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ABSTRACT

The re-use of a model by someone else than the original
developer is still an open challenge. This paper presents com-
position structures and interface descriptions for discrete-
event models. Interfaces are introduced as separate units of
description that complement model definitions. As XML
documents, interfaces may be stored in databases to search,
select, and analyze composition candidates based on pub-
lic visible property descriptions. A meta model formalizes
interfaces, components, and compositions, such that the
refinement of interfaces into model implementations and
the compatibility of interfaces can be analyzed. The com-
position approach combines different hierarchical relations
(type hierarchies, refinement hierarchies, and composition
hierarchies) to simplify the modeling process.

1 INTRODUCTION

To become a component, a model needs to announce its
functionality by a well-defined interface (Verbraeck 2004).
A component should be a replaceable part of a system
and be usable in unforeseen contexts for different purposes
(Szyperski 2002). Interfaces should contain as much infor-
mation, but to keep it analyzable not more, as is needed
to use an implementation solely via its interface (de Alfaro
and Henzinger 2005).

The main challenge for compositional approaches is
summarized in the term compositionality, which requires
that the meaning of a composition can be derived solely from
the semantic descriptions of the parts together with the rules
of combination (Janssen 1997). Parts have compositional
properties if the semantics of a composition may be derived
from the semantics of the parts (Szyperski 2002).

Modeling formalisms like DEVS (Zeigler et al. 2000)
unambiguously define how model descriptions are to be
interpreted. Furthermore, they usually provide modular-
hierarchical refinement relations. However, discrete-event
modeling currently does not treat interface descriptions as

first class entities: they are part of model definitions and
not separate units of definition. To enable compositional
reasoning, relevant properties have to be extracted into inter-
faces, which exist in their own right and may be published
and analyzed independently. Currently no general interface
language for discrete-event models exist that can be used
for compositional analysis.

The Unified Modeling Language (UML) was revised in
version 2 to describe components and compositions (OMG
2007b). The Systems Modeling Language (SysML) ex-
tends UML with event-based port concepts (OMG 2007a).
SysML distinguishes between diagrams that define the ex-
ternal interface (external block diagram) of a model and its
internal structure (internal block diagram).

Whereas SysML enables flexible description of com-
position structures, its usage for simulation is hampered by
its only partly defined semantics. SysML inherits, as an
UML profile, its semantic backbone from UML. Semantics
of UML is to a large extent defined in natural English.
Models are not associated with a precise meaning (Harel
and Rumpe 2004, Oliver and Luukkala 2006). Formalizing
UML is seen as one of the major challenges for the future
(Broy et al. 2006, O’Keefe 2006).

In the following, composition concepts of UML and
SysML are adapted to discrete-event modeling. A general
interface and composition language will be defined and
equipped with formal semantics. Configurable model com-
ponents may be assembled to composition structures, on
which compositional reasoning can be carried out.

2 INTERFACES

For reusing a model all interaction capabilities have to be
described unambiguously. Modular-hierarchical modeling
approaches like Modelica (Elmqvist et al. 2001), DEVS
(Zeigler et al. 2000), and Ptolemy (Brooks et al. 2007) let
models exhibit ports to indicate that certain kinds of events
may be received or sent. The first step for introducing
interfaces as separate units of definition is to increase the
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flexibility for defining and relating the units for data exchange
(events). Compared to basic set theory, type systems (Pierce
2002) enable the modularization of definition units.

Definition 1. A type is a pair T = (id,Car), with id ∈
QName and a carrier set Car. To access the elements of
T , idT and carT are used.

QName⊆ String is used as the set of qualified names, with
String being the set of all character strings. A qualified
name qname ∈ QName may be represented by combining
a namespace and a local name, separated by ’:’.

Type is used as the set of types that are uniquely
distinguishable via their qualified names, i.e. ∀T ,T ′ ∈
Type.idT = idT ′ ⇒ T = T ′. Given the special sym-
bol ⊥, which represents “undefined”, the function drefT :
QName→ Type∪{⊥} is used to de-reference a type defi-
nition for its qualified name, such that

drefT(qname)
def
=

{
T if ∃T ∈ Type.idT = qname
⊥ else .

Instead of local set definitions to define abstract points of
interaction, an event port can now be based on references to
types. This increases the flexibility for defining and relating
basic modeling units.

