipline KE (see 
more details about the CM methods in Dieste et al. 2001). 
However, CSM acquires more acknowledged approaches 
to access, formalize, and handle these concepts to over-
come the barriers and drawbacks during constructing and 
transforming a conceptual simulation model. These are de-
composition and composition approaches.  
 
2.1  Decomposition Approach 
 
The significant problem found in applying object-oriented 
concepts and defining knowledge representations is how to 
determine and represent the concepts derived from both 
application knowledge and simulation knowledge (see 
Zhou, Son, and Chen 2004) at an appropriate abstract level 
to satisfy the efficiency of CSM. The determination of the 
level of abstraction is strongly influenced by the objectives 
of the design or the questions needed to be answered (Ben-
jamin et al. 1993). Nevertheless, no single abstract model 
is sufficient to be expressed at different levels of precision 
and to attack specific problems (Booch, Jacobson, and 
Rumbaugh 1999). 
 Decomposition is a crucial approach used to handle 
complexity and represent the behavioral and structural cha-
racteristics of the target problem domain at an appropriate 
level of detail (Zhou, Setavoraphan, and Chen 2005). 
Moreover, it is the paramount idea of the object-oriented 
concepts (Meyer 1997), which is used to formalize model-
ing frameworks for CSM due to its inherent support for ab-
straction-centric, reusable, and adaptable design (Zhou, 
Zhang, and Chen 2006). Consisting of abstraction, aggre-
gation, and specialization aspects, the object orientation 
entrusts a power of decomposition to the simulation devel-
opers to capture descriptions at varying abstraction levels 
and represent all those sub domains into a comprehensive 
behavioral description. The central idea of decomposition 
is to breakdown the complexity of a problem domain into 
less complex sub domains by eliminating irrelevant details 
and highlighting the important behavioral and structural 
characteristics (Hofmann 2004); in a meantime, the frames 
of reference of these sub domains can be extended or mod-
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ified to satisfy the objectives of the design (Lee and Wyner 
2003). This allows each sub domain to interact with a set 
of other sub domains for task execution to complete the 
overall goal of the domain (Davis 2001). For further bene-
fits and criteria of decomposition, see the works by Davis 
(2001) and Hofmann (2004).  
 However, to avoid confronting the “more of an art 
than science” thought during the CSM processes, the con-
straints of decomposition need to be specified to manage a-
kind-of abstraction issue. A proceeding paper (Zhou, Se-
tavoraphan, and Chen 2005) proposes a set of mathematics 
notations to describe the functions and constraints of two 
types of decomposition: serial decomposition and parallel 
decomposition. In the paper, a process-oriented view is 
used to define a problem domain as a set of sequenced 
processes in a generic level, which can be decomposed into 
(multi) sub lower-level processes, controlled by con-
straints. These constraints are addressed here in narrative 
descriptions instead of mathematics notations. First, serial 
decomposition must satisfy the following constraints: 

• A top level process must be decomposed into sub 
processes in order to a serial-sequence order, 
while each sub process’ input and output must be 
given within its process time. 

• The set of sub processes must be a partition of its 
higher-level process, completely dividing the 
functionality of the higher-level process. 

• Precedence relation is required among the sub 
processes. 

• The attributes defined for the sub processes and 
the aggregation of these definitions must be con-
sistent with the attributes defined for the decom-
posed process. 

• The input and output external to the set of sub 
processes must match the original input and out-
put associated with its higher-level process.  

• The total process time is a sum of sub process 
times. 
 

Second, parallel decomposition mostly follows the con-
straints defined in serial decomposition. The difference is 
that parallel decomposition requires Boolean logical opera-
tors, for example, AND, OR, and XOR, to support the 
functionalities of logical branching out (e.g., deterministic 
branching or probabilistic branching) from the predecessor 
of the original process. These logical operators allow de-
composition to create several alternative combinations of 
causes and effects to extend the consequences of the origi-
nal process (Bell, Snooke, and Price 2005). As a result of 
decomposition, the simulation developers are able to cap-
ture a set of sequential processes within the domain, corre-
sponding to the simulation requirements to create a con-
ceptual simulation model at the appropriate levels of detail.  
 
