
EXTENDING DEVS TO SUPPORT MULTIPLE OCCURRENCE IN COMPONENT-BASED SIMULATION

Olivier Dalle

INRIA Sophia Antipolis Méditerranée
and I3S, Université de Nice-Sophia Antipolis & CNRS

B.P. 93, F-06902 Sophia Antipolis Cedex, FRANCE

Bernard P. Zeigler

University of Arizona,
Arizona Center for Integrative Modeling and Simulation

Tucson, AZ 85721, U.S.A.

Gabriel A. Wainer

Carleton University
Dept. of Systems and Computer Engineering

1125 Colonel By Dr. Ottawa, Ontario, CANADA.

ABSTRACT

This paper presents a new extension of the DEVS formal-
ism that allows multiple occurrences of a given instance
of a DEVS component. This paper is a follow-up to a
previous short paper in which the issue of supporting a new
construction called a shared component was raised, in the
case of a DEVS model. In this paper, we first demonstrate,
formally, that the multi-occurrence extended definition, that
includes the case of shared components, is valid because
any model that is built using this extended definition ac-
cepts an equivalent model built using standard DEVS. Then
we recall the benefits of sharing components for modeling,
and further extend this analysis to the simulation area, by
investigating how shared components can help to design
better simulation engines. Finally, we describe an existing
implementation of a simulation software that fully supports
this shared component feature, both at the modeling and
simulation levels.

1 INTRODUCTION

The DEVS formalism is a hierarchical, component oriented
formalism used for the modeling and simulation of systems,
according to the principles of the Systems Theory(Zeigler,
Praehofer, and Kim 2000).

In a previous short paper (Dalle and Wainer 2007),
we raised the issue of supporting a new construction in
DEVS models, called a shared component (definition given
hereafter). This paper is a follow-up to this previous short
paper in which (i) we give an answer to the question raised,

and (ii) we further extend our analysis of the benefits of
using this new construction for building simulation engines.
However, for the sake of completeness, we will also recall
the benefits of using shared components for modeling.

Definition 1. In a hierarchical component model, a shared
component is a component instance that have more than one
parent in the component hierarchy, with the only restriction
that such component cannot appear both as an ancestor
and a descendant for another component (including itself).

In other words, a component instance S is a shared
instance between two components A and B if S is both a
child component of A and a child component of B. The
restriction means that no cycle is allowed and consequently,
the hierarchy must be a Directed Acyclic Graph (DAG). In
the previous example, this restriction means that: (i) S is
different from A and B; (ii) neither A nor B happen to be
a descendant of S in the component hierarchy. However, A
can be a descendant of B or B a descendant of A, as long
as it does not create a cycle.

In comparison with the existing terminologies and mod-
eling constructions, component sharing must not be con-
fused with component reusing. Reusing roughly correspond
to the idea of making a copy: every time a component is
reused, it has its own new, independent internal state. Hence,
using object-oriented terminology, reused components cor-
respond to different instances of a same class. On the
contrary, every time a component is shared, it uses the
same identical internal state. Using object-oriented termi-
nology, shared components correspond to references to a
unique instance of a given class.

933 978-1-4244-2708-6/08/$25.00 ©2008 IEEE

Proceedings of the 2008 Winter Simulation Conference
S. J. Mason, R. R. Hill, L. Mönch, O. Rose, T. Jefferson, J. W. Fowler eds.

Dalle, Zeigler, and Wainer

Very few component models do effectively support this
sharing feature: the Fractal component model (Brunneton
et al. 2006) does explicitly support sharing while some
others, like JainSLEE (Lim and Ferry 2002) provide prox-
ying techniques which is a practical way of implementing
sharing.

This sharing feature is closely related to another prop-
erty that we introduce for the first time in this paper in the
context of DEVS: multi-occurrence. An occurrence corre-
spond to the concept of using a component instance once.
Multi-occurrence corresponds to the capability of using a
component instance multiple times in a model. Therefore,
in order to support shared components, multi-occurrence
capability is required. Notice that shared components form
a subset of multi-occurring components, because a shared
component is required to have more than one parent in the
hierarchy (in each of which it must occur at least once),
while this constraint does not apply to multi-occurrence.

In section 2, we first give a formal analysis of multi-
occurrence in DEVS and prove that an extended definition
of DEVS supporting this mechanism does not introduce
new DEVS behaviors. This result applies in turn to shared
components and proves that shared components can be used
to build hierarchical models that are equivalent to standard
DEVS models.