Definition 2. An event port is a tuple e = (name, tid, inp),
with name ∈ String, a reference to a type definition tid ∈
QName, and a flow direction inp∈B, with B = {true, false}.
namee, tide and inpe are used to access the elements of e.

If inpe = true, e is called an input port and if inpe = false,
e is an output port. Type systems usually require for a
sending port to be a sub type of the connected receiving
port (Pierce 2002). T is a subtype of T ′, denoted T vT ′,
if CarT ⊆CarT ′ .

An UML component usually exhibits a set of inter-
faces and requires another component to provide according
counterparts (OMG 2007b). In addition to method-oriented
standard ports of UML, SysML introduces flow ports, which
declare asynchronous communication end points. Similar
to flow specifications of SysML, event-based interaction
capabilities are now grouped in roles.

Definition 3. A role R is a pair (id,EP) with a qualified
name id ∈QName and a finite set of event ports EP, such that
port names are unique and type references valid, i.e. ∀e,e′ ∈
EP.namee = namee′ ⇒ e = e′ and ∀e ∈ EP.drefT(tide) 6=⊥.
The elements of R may be accessed via idR and EPR.

Roles represent interface information with respect to a certain
abstraction by declaring a set of directed event ports, which
have a logical relation. The function drefR(qname) returns
a role R if ∃R ∈ Role.idR = qname or ⊥ if no according
role exists, where Role is used as the set of all roles.

Cytoplasm

atp:ATP
facA:FactorA

glu:Glucose mrna:mRNA

EnergyReq
ATP Glucose FactorA

mRNA

FactorB

facB:FactorB

TransReq

Figure 1: Grouping atomic interaction capabilities in roles

Example 1. A biological cell comprises different parts, e.g.
the nucleus and mitochondria (the “power plant” of cells). A
model of a cell may represent the nucleus and mitochondria
as sub models and pool all other parts in a third sub model
named “cytoplasm”. Figure 1 shows how the interaction
capability of the cytoplasm may be captured by two roles.
EnergyReq describes the capability to send Glucose
and receive ATP. According to TransReq the cytoplasm
may receive mRNA and send events of type FactorA and
FactorB. Formally, EnergyReq = (id,EP), with id =
“base:EnergyReq” and EP = {(“atp”,“mol:ATP”, true),
(“gly”,“mol:Glucose”, false).}, where mol= “unihro/cbio/-
molecules” and base= “unihro/cbio/base”.

Interfaces are used to combine a set of roles, each one
describing a certain aspect of a model’s overall communi-
cation potential. Whereas event-ports announce “atomic”
interaction capabilities, roles refer to complex ones. Using
composite ports, an interface declares that it may be cou-
pled several times in the same manner with different models
according to a certain role.

Definition 4. A composite port is a tuple p =
(name,rid,min,max), with a name ∈ String, a reference
to a role rid ∈ QName, and a connectivity range given by
min ∈ N+ and max ∈ N+ ∪{∞}. The reference to a role
must be valid drefR(rid) 6= ⊥ and min ≤ max. We write
namep, ridp, minp, and maxp to refer to the elements of p.

A model component needs to be customizable, such that a
component represents a whole class of models, which are
suited for a set of similar composition contexts.

Definition 5. A parameter is a triple p = (name, tid,value),
with a name ∈ String, a reference to a type tid ∈ QName,
and an value. For T = drefT(tid) it must hold that T 6=
⊥∧ value ∈ carT .

Based on parameters and composite ports, interfaces can
now be defined to declare configuration points and abstract
points of interaction.
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Cytoplasm
 en:EnergyReq[1..*]trans:TransReq[1] 

mi to: in t

Figure 2: Interface with two composite ports and a parameter

Definition 6. An interface I is a tuple
(id, impl,Params,Ports), with an id ∈ QName, a ref-
erence to a component (cf. Definition 13) impl ∈ QName,
a finite set of parameters Params, and a finite set
of ports Ports. Port and parameter names must be
unique, i.e. ∀p, p′ ∈ Ports.namep = namep′ ⇒ p = p′ and
∀p, p′ ∈ Params.namep = namep′ ⇒ p = p′. For accessing
the elements of I , idI , implI , ParamsI , and PortsI

may be used.