 

2.2  Composition Approach 
 
Another encountered problem is that most of the products 
(outcomes) from CSM fail to be reused in new simulation 
development. Reusability of models, modules, or elements 
is a challenge not only at abstraction level (conceptual si-
mulation models) but also at implementation level (domain 
specific simulation environments). The failure of capturing 
and explicitly representing such specifications of con-
straints, objectives, features, and semantics of components 
at the conceptual level generates an incompatible frame-
work of those within the domain specific simulation envi-
ronment, reducing the reusability of model constructs. On 
the other hand, the incompleteness of encapsulating 
(modularizing) and inheriting data (e.g., objects and proc-
esses) of the model constructs creates the loss of the model 
functionalities and contexts at the implementation level, 
affecting the trust of simulation developers in the concep-
tual simulation models – which results in the distortion of 
their reusability. Thus, it is a need for an approach to sup-
port the model reusability for these two levels.  
 Composability is described as an approach with a 
compositional mechanism that provides “the ability to 
compose models/modules across a variety of application 
domains, levels or resolution and time scales” (Kasputis 
and Ng 2000), plus “the capability to select and assemble 
simulation components in various combinations into simu-
lation systems to satisfy user requirements” (Petty and 
Weisel 2003). Though, the current capability in compos-
ability is limited (Kasputis and Ng 2000) due to the com-
plexity of the selection of components in the context of si-
mulation (Winnell and Ladbrok 2003) – determined as an 
NP-hard problem, still the simulation developers can apply 
this approach to design a frame of reference for the possi-
ble compositions to increase the possibility of model for 
reuse in any environment.  
 In general, there are two types of composability: syn-
tactic composability and semantic composability, used to 
represent the modeling formalism for the selection of com-
ponents (Petty and Weisel 2003). First, syntactic compos-
ability requires compatible implementation details which 
include timing mechanisms and interface specifications for 
all possible compositions. Second, semantic composability 
requires a meaningful/valid composition. “Both syntactic 
and semantic composability are necessary for simulation 
composability” (Bartholet et al. 2004) in terms of the de-
velopment of the interfaces and the component internals 
within the defined simulation framework. 
 In addition, composability can be conducted in two 
dimensions: horizontal and vertical dimension (Page and 
Opper 1999). In the horizontal dimension, the components 
are inter-operated in terms of peer-to-peer integration by 
justifying a level of modeling abstraction with respect to a 
set of modeling objectives, which is fundamentally hard to 
do correctly. On the other hand, composability in the verti-
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cal dimension facilitates a level of modeling abstraction 
through aggregation/disaggregation, which may in turn not 
provide the best or even a valid solution. It can be seen that 
the vertical of composability is more flexible to facilitate 
the composition of decomposed components to create a 
model corresponding to the specific requirements. There-
fore, composability in the vertical dimension is mainly ap-
plied in this study to avoid the complexity. Though, it may 
compensate with the loss of validity. 
 Butler (1998) identifies three crucial techniques: as-
sembly, extension, and parameterization, as follows: 

• Assembly: connecting existing modeling compo-
nents in possibly unique ways through a common 
environment. 

• Extension: modifying or extending the original 
functionality of an existing model component 
through either function override or selective fea-
ture activation/deactivation. 

• Parameterization: changing parameters which 
control the operational and behavioral characteris-
tics in an existing model component.  
 