Then, in order to illustrate the benefits and usefulness
of the shared component construction in DEVS, we will
first recall, in section 3, some of the modeling patterns
presented in (Dalle and Wainer 2007).

Then, in section 4, we further extend this analysis
to the simulation area, by investigating the usefulness of
shared components (and multiple occurrence) to design
better simulation engines. Finally, in section 5 we describe
an existing implementation of a simulation software that
fully supports this shared component feature, both at the
modeling and simulation levels.

2 FORMAL DEFINITIONS AND ANALYSIS

2.1 DEVS Coupled Model

A DEVS coupled model (or network) specification includes
the external interface (input and output ports and values),
the components (which must be DEVS models), and the
coupling relations. This is a structure:

N = (X ,Y,D,Md|d ∈ D,EIC,EOC, IC)

where

• X = {(p,v)|p ∈ IPorts,v ∈ Xp} is the set of input
ports and values;

• Y = {(p,v)|p∈OPorts,v∈Yp} is the set of output
ports and values;

• D is the set of names for the components.
• Md ,d ∈ D are DEVS models:

Md = (Xd ,Yd ,S,δext ,δint ,λ , ta)

with

Xd = {(p,v)|p ∈ IPortsd ,v ∈ Xp};

Yd = {(p,v)|p ∈ OPortsd ,v ∈ Yp}.

• EIC, the External Input Coupling, connects exter-
nal inputs to component inputs:

EIC ⊆ {((N, ipN),(d, ipd))|
ipN ∈ IPorts,d ∈ D, ipd ∈ IPortsd}

• EOC, the External Output Coupling connects ex-
ternal outputs to component outputs:

EOC ⊆ {((N,opd),(N,opN))|
opN ∈ OPorts,d ∈ D,opd ∈ OPortsd}

• IC, the Internal Coupling, connects component
outputs to component inputs:

IC ⊆ {((a,opa),(b, ipb))|
a,b ∈ D,opa ∈ OPortsa, ipb ∈ IPortsb}

However, no direct feedback loops are allowed, i.e., no
output port of a component may be connected to an input
port of the same component i.e.,

((d,opd),(e, ipd)) ∈ IC ⇒ d 6= e.

with the following interface constraints:

∀((N, ipN),(d, ipd)) ∈ EIC : rangeipN (X)⊆ rangeipd (Xd);

∀((d,opd),(N,opN))∈EOC : rangeopd (Yd)⊆ rangeopN (Y);

∀((d,opa),(b, ipb)) ∈ IC : rangeopa(Ya)⊆ rangeipb(Xb).

Recall that closure under coupling requires that, for
any coupled model all of whose components are expressed
in DEVS, there is an equivalent system (called the re-
sultant), that is also expressible in DEVS. Thus, closure
under coupling of DEVS is demonstrated by showing how
to express the resultant of any coupled DEVS as a basic
DEVS. This algorithmic construction provides the formal
basis for the DEVS simulation protocol and provides a

934

Dalle, Zeigler, and Wainer

Acom Bcom

com

D

Ra B Rb

2a

1b 2b

A

1a

(a)

1b 2b

1a 2aAcom Bcom

A Ra RbB

D

com

(b)

Figure 1: An example of shared component with hierarchy
traversal: in order to reach the shared component com,
components A and B use both the coupling (1a) and (1b) in
their surrounding components Acom and Bcom, and then
the couplings (2a) and (2b) in component D.

standard for verifying the correctness of implementations
of DEVS simulation engines.

In the example of Figure 1-(a), a communications com-
ponent named com is shared by some users depicted as A and
B. This situation is represented with the standard DEVS hier-
archical construction in which, since A is contained within a
larger coupled model, Acom, the couplings must traverse the
larger coupled model before reaching the communications
component.

2.2 Multi-occurrence

As indicated earlier, if we allow multiple occurrences,
we can provide greater visual understanding of model
structure, as will illustrated shortly. In the standard
definition, it was understood that distinct names index
distinct DEVS models, i.e., there is a one-one mapping
between the set D and the set of components. However, in
order to accommodate multiple occurrences of the same
component, we must relax the unique naming requirement
and allow a many to one mapping. More formally, we add
a set of names, D which are in one-one correspondence
with the components and a mapping, f from the set of
indices, D′ to the set of names such that

f : D′ → D

is total on D′ (every index maps to a component name)
and is onto D. (every component name has at least one
indexical reference to it.)