Iface is used as the set of interfaces with unique ids and
drefI(qname) = I if ∃I ∈ Iface.idI = qname or ⊥ if no
according interface exists.

Example 2. An interface definition for Cytoplasm is
depicted in Figure 2. The interface exhibits two composite
ports. Port “trans” is typed by role TransReq and port
“en” and is of type EnergyReq. Whereas “trans” has
to be connected exactly once, the number of connections
to port “en” may range from one up to an arbitrary
number (indicated by *). Parameter “mito” allows to
configure a cytoplasm to the number of mitochondria it
should be connected to. Formally, the interface is defined
as I = (id, impl,Params,Ports), with id = “cyto:iface”,
impl = “cyto:impl”, Params = {(“mito,“xsd:int”,1)},
and Ports = {(“trans”,“base:TransReq”,1,1),
(“en”,“base:EnergyReq”,1,∞)}. The namespace
base is defined as above and cyto= “unihro/cbio/cyto”.

3 COMPOSITION

A composition is now defined such that it does not need to
make assumptions about the implementation of components
but solely refers to interfaces as introduced above. To use
an interface as part of a composition, a qualified name of the
interface has to be known and a concrete set of parameter
values has to be provided.

Definition 7. An interface reference is a tuple iref =
(name, iid,Params) with a name ∈ String, a reference to
an interface definition iid ∈ QName, and a finite set of
parameters Params. For I = drefI(iid) it must hold: (i)
existing interface definition: I 6=⊥, (ii) unique parameter
names: ∀p, p′ ∈ Params.namep = namep′ ⇒ p = p′, and

nucleus:

Nucleus

cyto:

Cytoplasm mito1:

Mitochondrion
en

e 

t  trans

 mi to2:

Mitochondrion
e

m i t o = 2

1

2

Figure 3: Composite structure of a cell

(iii) existent and consistent parameter ∀p ∈ Params.∃p′ ∈
ParamsI .namep = namep′ ∧ tidp v tidp′ .

An interface may be connected via its published ports.

Definition 8. A connector is a tuple k = (if ,port,pos),
where if ∈ String is the name of an interface, port ∈ String
is the name of a port, and pos ∈ N+ is a position.

To equip connectors with a precise meaning, each connector
needs to define to which position, in the range of multi-
plicities of a port, it refers to. A connection is made up of
two connectors representing the start and the end point.

Definition 9. A composition connection c is a pair of two
connectors (start,end), for which if start 6= if end.

In compositions, all communication between components
have to be expressed via composition connections, such that
the knowledge of each sub component ends at its borders.

Definition 10. A composition is a pair (Sub,Con), with
a finite set of interface references Sub and a finite set of
composition connections Con. Interface references must
have unique names: ∀s,s′ ∈ Sub.names = names′ ⇒ s = s′.

Example 3. Figure 3 shows the composition and connec-
tion of Cytoplasm, Nucleus, and Mitchondrion.
Cytoplasm and Nucleus are connected via their ports
“trans” and “t”. Both Mitochondrion instances are
connected to the cytoplasm at a distinct position within the
multiplicity of the port “en”. The cytoplasm’s parameter
“mito” is set to 2. Formally, the composition is defined
by Sub = {(“cyto”,“cyt:iface”,(“mito”,“xsd:int”,2)),
(“nucleus”,“nuc:iface”, /0), (“mito1”,“mit:iface”, /0),
(“mito2”,“mit:iface”, /0)} and Con =
{((“cyto”,“trans”,1), (“nucleus”,“t”,1)),
((“cyto”,“en”,1), (“mito1”,“e”,1)), ((“cyto”,“en”,2),
(“mito2”,“e”,1))}. with “nuc”, “mit”, and “cyto” beeing
abbreviations for according namespaces.

944
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4 IMPLEMENTATIONS

Interfaces serve as contracts between model components.
By referencing roles, an interface declares a set of directed
event ports. An implementation is expected to provide ports
that realize these interaction capabilities. Furthermore, the
model is not allowed to circumvent its interface declaration,
i.e. it must not have direct dependencies to other model
implementations.

Declared interaction capabilities need to be unambigu-
ously associated with concrete model ports. Explicit bind-
ings resolve name clashes, which might occur if a port may
be connected multiple times.