He also states the design requirements for composability to 
shape the technical and operational approach is his work. 
Moreover, a number of research studies have been con-
ducted to investigate modeling formalism, context, de-
pendency, and framework for model reuse (Yilmaz and 
Oren 2004; Spiegel, Reynolds, and Brogan 2005; Sar-
joughian and Huang 2005) to improve and facilitate model 
composability. 
 The results from these studies reveal not only the 
techniques of model composability but also the impact of 
model composability choices in a variety of degrees of 
model compositions, limitations, and complexity. The idea 
behind these results shows that the concepts, theories, and 
techniques of model composability consist of abstraction, 
hierarchy (aggregation/disaggregation), and encapsulation 
– that belong to the object-oriented aspects (Sarjoughian 
and Huang 2005). These aspects are crucially used to de-
velop a framework that provides standardized patterns to 
define the scopes of design and development of model 
components and representations for CSM and DSSE. It 
must be kept in mind that as long as a set of the model 
components and representations are pattern-based devel-
oped within the framework, the reusability of the concep-
tual simulation models and the model constructs in DSSE 
is more flexible and  more meaningful when conducting a 
new simulation project. Moreover, it needs to make sure 
that the composition of the model components and repre-
sentations must be tested in the level of CSM prior to im-
plement those in DSSE – to avoid the conflicts of function-
alities between these two levels.  
 
 
 

3 ILLUSTRATION OF A CSM PROTOTYPE 
 
3.1  Background of Study  
 
In the previous section,  a focus on the importance of the 
decomposition and composition approach is given by a 
means of the application and control to the use of the key 
concepts: the object orientation and knowledge representa-
tion,  in the development of a CSM tool. The main reason 
is that paying less attention in such the management of 
modeling complexity (levels of detail) and the arrangement 
of modeling compatibility (levels of selection) results in 
ineffectiveness and inefficiency of the overall modeling 
structure and context. Most of the simulation developers 
know the basic object-oriented concepts described in many 
publications (e.g., Rumbaugh et al. 1991, Coleman et al. 
1993), but a few of them recognize the methods of formal-
ism of these concepts to develop robust and reusable 
knowledge representations as modeling frameworks for 
simulation (see Zhou, Zhang, and Chen 2006). It has been 
found out that there are many generic (standard) meth-
ods/tools that are available to support CM (e.g., IDEF3, 
DEVS, Petri Nets, and UML), but they fail to accomplish 
transferring concepts and information between application 
domain and simulation domain, in both directions. As a re-
sult, most of the time these methods/tools are simply to 
create difficulties in the CSM and DSSE construction and 
translation rather than to achieve the simulation-template’s 
goal. 
 It can be said that there is a need for a defined simula-
tion modeling framework that facilitates not only the do-
main conceptualization but also the simulation implemen-
tation. A thesis (Setavoraphan 2005) illustrates a CSM 
tool, called “Simulation Modeling UOB” (SMU), used to 
formalize concepts into a simulation modeling framework. 
This tool is developed from the transformation of knowl-
edge representations in a platform of process descriptions 
derived from IDEF3 method, collaborating with the object-
oriented approach. Each instance in SMU employs both 
process-oriented and component-based view to represent 
the processes lying within the target problem domain and 
the simulation modeling elements (e.g., entities, attributes, 
and functions) satisfying the simulation requirements. Fur-
thermore, it is able to apply the object-oriented features to 
facilitate modeling decomposition and composition. Hav-
ing the capability to formalize concepts at different levels 
of detail and to generate robust and reuse modeling frame-
works, SMU has been applied to develop conceptual simu-
lation models for a variety of application domains such as 
warehousing operations (Setavoraphan 2005) and inland 
waterway lockage operations (Setavoraphan and Grant 
2008). However, the current capability of SMU is limited 
to deliver a detailed modeling framework that provides 
both static and dynamic representations required for struc-
turing DSSE.  
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 The original simulation projects developed under the 
DSSE approach include: 

• Electroplating Simulation Program, ESP (Grant 
and Pritsker 1974) by using a programming lan-
guage;  

• Safeguards Network Analysis Procedure, SNAP 
(Miner and Grant 1978) by developing a network 
simulation language; 

• Airport Terminal Modeling of Amsterdam Airport 
Schiphol (Verbraeck and Valentin 2002) and the 
Robotized Marine Container Terminals (Saanen 
2004) by using simulation building blocks. 
 