The extended specification has the following form:

Nextended = (X ,Y,D′,{Md |d ∈ D}, f ,EIC′,EOC′, IC′)

where
D′ and D are interpreted as indices and names and f

is a mapping of the kind just mentioned and where the

couplings are all defined using the indices rather than the
names. For example, a pair, ((i,op),(j, ip)) in the internal
coupling IC′ represents a coupling that is stated in terms of
the indices, i and j ∈D′, and the output and input ports of i
and j, op ∈OPortsi, ip ∈ IPorts j respectively. The external
couplings EIC′ and EOC′ are similarly defined.

Consider any class in the equivalence defined by f e.g..,
the indices, i mapped to the same name d, [i]d = {i| f (i) = d}.
If such an equivalence class has more than one element,
the indices in it represent multiple occurrences of the same
component. Since such multiple occurrences represent the
same component, the input and output ports they employ in
the couplings must be the same. Further, for a well-defined
resultant the couplings so defined must be consistent with
each other. This leads us to state the following constraint.

Constraint on Coupling of Extended Specification: if
there is a coupling ((i,op),(j, ip)) ∈ IC′ and i′, j′ are f -
equivalent to i, j, respectively, then there must also be a
coupling ((i′,op),(j′, ip)) ∈ IC′. Similarly, the external
couplings EIC′ and EOC′ are so constrained.

It is now straight forward to associate a well-defined
standard coupled model Nf with an extended one

Nextended = (X ,Y,D′,{Md|d ∈ D}, f ,EIC′,EOC′, IC′),

where

Nf = (X ,Y,D,{Md |d ∈ D},EICf ,EOCf , ICf)

and

ICf = {((a,op),(b, ip))|
((i,op),(j, ip)) ∈ IC′, f (i) = a, f (j) = b}.

The external couplings EICf and EOCf are similarly
defined. Note that the constraint on coupling of the ex-
tended specification ensures that the couplings defined for
the associated standard model are well defined. This al-
lows us to state the behavior of an extended DEVS model
is actually the behavior of its associated standard model.
Consequently we have the conclusion that:

The extended DEVS formalism allowing multiple oc-
currences of components, while being more flexible in ex-
pression, does not introduce new DEVS behaviors.

The utility of multi-occurrence flexibility of expression
comes out in its application to hierarchical DEVS models.
For such constructions we apply flattening to the hierar-
chical model to reduce it to a single level DEVS and then
apply the interpretation just given to associate a standard
DEVS behavior with it. In the example of Figure 2-(a), a
communications component named com is shared by some
users depicted as A and B. The component, indexed by
subscripts 1 and 2, respectively, occurs in two places of the

935

Dalle, Zeigler, and Wainer

com1 com2

Acom Bcom

D

Ra B Rb

2

A

1

(a)

2

com2com1

1Acom Bcom

A BRa Rb

D

(b)

com1 com2

Ra B Rb

2

A

1

D

(c)

com2com1

1 2

A BRa Rb

D

(d)

Ra B Rb

2

A

1

com

D

(e)

1 2

A BRa Rb

D

com

(f)

Figure 2: Examples of shared component equivalent to pre-
vious example of Figure 1 but avoiding hierarchy traversal:
first using multiple occurrences and preserving the hierarchy
structure in (a) and (b); then after flattening the hierarchical
structure of (a) and (b) in (c) and (d); and finally after
reunifying the multiple occurrence into a single one in (e)
and (f). The latter is a standard DEVS.

hierarchical construction tree shown in Figure 2-(b). The
reduction to a flattened version is shown in Figure 2-(c)
and the interpretation as a standard DEVS in Figure 2-(e)
illustrates the mapping of the indexed occurrences of the
shared communication component to its unique name. In
other words, the mapping f in the extended coupled model
specification takes both com1 and com2 into com. Finally,
the flattened standard DEVS, illustrated in Figure 2-(e),
is well-defined since there the users A and B are distinct,
falling into distinct equivalence classes, and therefore must
define consistent couplings.

The operation of flattening hierarchical DEVS models
is defined in the literature and is well known to reduce the
hierarchy of structure while preserving the original behavior
(Kim, Seong, Kim, and Park 1996, Kim, Kang, Sagong,
and Seo 2000, Zacharewicz and Hamri 2007). It is an easy
step to extend its application to the extended DEVS models
introduced here. In such a process, a multi-step coupling that
exists in the hierarchy is replaced by a direct coupling in the
flattened version. This is illustrated in Figure 2-(c), where
the couplings between A and com1 labeled by the circled

1 are moved to a flattened version while the containing
component Acom is eliminated. It is also illustrated in
Figure 1 where the multi-step couplings labeled by 1a and
1b would be replaced by a direct coupling such as that
labeled by 1 in Figure 2-(e).