Definition 11. A binding is a finite tuple set B =
{(port,decl, pos, impl)}, with port ∈ String being the name
of a composite port, decl ∈ String the name of an event port,
pos ∈ N+ a position, and impl ∈ String the name of the
assigned model port. Bindings must be unique, i.e. ∀b,b′ ∈
B.b = b′ ⇔ portb = portb′ ∧declb = declb′ ∧ posb = posb′ .

The meaning of bindings is given by the function impl,
which takes the name of a composite port pn, the name
of an event port epn, a position pos, and a binding B and
provides the name of an implementation port, such that

impl(pn,epn, pos,B)
def
={

implb if∃b ∈B.portb = pn∧declb = epn∧ posb = pos
epn else.

Example 4. In Figure 4 the atomic ports of role TransReq
are bound to a separate port of a model implementation
(bindings are visualized with bold dashed lines). The two
different positions of the event port Glucose of the com-
posite port “en” are bound to different output ports of the
implementation model, such that each mitochondrion can
be addressed individually by the cytoplasm. As it is not rel-
evant for the cytoplasm model from whom ATP is received,
both ATP channels are bound to the same implementation
port.

An interface may declare a set of parameters. To change
the internal structure of a component, according to a set of
parameter values, is the task of a configurator function.

Definition 12. A configurator κ is a function that
maps a tuple (Params,Sub,Con,M ,B) to a tuple
(Sub′,Con′,B′,M ′), where Params is a set of parame-
ters. (Sub,Con) and (Sub′,Con′) are both compositions.
M ,M ′ are model definitions and B,B′ are bindings.

A component comprises a configurator, bindings, and a
composition. Thus, components may itself refer to other
components and thereby facilitate hierarchical modeling.
The last missing piece of a component becomes the part,
which was the reason for introducing components in the first

Cytoplasm

Model   
a tp

facA
glu2

mrna

ATP Glycose

FactorA
mRNA

FactorB

facB

TransReq

transCytoplasm 

en
2

EnergyReq
ATP Glucose

1

glu1

EnergyReq

Figure 4: Binding of declared ports to an implementation

place: a model definition specified in a certain modeling
formalism.

Definition 13. A component is a tuple C =
(id, if ,κ,M ,B,Sub,Con), with an id ∈ QName, an inter-
face reference if ∈QName, a configurator κ , a model M ,
and a binding B. (Sub,Con) is a composition. It must hold
that drefI(if ) 6=⊥ and id = implI , where I = drefI(if ).

If SubC = /0, C is called an atomic component. If SubC 6= /0,
C is called a composite component. A component C is
instantiated by applying its configurator to the parameters
defined by an interface reference s = (name, iid,Params),

such that instC(s)
def
= (idC , if C ,⊥,M ′,B′,Sub′,Con′) if

∃C ∈ Com.idC = implI , where (Sub′,Con′,M ′,B′) =
κC (Paramss,SubC ,ConC ,MC ,BC ) and I = drefI(iids).

Example 5. A cell is now defined as a (composite) compo-
nent. The interface of Cell provides two parameters and
is equipped with a composite port to interact with other
cells. The latter requires the definition of a new role and
a different cytoplasm component, as the cytoplasm needs
to interact according to the new role. Figure 5 depicts
the hierarchical relation between the interface and the im-
plementation of a cell. The parameter “mito” prescribes
the number of mitochondrion components to use inside the
cell and the parameter “nex” determines the number of
connections to other cell components. κ is responsible for
adding mitochondria instances and connections according
to parameter “mito”.

5 SEMANTICS

Whereas the syntactical means for specifying compositions
are not constrained to a particular modeling formalism, now
the formalism PDEVS (Zeigler et al. 2000) is used as the
semantic domain on which components are mapped.
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Cell

e:EnergyProv
mi to

Mitochondrion    en:EnergyReq[1..*]

trans:TransReq

t:TransProv
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cyto:

Cytoplasm     

ex:Exchange[1..4]

ex:Exchange[1..4]

ex:Exchange[1..4]
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Nucleus    

nex: int

mi to: int

Figure 5: Interface and implementation of a cell component

Definition 14. Let C be a component defined by
(id, if ,κ,M ,B,Sub,Con). The PDEVS model for C is
constructed by

model(C )=
{

M ′ if Sub = /0
(X ,Y,D,{Md},EIC, IC,EOC) if Sub 6= /0 ,

where M ′ = pdevs(M ), X = XM ′ , Y = YM ′ ,
D =

⋃
s∈Sub names,

{Md}=
⋃

s∈Sub Mnames , with Mnames = model(Cnames),
Cnames = instC(s),

EIC = {(fm, fp, tm, tp) ∈ couplings(Sub′,Con)|fm =
“this”∧ tm 6= “this”},

EOC = {(fm, fp, tm, tp) ∈ couplings(Sub′,Con)|fm 6=
“this”∧ tm = “this”},

IC = {(fm, fp, tm, tp) ∈ couplings(Sub′,Con)|fm 6=
“this”∧ tm 6= “this”},

with Sub′ = Sub∪{(“this”, if , /0)}.

The function model recursively maps sub components to sub
models and composition connections to model couplings.
To constrain the semantic mapping to one target formalism,
the universality of PDEVS (Zeigler et al. 2000, pp. 391f)
is exploited. PDEVS is suited to work as a target formal-
ism for many source formalisms (Vangheluwe 2000). Here,
we abstract from the concrete realization of model trans-
formation and assume that a function pdevs exists, which
transforms models to PDEVS.

With respect to composition structures, the mapping
of composition connections to model couplings is done
by another help function, called couplings. Algorithm 1
lists its definition. Composition connections are interpreted
to relate event ports of referenced roles. For each con-
nection between two composite ports couplings() instan-
tiates the roles that type both ports. According to the
hierarchical relation between the two connected subcom-
ponents (whether between a component and one of its sub
components or between two sub components) the atomic
port declarations contained within both roles are matched
against each other. The resulting set of port name pairs

Algorithm 1 Construction of model couplings
name: couplings()
input: interface references Sub, connections Con
output: set of model couplings MC

MC = /0
for each (start,end) ∈ Con do

// dereference interfaces and roles according to connectors
I = drefI(iids) with s ∈ Sub∧names = if start
I ′ = drefI(iids′) with s′ ∈ Sub∧names′ = if end
R = drefR(ridp) with p ∈ PortsI ∧namep = portstart

∧minp ≤ posstart ≤ maxp
R′ = drefR(ridp′) with p′ ∈ PortsI ′ ∧namep′ = portend

∧minp′ ≤ posend ≤ maxp′

// match event ports of connected roles
if if start = “this” then M = matches(R,R′)
else if if end = “this” then M = matches(R,R′)
else M = matches(R,R′)
for each ( f , t) ∈M do

// apply bindings to get ports of the implementation
ip = impl(portstart , f , posstart ,B)
ip′ = impl(portend , t, posend ,B′)
// get first event port and compare its direction to the

orientation of the composition connection
e = dp, with dp ∈ EPR.named p = f
if if start = “this”∧ inpe or if start 6= “this”∧¬inpe

then MC+= (if start , ip, if end , ip′) // keep orientation
else if if start 6= “this”∧ inpe or if start = “this”∧¬inpe

then MC+= (if end , ip′, if start , ip) // invert orientation
else MC+=⊥

return MC

is called matches(R,R ′), with matches(R,R ′)
def
= {(f , t)∈

String×String|∃e ∈ EPR,e′ ∈ EPR′ .namee = f ∧namee′ =
t ∧ inpe 6= inpe′ ∧ (inpe ⇒ drefT(tide′) v drefT(tide)) ∧
(inpe′ ⇒ drefT(tide)v drefT(tide′))}. In case of a vertical
connection (connection between component and one of its
sub component) the directions of event ports are inverted for

matching purposes. Formally, R
def
= (⊥,EPR), with EPR =

{(namee, tide,¬inpe)|(namee, tide, inpe) ∈ EPR}. Finally,
for each pair of matching event ports – which may be seen
as atomic connections at the declaration level – bindings
are applied to get the implementation ports to be connected.