Accordingly from above, it can be said that every single 
DSSE development fundamentally consists of static model-
ing components (e.g., physical layouts) and dynamic mod-
eling components (e.g., entities). These fundamental con-
cepts need to be integrated into the CSM tool for better 
mapping and transforming concepts prior to develop a si-
mulation modeling framework. A research study by Iba, 
Matsuzawa, and Aoyama (2004) emphasizes on the Model 
Driven Development created based on Model Driven Ar-
chitecture and Executable UML to use high-level modeling 
languages to enhance the capability of CM in representing 
the overall behavioral and structural characteristics of a 
domain, including their interactions, from both static and 
dynamic views. Their project development supports the 
idea of improving SMU, the existing CSM tool, by inte-
grating its original concepts with UML to cover its limita-
tions and to be used in this study.  
 
3.2  General Structure 
 
The main purpose of this paper is to deliver a concrete idea 
that integrates and formalizes the concepts mentioned in 
the preceding sections by illustrating a CSM prototype 
temporarily named as “Integrated Simulation Acknowl-
edge Procedure” (ISAP). ISAP is a tool for capturing the 
concepts in a specific problem domain and transforming 
them into a set of descriptive processes, static and dynamic 
modeling components, interactions, and  rules/algorithms 
which are defined within a simulation modeling frame-
work. The framework created by ISAP consists of three 
layers: the initialization layer (IL), the process layer (PL), 
and the termination layer (TL) (see Figure 2). First, IL pro-
vides initial information about the simulation experiment 
to be performed (e.g., number of simulation runs, number 
of attributes/variables, and time to begin/end simulation). 
Second, PL describes the behavioral and structural charac-
teristics of the problem domain and simulation domain. 
Third, TL sets the procedures of terminating simulation 
and printing out a simulation output report. Each of these 
layers consists of a group of ISAP symbols, notations, and 
diagrams which are arranged to define and represent mod-

eling structures, elements, and relationships. With the lim-
ited space of this paper, only the process layer is discussed. 
 

 
Figure 2: Three layers in ISAP with three phases 

 
 The construction of ISAP is based on the modeling 
and simulation process (Pritsker and O’Reilly 1999) and 
adapted into three phases: the design phase, the develop-
ment phase, and the edit phase (also see Figure 2). First, 
the design phase is to formulate problem and specify mod-
el for PL according to the design objectives in IL and TL. 
Second, the development phase is to build models indi-
vidually for each layer. Third, the edit phase is to test mod-
els and use their feedbacks to correct errors found in these 
layers, and also this phase needs modification in IL and TL 
to satisfy the new requirements for PL. Moreover, the con-
struction of PL is divided into two subsystems: static mod-
eling subsystem and dynamic modeling subsystem. Both of 
them requires the use of symbols, notations, and diagrams 
for robust and reusable representations. An example of an 
inventory system of a large discount house (Pritsker and 
O’Reilly 1999) is used to illustrate the construction of 
these two sub systems in PL.  
 
3.3  Demonstration 
 
To illustrate these concepts described above, consider a 
large discount house that is planning to install a periodic 
review-reorder point inventory system to control its in-
house inventory of a particular radio. This system is able to 
manage backorders in the case where customers demand 
the radio when it is not in stock. 80 percent will go to an-
other discount house to find it, determined as lost sales, 
whereas the other 20 percent will be put on the backorder 
list and wait for the next shipment arrival. The inventory 
status is reviewed every four weeks to decide if an order 
should be placed. The company policy is to order up to the 
stock control level of 72 radios whenever the inventory po-
sition, consisting of the radios in stock plus the radios on 
order minus the radios on backorder, is found to be less 
than or equal to the reorder point of 18 radios. The pro-
curement lead time requires constantly three weeks.  
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Design Phase Development Phase Edit Phase 
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3.3.1 Static Modeling Subsystem 
 