3 MULTI-OCCURRENCE MODELING PATTERNS

In order to illustrate the usefulness of component multi-
occurrence, this section recalls two of the three modeling
patterns that were described, in greater detail, in (Dalle
and Wainer 2007). Modeling patterns are inspired from
the (Software) Design Patterns (Gamma et al. 1994) and
describe a generic modeling case for which a generic mod-
eling recipe may be applied. Identifying modeling cases has
two benefits: (i) it provides a common basis of reflexion to
the community in order to find best modeling practices for
particular modeling cases and (ii) it provides a set of best
modeling practices to the practitioners.

The two modeling patterns we are going to describe
are useful for:

• modeling the real connections that may exist be-
tween components that are deeply buried into a
component hierarchy (proxy modeling pattern);

• establishing shortcuts between components in order
to reduce the overall simulation complexity of the
model (the shortcut modeling pattern).

These two modeling patterns use the same simple lay-
ered protocol stack model that is depicted in Figure 3. This
model represents a system made of two identical commu-
nicating nodes. These two nodes communicate with each
other using a simplified OSI-like protocol stack made of
the 4 upper layers of the OSI reference model: application,
presentation, session, and transport. At the lowest level, the
two nodes communicate with each other using transport level
packets. These packets are handled and delivered to each
peer node by the central transport network component.

system

transport
network

node1 node2
application1

presentation1

session1

transport1

application2

presentation2

session2

transport2

Figure 3: Two interconnected nodes communicating using
an OSI-like layered protocol stack.

936

Dalle, Zeigler, and Wainer

3.1 The proxy modeling pattern

Let us assume we want to model a road traffic network
in which some of the vehicles, not all, are equipped with
the nodes depicted on Figure 3. Assume also that we want
to reuse an already existing hierarchical model, such as a
model of a vehicle.

If we want to plug one of the node components of
Figure 3 in this vehicle, for example, node1, we should
plug it somewhere in the electronics component of that
vehicle. However, as shown on Figure 4, in order to allow
the proper functioning of the node1 component, the vehicle
component needs to be modified, in order to allow node1 to
reach the network transport as shown in Figure 3 (grayed
dashed ellipse).

other
interconnected

elements

electronics

vehicle

road

mechanics

command

node2...
transport
network

node1

Figure 4: Model of a communicating vehicle reusing node
and vehicle components. The grayed dashed ellipse points
out the “hole punching” transformation needed to enable
this reuse when shared component are not available.

Without using shared components, the typical modi-
fication required consists in adding a new communication
port, in multiple places, in order to allow the communica-
tions of node1 to go through its surrounding components
and reach their destination. Hence, these “hole punching”
modifications makes the task of reusing components more
complicated than a simple “drag-and-drop” operation.

This problem can be solved using the proxy modeling
pattern, as illustrated in 5. This new construction uses a
variant of the model of Figure 3 in which the transport
component is used as a shared component. Now let’s
consider what happens when the node component and its
companion transport are inserted together multiple times,
in various places (vehicles): every time, a new instance of
node needs to be created (because it is a normal, non-shared
component), while we reuse the same (shared) instance of
the transport. Therefore this unique instance acts as a proxy
between all the node instances. And since the transport and
node are now laying close to each other, no modification
is needed to the surrounding components.

To summarize, the proxy modeling pattern is useful
for modeling new situations in which a given component

electronics

node2...
transport
network

vehicle

road

mechanics

command

transport
network

other
interconnected

elements

node1

same instance
occurs in

multiple places

Figure 5: Communicating vehicle of Figure 4, with a shared
component used as a proxy.

(eg. the network) needs to be inserted in several places
because it exhibits a strong ubiquitous nature. In this case
the proxy modeling pattern allows for such an arbitrary
insertion without having to modify the “host” component.
This greatly favors the reuse of existing components, because
the required modifications are local to the place where the
new component is added, without any side effect on the
surrounding components.

It is also worth stressing that we did not make any
assumption on the dynamics of the modifications: the prob-
lem addressed thanks to shared components in this proxy
modeling pattern is exactly the same if the insertion of
a the new component need to be done once for all (the
node is a fixed component of the vehicle) or dynamically
during the simulation (the node is a component that may
be plugged in or removed from the vehicle at any time).
Hence, the benefits of sharing component are the same in
the standard DEVS or in the Dynamic Structure variant
such as DS-DEVS(Barros 1997).