Example 6. Figure 6 shows the model structure derived
from the cell component (cf. Figure 5) with parameters set
to “mito”=10 and “nex”=1. A sample model definition is
depicted in Figure 7. The mitochondrion is modeled as a
statechart. Function pdevs interprets events receivable by
the statechart as input ports and emit-able events as output
ports.
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Figure 6: Derived model structure

MitochondrionModel

working

entry/ send(Timer, metabolizeT())

[numGlu  ==  0 ]
idle

Timer/send(ATP), numGlu--

Glucose/numGlu++

[numGlu > 0 ] 

Glucose/numGlu++

Figure 7: Mitochondrion modeled as a statechart

6 ANALYSIS

An important motivation for compositional approaches roots
in the promise to save time and costs by ensuring correctness
by construction. Properties of a composition should be
derivable from property descriptions of the parts and the
rules to combine them. In the following, requirements on a
component C are formulated, such that model(C ) constructs
a proper simulation model.

To decide whether components can be connected, one
has to compare the types of events that are declared by
their interfaces. Only if these types are sufficiently similar,
models may be composed. Coupled system specifications
require the set of events that a source port may sent to form
a subset of the events that the target port is able to receive
(Zeigler et al. 2000, p. 130). This directly corresponds to
the sub type relation v.

Definition 15. Two roles R and R ′ are called compatible,
denoted R ∼R ′, iff ∀e∈EPR.∃e′ ∈EPR′ .compatible(e,e′)
and ∀e′ ∈ EPR′ .∃e ∈ EPR.compatible(e′,e), where for two
event ports e,e′, compatible(e,e′) ⇔ (inpe ⇒ ¬inpe′ ∧
dref (tide) w dref (tide′)) ∧ (¬inpe ⇒ inpe′ ∧ dref (tide) v
dref (tide′)).

Connections fall into two different classes. On the one
hand, it is possible to connect ports of sub components. On
the other hand, connections may delegate ports between a
component and one of its sub components.

Definition 16. A composition connection c = (start,end)
is well-formed for two interface references s,s′, denoted
wellformed(c,s,s′), if for R = role(drefI(iids),start) and
R ′ = role(drefI(iids′),end) it holds that R 6= ⊥∧R ′ 6= ⊥
and if start = “this” ⇒ R ∼ R ′, if end = “this” ⇒ R ∼
R ′, and assembly(c) ⇒ R ∼ R ′; where role(I ,k)

def
=

drefR(ridp) if ∃p ∈ PortsI .namep = portk∧minp ≤ posk ≤
maxp or ⊥ if not and assembly((start,end))

def
= namestart 6=

“this”∧nameend 6= “this”.

Composition connections demand compatibility of con-
nected port’s roles. Compositionality requires from the parts
to be combined to adhere to certain rules too: implementa-
tions have to refine their respective interfaces. Refinement
depends on bindings.

Definition 17. Given an interface I , a model M ,
and a binding B. The pair (M ,B) is a pre-
serving refinement for I , denoted I �p (M ,B),
if ∀p ∈ PortsI .∀pos ∈ [1,maxp].∀e ∈ EPR.inpe ⇒ ip ∈
InPortsM ′ ∧ cardre f (tide) = Xip,M ′ or ¬inpe ⇒ ip ∈
OutPortsM ′ ∧cardre f (tide) = Yip,M ′ , with M ′ = pdevs(M ),
ip = impl(namep,namee, pos,B),and R = drefR(ridp).

A model refines an interface if all multiplicities of all declared
interaction capabilities are bound to an existing implemen-
tation port. Preserving refinement ensures that all properties
declared in an interface are realized by an implementation.
This is an important relation, which however captures only
one side of the refinement coin (Schröter 2004). A model
implementation may require some ports to be connected
during execution of a simulation, in the following referred
to as required(M ). Whereas preserving refinement ensures
that “good” properties are fulfilled by the implementation,
reflecting refinement forces an implementation to not extend
the interface with further, maybe “bad”, properties.

Definition 18. A model implementation M and a bind-
ing B are a reflecting refinement for an interface I ,
denoted by I �r (M ,B), if ∀ip ∈ required(M ′).∃p ∈
PortsI .∃e ∈ EPdrefR(ridp).∃pos ∈ [1,minp], such that ip =
impl(p,e, pos,B), where M ′ = pdevs(M ).

Reflecting refinement ensures that each model port requiring
a connection is represented in the interface. Combining both

refinement relations yields full refinement: I � (M ,B)
def
=

I �r (M ,B)∧I �p (M ,B). Full refinement ensures that
an interface reflects all requirements of an implementation
and that the implementation fulfills all declarations of the
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interface. Eventually, in a composition it comes to the
question, whether these properties mutually fit together.