The first step is to specify the physical characteristics in 
the target problem domain. It can be seen that the inven-
tory system consists of an actual (in-house) inventory sub-
system and a virtual (periodic review-reorder) inventory 
subsystem. ISAP provides symbols and notations that rep-
resent different three static components: BUILD, SPACE, 
and CROSS. A BUILD component is used to identify a 
point in a system where some physical objects are moved 
through or changed their states. A SPACE component is 
used to identify an area in the system through which physi-
cal objects may pass or temporarily stay. A CROSS com-
ponent is used to identify locations in the system which is 
the physical objects are engaged with multi cross-domain 
subsystems. In this example, only BUILD components are 
used to represent the actual inventory subsystem and the 
virtual inventory subsystem, where the flows and transition 
states of e.g., demands and order-signals, take place, 
shown in Figure 3. Each BUILD component is defined 
with its identical component label that is connected to its 
dynamic modeling subsystem containing the logical proc-
ess flows and parameters needed. The connection is made 
through “@” and followed by a specified dynamic model-
ing subsystem label (DMSL). An arrow is used to indicate 
a precedence of movement that may occur in only one di-
rection between two physical components, which means 
there exist one or more interchanges or flows of objects 
and information between the components. One of the obvi-
ous benefits of having static (physical) components for 
CSM is a top-view perspective that shows the core struc-
tures and the focused frames of the domain, which can be 
further developed either as apiece (decomposition) or as a 
whole (composition) within the defined domain structural 
boundaries.  
 

 
 

Figure 3: BUILD components for inventory system 
 
3.3.2 Dynamic Modeling Subsystem 
 
The next step is to describe the dynamics of the domain in 
terms of application knowledge and simulation knowledge, 
determined as the core of the ISAP development process. 

Each dynamic modeling subsystem can be view as a doc-
ument folder that has its own label (DMSL), sub-folder(s) 
(Ref#), and page number ($ #). Each page is divided into 
three sections: the SMU section, the relation section, and 
the sequence-diagram section. The first section follows the 
major structure described in Setavoraphan (2005), shown 
in Figure 4, whereas the rest of the sections apply the sym-
bols, notations, and diagrams which are adapted from the 
UML modeling approach (Booch, Jacobson, and Rum-
baugh 1999).  
 

 
 

Figure 4: General structure and an SMU example 
 

 Each SMU is used to represent as an intimate simula-
tion (block) module that moves the entities through the 
process or change the entities’ transition states; call the re-
sources required for the process; and execute the opera-
tions to complete the process. As a module, an SMU can 
be decomposed into two or more sub SMUs to cover the 
detailed levels of the process. For example, SMU Make An 
Order of Radios (Fig. 4) can be decomposed into SMU 
Prepare An Order and SMU Make A Transshipment, 
shown in Figure 5. At lower levels of a decomposition, the 
reference number for level of abstraction of a child SMU 
(X) consists of three distinct numbers separated by periods. 
The first number is the last number in the reference number 
of X’s parent SMU. The second number is the number as-
signed to the particular decomposition of the parent SMU 
in which X occurs (Note: Numbers are assigned to a set of 
decompositions and SMUs in order of different crea-
tions/points of view). Finally, the third number is an actual 
X’s SMU reference number. The relationship between the 
parent SMU and child SMUs is determined as a-part-of re-
lationship or aggregation in which SMUs representing the 
entities, resources, and operations of some processes are 
associated with an SMU representing the entire assembly 
of processes.  Thus, each decomposition must be taken 
carefully to avoid the loss of details and the incomplete-
ness of the process. As well, the composition of the exist-
ing SMUs into a new SMU requires standard/common pa-
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rameters to reduce the invalidity of the model functional-
ities, which is similar to the methods used in the object-
oriented programming. Suppose that the SMUs in Figure 5 
are individual SMUs. To compose these two SMUs into 
one, a crucial requirement is to make sure that they assess 
the same entities, utilize the same resources, and execute 
the operations with the same attributes and variables. Also, 
the flow of entities and operations must be logical se-
quences.  
 

 
Figure 5: A decomposition of SMU Make An Order of Ra-
dios 
 
 The relation section provides information of the condi-
tions and decisions for branching, preceding, and interact-
ing between two SMUs. Figure 6 gives some examples of 
notations.  
 

 
 

Figure 6: Some examples of notations for relations 
 
In the Relation-Frame, the precedence and logical relation-
ships that tie SMUs (see Fig. A1) are represented to show 
the flow-paths for the entities, including the conditions that 
create the alternative flow-paths. This relation-view pro-
vides the simulation developers the conceptual foresee of 
the entity flow in the sub-system, which supports the veri-
fication of logic associated with SMUs.     