3.2 The shortcut modeling pattern

The shortcut modeling pattern consists in using a shared
component to build interaction shortcuts between compo-
nents. This construction may be used to shorten the interac-
tion path between multiple components, and hence reduce
the simulation complexity of the model (see for example
(Zeigler, Praehofer, and Kim 2000) for a definition of the
simulation complexity).

It is worth stressing that compared to the previous
proxy pattern, the main goal of this shortcut is to create an
interaction that does not physically exist in the real system:
it is a new, “fake” interaction, that is only added in order
reduce the simulation complexity. This kind of shortcut
applies well to layered architectures, such as networks, in
which peers at a given level need to use the services of lower
layers to communicate with each other instead of directly
exchanging messages.

937

Dalle, Zeigler, and Wainer

The shortcut modeling pattern consists in applying the
transformation illustrated by Figure 6 everywhere a shortcut
end-point is needed (the figure only shows the transformation
for application1, but a similar transformation is required
for application2). The application1 inner component is the
same as the original one described in Figure 3; the app-sc-
wrapper1 is a new wrapping hierarchical component that
replaces the application1 component in the original model of
Figure 3 (both component have exactly the same interfaces);
the app-shortcut component is a shared component that
provides an alternate shorter path (hence the shortcut name)
between every component in which it is plugged in. The
decision to use this shorter path or not to use it is taken
dynamically, for every packet, by the app-switch-filter1
component.

application1

app−switch−filter1

app−shortcut
app−sc−wrapper1

node1

presentation1

shared

low layers...

Figure 6: The shortcut modeling pattern applied to the
application1 component. (The same modification is applied
to application2, but is not shown here.)

Thanks to this construction, an outgoing packet from the
application1 inner component will either be directed toward
the realistic path (the one with high simulation complexity)
toward the presentation1 component, or toward the less
realistic path through the app-shortcut component.

Compared to DS-DEVS, the dynamic structure variant
of DEVS, notice that the decision to use the shortcut for
a particular packet does not mean that subsequent packets
will have also to use the shortcut. Since both paths are
needed at any time, the need here is not for a dynamic
change of structure, but for the simultaneous availability of
both structures.

This construction may be applied several times in the
same model. For example, as shown on Figure 7, this
shortcut construction may be applied to each of the four
components that model a network layer: the application, as
already described in Figure 6 but also the presentation, the
session and the transport ones. In each case a new dedi-
cated “switch-filter” component needs to be implemented.

Therefore, this shortcut modeling pattern provides a
powerful mean for adjusting the simulation complexity of
a model. However, deciding in which cases it is relevant to
use the shortcut path and in which cases it is not, is a difficult
question because it strongly depends on the model and the

transport
network

system

node1
app−sc−wrapper2

pres−sc−wrapper2

ses−sc−wrapper2

tpt−sc−wrapper2

app−sc−wrapper1

pres−sc−wrapper1

tpt−sc−wrapper1

node2

ses−sc−wrapper1

pres−shortcut

ses−shortcut

tpt−shortcut

app−shortcut

Figure 7: The shortcut modeling pattern may be applied
(independently) to each level of a protocol stack.

simulation goals (this question is not further addressed in
this paper).

4 SIMULATION WITH MULTI-OCCURRENCE

This section presents two use cases in which multi-
occurrence prove to be useful when implementing a simu-
lation:

• Future Event Set (FES) implementation: using
multi-occurrence in order to provide efficient FES
implementations;

• Embedding external simulators: using multi-
occurrence in order to ease inter-operability be-
tween simulators;

4.1 Multi-occurrence benefits in Future Event Sets

The scheduler is the part of the simulation engine that is in
charge of deciding which is the next event to be processed
by a component. As soon as the scheduling activity happens
concurrently for different models, a synchronizing policy
has to be implemented in order to enforce simulation time
consistency. In a canonical DEVS implementation(Zeigler,
Praehofer, and Kim 2000), as shown in Figure 8, these ele-
mentary scheduling places correspond to the Atomic DEVS
components, and the synchronization is implemented using
additional synchronization components called “coordina-
tors” that are placed in each Coupled DEVS.