Definition 19. A composition (Sub,Con) is complete if
∀c ∈Con.∃s,s′ ∈ Sub.wellformed(c,s,s′) and ∀s ∈ Sub with
I = drefI(iids) and ∀p ∈ PortsI and ∀m ∈ [1,minp]
∃(start,end) ∈ Con such that if start = names ∧ portstart =
namep∧ posstart = m or such that if end = names∧portend =
namep∧ posend = m.

Refinement and completeness form the basic requirements
on components to be correct and thereby deploy-able.

Definition 20. A component C is correct if

1. I � (MC ,BC ), with I = drefI(if C )
2. complete((SubC ∪{(”‘this”’, if , /0)},ConC ))
3. ∀s ∈ SubC .correct(instC(s))
4. Acyclic compositions

An atomic component is correct if it refines its interface.
For composite components correctness is defined recur-
sively. Analysis of a composite component requires its full
instantiation down to the leaves.

Theorem 1. Let C be a component. If C is correct,
model(C ) is a well-formed PDEVS model in which all
required ports of its sub models are connected.

Proof. Req. 2 of Def. 20 ensures that the composition
(Sub,Con) passed to couplings() is complete. Consequently
there exist s,s′ ∈ Sub with names = if start and names′ = if end .
Furthermore, req. 2 ensures that for s,s′ there exists a c =
(start,end)∈Con such that wellformed(c,s,s′). Thus, R 6=
⊥ and R ′ 6=⊥. Construction of matches M is done according
to the three cases of possible relations between R and R ′,
such that ∀( f , t) ∈ M.∃e ∈ EPR∃e′ ∈ EPR′ .namee = f ∧
namee′ = t. From req. 3 of Def. 20 follows in combination
with req. 1 that I �p (M ,B) and I ′ �p (M ′,B′). From
Def. 17 we derive that ip ∈ InPortsM or ip ∈ OutPortsM

with according orientation. �r ensures that all required ports
of each sub model is declared in the respective interface.
Combined with complete(Sub,Con) we can conclude that
all required composite ports are connected and thereby an
appropriate model coupling was constructed. Req. 4 ensures
that model(C ) will not go to an infinite recursion.

The main challenge for component definitions is to
show correctness for all possible combinations of allowed
parametrization. Thereby, an increased flexibility induces
higher efforts.

Definitions of formalisms and languages often neglect
concrete syntax (Kleppe 2007). To become usable in prac-
tice, interfaces and composition structures need a concrete

representation, preferably a platform-independent format
that eases database integration.

7 REPRESENTATION IN XML

In modeling and simulation tools, types of model compo-
nents are usually defined in programming languages (Zei-
gler and Sarjoughian 2005, Brooks et al. 2007) and thereby
bound to a particular type system, e.g. that of Java. At-
tempts to increase interoperability of systems, such as the
web service architecture (W3C 2004a), utilize XML to ab-
stract from tool-specific and programming language specific
representations. Data descriptions based on XML are gen-
erally considered to be robust, extensible, and well suited
to represent complex data structures (Harold 2002).

XML Schema Definition (XSD) allows to constrain
the content of elements and attributes by type and value
range assignments (W3C 2004b). Based on type definitions
in XSD, roles may be separated from model definitions
and reside in own XML documents – similar to interfaces
defined in the Web Service Description Language, abbrevi-
ated WSDL, (W3C 2006b). Furthermore, type definitions
become independent of modeling formalisms and simula-
tion tools, general schema matching approaches may be
used to check the compatibility of types (Röhl and Morgen-
stern 2007), and compatible to semantic annotations, e.g.
according to SAWSDL (W3C 2006a).

XML, XSD, SAWSDL form the base for the concrete
syntax of types, roles, interfaces, and components. As XML
documents they may be stored in databases as separate units
of definition. To increase the usability of interfaces, they are
equipped with semi-structured data, which are not part of
the set-theoretic formalism introduced above. However, if
a model should be reused the concepts underlying a model
definition need to be considered (Tolk and Muguira 2003).
Assumptions, simplifications, and constraints made in the
model are usually described in semi-structured data. Profile
data may defined in an XML document of an interface similar
to identification table of federates in the HLA (IEEE 2003).