 Finally, the sequence-diagram section shows a series 
of messages exchanged by a selected set of objects in 
SMUs, with an emphasis on the chronological course of 
communication between SMUs – which is used to indicate 
the status and the responding sequences from taking an ac-
tion (operation) of the objects related to SMUs. Some cru-
cial notations are shown in Figure 7. 
 
 

 
 

Figure 7: Notations for the sequence-diagram section 
 
The sequence diagram, on the other hand, can be deter-
mined as a conceptual simulation that illustrates a brief si-
mulation run. It has (see Fig. A1 for a better understand-
ing) both Begin and End runs, initial set-up for variables, 
entities and their flows, resource utilization, variable 
changes, activities, and time-sequences (divided by divi-
sion-segment and prioritized activity orders). This diagram 
is also used to pre-check whether or not individual or a set 
of SMUs have sufficient parameters (e.g., entity/resource 
type, variables, and operations) to fulfill the simulation re-
quirements prior to further DSSE development.    
 The later step is to provide the descriptions of the ob-
jects used in these sections in a tabular form (table). Each 
table gives not only an object’s generic information (e.g., 
name, type, description, and associated parameters) but al-
so its extension (e.g., event state, rules, and algorithms) if 
needed. There is no specific regulation in designing a table 
of description. The design is depended on the demand and 
detailed level of information.  
(Note: due to the size of the tables and figures, they are 
partially shown in the appendices section for DMSL:RINV 
as an example.) 
 The final step is to revise every section and connect 
them together by using Connection-Tube. This line con-

Prepare an order 
 

 
 
2.1.4 

EntSignal 
 
ResRadio 
 
SetOrder() 
UpdateInventory() 

Make a trans-
shipment 
 
 
2.1.5 

EntSignal 
 
ResRadio 
 
RouteOrder() 
RecordSaftyStock() 
UpdateRadioStock() 
TerminateSignal() 

Connection-Tube Division-Segment 

Object: Status {Argument/Control Statement} 

 Precedence-Sequence 

Object: Status {Argument/Control Statement} 

Responding-Sequence 

To Be Continued: $# 

Derived from: $# 

Forward-Connection 

Backward-Connection 

Process-In Process-Out Relation-Frame 

Precedence Precedence with condition(s) 

[Condition(s)] 

XOR-join XOR-split 
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tains data given in each SMU and passes them throughout 
its length. Thus, the simulation developers are able to keep 
tracks of every action and transaction  state of the objects, 
by following the lines (Top-to-Bottom or Bottom-to-Top 
relation) and other associated notations (Left-to-Right or 
Right-to-Left relation), which helps support their concep-
tual thinking. It is seen that the logic behind the develop-
ment of the ISAP process layer is to access a domain from 
a very generic component to sub-components with differ-
ent detailed levels and to maintain the completeness of en-
capsulation and inheritance of component data for the 
component reusability. This means that ISAP well deploys 
the decomposition approach to remove the complexity of 
conceptual thinking as well as the composition approach to 
extend the scope of conceptual thinking.  
 The results of the connection and association of these 
SMUs, notations, and descriptions are transformed into a 
network statement. Here is the network statement of 
DMSL: RINV, as shown below. 
 
Ref# 0: 

1 SetReorderPoint, Reorder point; 
2 CreateSignal, Arrival rate, Time of first arrival, 

Max # of demands; 
3 CheckInventory, Resource#, File resource#, In-

ventory position; 
4 Condition, INV_POS <= REORDER_PT; 
5 SetOrder, Order quantity; 
6 UpdateInventory, Inventory position; 
7 RouteOrder, Lead time; 
8 RecordSafetyStock, File#, Resource#, File re-

source#, Number of radios; 
9 UpdateRadioStock, Resource#, File resource#, 

Number of radios; 
10 TerminateSignal, Max# of signals; 
11 Condition, INV_POS > REORDER_PT; 
12 TerminateSignal, Max# of signals; 

 
 Each line of the network statement contains sequen-
tial-order numbers and operation names with their parame-
ters. Using a network statement is a basic idea found in the 
structure of commercial simulation software such as Are-
na© (Kelton, Sadowski, and Sadowski 2002) and Awe-
Sim© (Pritsker and O’Reilly 1999) to create simulation 
modeling frameworks for the construction and control of 
simulation modules. Therefore, a simulation modeling 
framework defined by the network statement and by other 
aspects through the ISAP development process can be used 
to generate appropriate simulation modules for the DSSE 
development. 
 