The protocol between the coordinators and the sched-
ulers consists in computing the global minimum, for all the
Atomic DEVS, of their next event simulation time and then
notifying the DEVS components of the result. This global
minimum computation is distributed along the hierarchy,
starting from a root coordinator, as shown with an example
in Figure 9.

938

Dalle, Zeigler, and Wainer

scheduler
event

DEVS−1 DEVS−n

Atomic or Coupled

next? next?

t1 tn

Coordinator
(DEVS)

Coupled DEVS
next? min(t1, ..., tn)

to/from upper level...

Figure 8: Scheduling hierarchy in DEVS

t2=7 t3=3

t1=5

root

3:min=7 3:min=3

2:min=54:min=3

5:you go

6:you go
2:next?2:next?

1:next? 1:next?

4:min=3(sched3)

5:min=3(sync2)

���
���
���

���
���
���

sched2 sched3

sync2

sync1

sched1

Figure 9: Applying the synchronization protocol along the
hierarchy.

The example of Figure 9 also illustrates that the higher
the hierarchy, the longer it takes to compute this minimum.
Indeed, a synchronization step is required at each node of
the hierarchy in order to wait for the sub-trees values and
compute the local minimum for a given node. Therefore,
in the worst case, when Atomic DEVS are deeply buried
in the DEVS hierarchy, this computation is very costly.

A possible optimization to avoid this cost consists in
flattening the hierarchy. Indeed, since any hierarchical cou-
pling has a flattened equivalent, transforming a hierarchical
model in its flattened equivalent prior to starting the exe-
cution is a way of reducing the number of synchronization
step to only one.

Unfortunately, flattening may not be practical in some
situations, when the hierarchy is still useful. This is the case
when the model has to support dynamic structure changes,
because these dynamic structure changes are localized in a
given part of the component hierarchy.

In that case, using multi-occurrence is a way of achiev-
ing the same result as flattening, but without losing the
hierarchical structure. The extreme case solution with multi-
occurrence consists in replacing all the internal-nodes coor-
dinators by the same instance of the root coordinator (hence
occurring everywhere a coordinator is needed). Notice that
with this solution, since all Atomic DEVS are now directly
connected to the root coordinator, the need for relaying the
minimal values upstream disappears. This is consistent with
the fact that this root coordinator is not supposed to act as
relay.

4.2 Embedding external simulators

Let us consider for example the case of coupling DEVS
models with Network Simulator (NS) models, as investi-
gated in (Kim 2006). Assume that we want to establish
a communication between two users A and B through a
communication component (as discussed earlier in the ex-
ample of section 2), but this time using a model simulated
by NS. In this case, as illustrated by Figure 10, the use of
shared components allows to establish a coupling between
the users component A and B and the NS wrapper com-
ponent everywhere needed, while preserving a centralized
implementation of the wrapper.

WAN

NS agent
(eg TCP client)

NS agent
(eg TCP server)

Regular NS models

NS Simulator process

ComA ComB

A Ra Rb B

NS
wrapper

NS
wrapper

DEVS Simulator process

NS side glue layer

multiple occurrences
(shared component)

Figure 10: A transparent connexion between DEVS models
and NS native models through a shared wrapper component
occurring everywhere needed in the DEVS model.

5 IMPLEMENTATION IN OSA

OSA (Open Simulation Architecture) is a new collaborative
platform for component-based discrete event simulations
(Dalle 2007). It relies on the ObjectWeb’s Fractal com-
ponent model (Brunneton et al. 2006) and its Java-based
implementation called AOKell (Seinturier et al. 2006). The
front-end Graphical Interface is based on the Eclipse IDE

939

Dalle, Zeigler, and Wainer

Membrane

Modeling
code

controller2
simulation
controllercontroller1

ContentServer
Interface(s)

Client
Interface(s)

Sim. API

Content Content

Control
Interface(s)

Figure 11: Architecture of an OSA/Fractal component with
its simulation controller.

(des Riviêres and Wiegand 2004). OSA also provides a
public repository based on the Apache Foundation’s maven
building system that automatically computes the dependen-
cies between the components used for a given simulation.

In OSA, the simulation engine is embedded directly in
each component, by means of a dedicated controller. Con-
trollers are key elements of the Fractal component model: as
shown in Figure 11, in Fractal, each component is attached
to, and supervised by a set of controllers, each implementing
a non-functional service (such as introspection of content,
couplings management, or life cycle management). The
number of these controllers is not fixed, and the list of
controllers associated with each component may vary from
one component to another. Such a given list of controllers
attached to a component is called the component membrane.
In OSA, for the needs of simulation, we provide a list of
controllers dedicated to simulation, that can be used to build
various simulation-oriented membranes.