Example 7. Figure 8 shows XML documents defining the
component Cytoplasm. References based on URIs are
visualized by dashed arrows. The interface document forms
the pivotal part of a component. The interface references
a role definition to announce a composite port. The role
document declares two event ports and imports type defini-
tions made in XSD. ATP and Glucose are both derived
from the abstract type molecule. In ATP, the attribute
modelReference holds a reference to the ATP entry of
KEGG (not displayed). The interface points to a component
document containing the implementation for the interface.
The component component references a model definition by a
qualified name. The model itself is defined in SCXML (W3C
2007). A configurator may be defined in XSLT (W3C 1999),
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<xs:schema xmlns:xs=“http://www.w3.org/2001/XMLSchema“

 xmlns="unihro/cbio/molecules" targetNamespace="..."

 xmlns:sawsdl="http://...ws/sawsdl/spec/sawsdl#">

  <xs:complexType name="Molecule" abstract="true"> ...

  <xs:complexType name="ATP" sawsdl:modelReference= 

  "http://www.genome.jp/dbget-bin/www_bget?cpd:C00002">

   <xs:complexContent>

     <xs:extension base="Molecule">

     </xs:extension>

   </xs:complexContent>

  </xs:complexType> ...

</xs:schema>
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<component xmlns=“http://www.inf.../cosa/component“

  xmlns:cyto“unihro/cbio/cytoplasm“>

  <id>cyto:impl</id>

  <implements>cyto:interface</implements>

  <model>motion:model</model>

  <binding name="en">

    <bind declName="atp" implName="atp"/></binding>

  <binding name="d">

    <bind declName="p" implName="p"/> ...

  </binding>

</component>

<interface ...> <id>cyto:interface</id>

  <profile> <name>Cytoplasm</name>

    <description>Simple model of the a cell's cytoplasm</description>

    <objective>Represent all cell activities except that of the nucleus

     and the mitochondria</objective>

    <key_abstractions>May only be coupled to a nucleus and a set of

      mitochondria.</key_abstractions> ... </profile>

  <param name="mito" type="xsd:int" value="1"/>

  <port minMultiplicity="1" maxMultiplicity="*">

    <name>en</name>  <type>cell:EnergyReq</type> </port>

 <impl>cyto:impl</impl>

</interface>

<description xmlns="http://www.inf.../cosa/role"

 xmlns:base=“unihro/cbio/base“

 xmlns:mol="unihro/cbio/molecules">

  <id>base:EnergyReq</id>

  <types>

    <import namespace="unihro/cbio/molecules"/>

  </types>

  <role>

    <eventPort name="atp" isInput="true" 

               type="mol:ATP"/>

    <eventPort name="glu" isInput="false" 

               type="mol:Glucose"/>

  </role></description>

<scxml xmlns="http://www.w3.org/2005/07/scxml"

       version="1.0" initialstate="idle">

  <datamodel>

    <data name="numGlu" src="../XMLSchema:int"/>

    ...</datamodel>

  <state id="idle">

    <transition event="unihro/cbio/molecues:Glucose"

                target="working">

      <assign location="numGlu" expr="numGlu+1"/>

      ... </transition> </state> ...

</scxml>

<

Figure 8: Definition of a component by a set of XML documents

which can be specified itself in XML and thereby preserves
platform independence of component specifications.

8 CONCLUSION

The introduced descriptions combine two advantages of ex-
isting composition approaches. Modular-hierarchical mod-
eling formalisms separate between model definition and
simulator implementation. Here, interface definitions be-
came separated from their model implementations. Thereby,
compositions can be analyzed solely based on interface
definitions. As XML documents, interfaces may be stored
in databases and can be analyzed for compatibility based
on platform-independent type definitions in XSD. XSD
provides compatibility to related standards like SAWSDL,
which facilitates semantic annotations.

Composition structures are based on UML concepts but
are tailored to the specific needs of discrete-event simulation.
Formal semantics is provided by mapping compositions to
the existing modeling formalism PDEVS. Compositions can
be analyzed formally to check the compatibility of interfaces,
the refinement between interfaces and implementations, the
completeness of compositions, and the correctness of com-
ponents. Correct components fulfill all requirements to be
deployed and ensure that a proper simulation model can be
derived.
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