4 CONCLUSIONS 
 
The specialization of the CM concepts and techniques is 
taken as the main idea of this research study to improve the 

CSM approach. This is because CSM has been seen as a 
critical approach that is used to shorten gaps of communi-
cation between the domain experts and the simulation de-
velopers and to reduce difficulties of transformation of the 
concepts between two different domains of knowledge. 
However, CSM has been largely ignored, especially when 
conducted the development of DSSE. ISAP is a prototype 
that is developed based on the conceptual modeling ap-
proach under the SE and KE disciplines to support the de-
velopment of a conceptual simulation model. Moreover, 
ISAP is designed to match with the structural and behav-
ioral characteristics of the DSSE development process. 
Thus, simulation developers can apply ISAP to generate 
robust and reusable simulation modeling frameworks that 
can be used as blueprints giving designs and instructions 
for the specific simulation development projects. Neverthe-
less, there are still more rooms for improvement for this 
ISAP prototype to fulfill other simulation requirements, for 
example, dynamic parameter assignment, random distrib-
uted data generation, and simulation-module interface. For 
this study, the ISAP prototype is expected by the authors 
that it is able to encourage the simulation developers to en-
hance the current capability of the available modeling 
methods/tools to take simulation development to higher 
level.  
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APPENDICES  

 
 

Figure A1: An example of DMSL: RINV 
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Table A1: Description of objects for DMSL: RINV. 
 

Object 
Name 

Type Description Parameters 

EntSignal Entity This object represents a signal entity to enable the periodic re-
view-reorder inventory system. 

: Arrival rate 

ResRadio Resource This object represents radio resources that can be altered corre-
sponding to the inventory status. 

: Resource# 
: Resource capacity 
: Queue# 
: Queue capacity 

 
Table A2: Description of operations for DMSL: RINV. 

 
Operation Name Actor Description Attributes Global Variables 

CheckInventory() ResRadio An action is to determine if radio 
is available to satisfy a customer 
demand. 

N/A : Resource# 
:File resource# 
:Inventory position 

CreateSignal() EntSignal A signal entity is created to the 
systems. 

: Arrival rate 
: Time of first arrival 
: Max# of signal entities 

 

SetReorderPoint() N/A An action is to set a reorder point 
for the inventory system. 

N/A : Reorder point 

SetOrder() N/A An action is to set a quantity of 
order 

N/A : Order quantity 

RecordSafetyStock() ResRadio Number of radios are available at 
that time of arrival of shipment. 

N/A : File# 
: Resource# 
: File resource# 
: Number of radios 

RouteOrder() N/A A quantity of order is transport to 
the discount house’s inventory 
with a lead time 

N/A : Lead time 

UpdateInventory() N/A Number of radios in the inventory 
are updated 

N/A : Inventory position 

UpdateRadioStock() ResRadio Number of radios are updated. N/A : Resource# 
: File resource# 
: Resource capacity 

TerminateSignal() EntSignal Each signal entity is terminated. N/A : Max# of signals  
 

Table A3: Description of variables for DMSL: RINV. 
 

Variable Equivalence Description 
INV_POS Inventory position It contains the overall number of radios derived from both sub-systems. 
NNRS(RADIO) Number of radios It shows the exact number of radios at the physical inventory. 
ORDER_QTY Order quantity It indicates the number of radios per an order. 
REORDER_PT Reorder point It sets the minimum number of radios in the physical inventory for reorder. 
SCL Stock control level It limits the maximum number of radios in the physical inventory. 
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