The implementation of Fractal we use, AOKell, offers
another interesting feature: the ability to build component-
based membranes, in which controllers are themselves im-
plemented by means of Fractal components. Hence, this
reflexive approach allows controllers to be coupled, to have
a hierarchical structure, and to be shared.

These latter capabilities are plainly used in OSA. For
example, despite the engine implementation is distributed
in the membrane of each component, we can still imple-
ment a centralized scheduling algorithm thanks to shared
components. But on the other hand, if we want to switch
transparently to a fully distributed implementation running
on a cluster of workstations, then it is sufficient to replace this
unique shared scheduler component implementing a central-
ized scheduling algorithm by a set of scheduler components
distributed on each execution platform and implementing a
distributed synchronization algorithm.

During the simulation, the functional part of the com-
ponent (the model) may use the set of services that form the
Simulation API (noted Sim. API on Figure 11). Since the
API is provided directly within each component, it may be

changed from one component to another simply by replacing
the simulation controller component. This is interesting for
instance in order to mimic other simulators and therefore
reuse their existing models.

The native OSA simulation API is process oriented and
provides primitives for: getting the current simulated time,
terminating the simulation, scheduling new events within
each component (an event corresponds to the execution of a
method by a new thread at a particular time in simulation),
and pausing/resuming execution of a processing thread.

Implementing a DEVS-like simulation API on top of
OSA is straight-forward: it is sufficient to create a looping
thread in each DEVS using a starting event at the beginning
of the simulation. This looping thread will then implement
the behavior of a DEVS component using the OSA API
and its client and server interfaces for sending and receiving
inputs/outputs.

6 CONCLUSION

In this paper we introduced a new extension of the DEVS for-
malism that allows multiple occurrences of a given instance
of a DEVS component. We first demonstrated formally
that this multi-occurrence extension does not produce new
DEVS behaviors. This result applies in turn to the particular
case of the shared component, because it is based on this
multi-occurrence principle. Therefore, we have the formal
proof that a shared component is a valid DEVS construction
that complies with the Systems Theory principles. Then,
we presented and discussed various ways of exploiting this
shared component construction, both for modeling and sim-
ulation. These selected examples demonstrated that a shared
component is both a means of reducing the complexity of
models and simulations and a means for enabling a better
reuse of components.

In the last part of the paper, we presented an existing im-
plementation of a simulator, namely the OSA architecture,
that fully supports this new shared component construction.
Despite the fact that this architecture is not currently im-
plementing a DEVS API, its versatile architecture and its
process-oriented API are expected to allow such an adap-
tation easily, which is part of our short term development
program.

Finally, we address a potential drawback that has been
identified with shared components concerning the break-
down of the tree structure of the component hierarchy (the
tree becomes a Directed Acyclic Graph). A practical effect
of this relaxed constraint on the hierarchy is that it might
introduce a concurrence of control problem. Semantically,
our formal analysis proved that with respect to DEVS, the
behavior induced by multi-occurring components is well
defined provided that the Constraint on Coupling (Section
2.2) is respected. Hence, this concurrency issue is not raised
with the DEVS extension we have presented for any imple-

940

Dalle, Zeigler, and Wainer

mentation that is equivalent to the flattened canonical form
of Section 2.2.

ACKNOWLEDGMENTS

This work was done while Prof. Zeigler was visiting INRIA
Sophia Antipolis. The OSA development is co-supported
by the IST-FET “AEOLUS” project, the ANR SPREADS
and OSERA projects and INRIA.

REFERENCES

Barros, F. 1997. Modeling Formalisms for Dynamics Struc-
ture Systems. ACM Transactions on Modeling and Com-
puter Simulation 7 (4): 501–515.

Brunneton, E., T. Coupaye, M. Leclercq, V. Quéma, and J.-
B. Stéfani. 2006. The FRACTAL Component Model and
Its Support in Java. Software Practice and Experience,
special issue on Experiences with Auto-adaptative and
Reconfigurable Systems 36 (11-12).

Dalle, O. 2007, July. The OSA Project: an Example of
Component Based Software Engineering Techniques
Applied to Simulation. In Proc. of the Summer Computer
Simulation Conference (SCSC’07), 1155–1162. Invited
paper.

Dalle, O., and G. Wainer. 2007, July 14-19. An open issue on
applying sharing modeling patterns in devs. Published
on the CDROM of the Summer Computer Simulation
Conference (SCSC’07). Short paper.

des Riviêres, J., and J. Wiegand. 2004. Eclipse: A plat-
form for integrating development tools. IBM Systems
Journal 43 (2): 371–383.

Gamma, E., R. Helm, R. Johnson, and J. Vlissides. 1994.
Design patterns – elements of reusable object-oriented
software. Addison-Wesley.

Kim, K., W. Kang, B. Sagong, and H. Seo. 2000. Effi-
cient distributed simulation of hierarchical devs mod-
els:transforming model structure into a non-hierarchical
one. In Proc. of the 33rd Annual Simulation Symposium
(SS2000), 227–233.

Kim, K., Y. Seong, T. Kim, and K. Park. 1996. Distributed
simulation of hierarchical devs models: Hierarchical
scheduling locally and time warp globally. Simulation:
Transaction of the SCS 13 (3): 135–154.

Kim, T. 2006, Spring. DEVS-NS2 environment: An inte-
grated tool for efficient networks modeling and simu-
lation. Master’s thesis, Electrical and Computer Engi-
neering Dept., University of Arizona.

Lim, S. B., and D. Ferry. 2002. Jain SLEE
1.0 Specification. Sun Microsystems Inc. &
Open Cloud Ltd. final release, availble from
http://jcp.org/aboutJava/communityprocess/final/jsr022/.

Seinturier, L., N. Pessemier, L. Ducgien, and T. Coupaye.
2006, June 29th - July 1st. A component model engi-

neered with components and aspects. In Proc. of the 9th
Int’l Symp. on Component-Based Software Engineer-
ing, Volume LNCS 4063, 139–153. Vasteras, Sweden:
Springer.

Zacharewicz, G., and M. E.-A. Hamri. 2007, Feb 8-10. Flat-
tening g-devs / hla structure for distributed simulation
of workflows. In Proc. of AIS-CMS Intl. Modeling and
Simulation Multiconference, 11–16. Buenos Aires.

Zeigler, B. P., H. Praehofer, and T. G. Kim. 2000. Theory
of modeling and simulation. 2nd ed. Academic Press.

AUTHOR BIOGRAPHIES

OLIVIER DALLE is associate professor in the C.S. dept.
of Faculty of Sciences at University of Nice-Sophia An-
tipolis (UNSA). He received is BS from U. of Bordeaux
1 and his M.Sc. and Ph.D. from UNSA. From 1999 to
2000 he was a post-doctoral fellow at the the french space
agency center in Toulouse (CNES-CST), where he started
working on component-based discrete event simulation of
complex telecommunication systems. In 2000, he joined the
MASCOTTE common project-team of the I3S-UNSA/CNRS
Laboratory and INRIA, in Sophia Antipolis.
BERNARD P. ZEIGLER is Professor of Electrical and
Computer Engineering at the University of Arizona, Tucson
and Director of the Arizona Center for Integrative Modeling
and Simulation. He is internationally known for his 1976
foundational text Theory of Modeling and Simulation, re-
cently revised for a second edition (Academic Press, 2000),
He has published numerous books and research publica-
tions on the Discrete Event System Specification (DEVS)
formalism. In 1995, he was named Fellow of the IEEE
in recognition of his contributions to the theory of dis-
crete event simulation. In 2000 he received the McLeod
Founder’s Award by the Society for Computer Simulation,
its highest recognition, for his contributions to discrete event
simulation. He was appointed Fellow of the Society for
Modeling and Simulation, International (SCS), 2006.
GABRIEL A. WAINER received the M.Sc. (1993) and
Ph.D. degrees (1998, with highest honors) of the Universidad
de Buenos Aires, Argentina, and Universit d Aix-Marseille
III, France. In July 2000, he joined the Department of
Systems and Computer Engineering, Carleton University
(Ottawa, ON, Canada), where he is now an Associate Pro-
fessor. He has been a Professor at the Computer Sciences
Department of the Universidad de Buenos Aires, Polytech
de Marseille, and a Visiting Research Scholar at the ACIMS
(University of Arizona) and LSIS (CNRS, France). He is
Associate Editor of the Transactions of the SCS, and the
International Journal of Simulation and Process Modeling.
He is a chairman of the DEVS standardization study group
(SISO), Director of the Ottawa Center of The McLeod
Institute of Simulation Sciences and chair of the Ottawa
M&SNet.

941

