
ABSTRACT

Component based or building block based simulation mod-
el development is regularly mentioned as an interesting
new development and a potential field of research. Most of
the commercial simulation environments offer the users of
their software functions to group model constructs and up-
grade these to advanced model constructs that the users can
use in future simulation studies. Unfortunately, the created
model constructs are rarely reused and often stop being
used after the first simulation study. In this paper we de-
scribe a list of guidelines to consider in the design of build-
ing blocks to enhance the reusability and the flexibility of
the simulation building block to be used in multiple simu-
lation studies, also by model developers who have not been
involved in the design of the building blocks.

1 INTRODUCTION

The topic of domain specific building blocks and compo-
nent based simulation is discussed regularly (Diamond et
al. 2002; Barton et al. 2003; Barros et al. 2004). The au-
thors conclude that the field of software development has
benefited from the development of component based soft-
ware, but that the field of simulation model development
hardly uses component-based technologies. Still, most of
the commercial simulation environments offer some tech-
nique to group model constructs together and upgrade them
to a specific model construct or library element (Valentin
and Verbraeck 2007).
 The way that commercial simulation environments
promote these techniques is as a semi-automatic model de-
velopment. In their examples they show the capability as a
kind of macro that automatically instantiates the constitut-
ing simulation elements into the simulation model (Rock-
well Software 2000; Lanner 2003).

On the other hand, most commercial simulation envi-
ronments provide sets of domain specific model constructs
that can be used by other model developers to develop a
simulation model in that domain. In these sets the model
constructs are not just easy-to-use macros, but they provide
added value to the development of a simulation model. For

example, Arena has specific templates for the domains of
contact centers and high speed packaging lines (Bapat and
Sturrock 2003), Promodel has a specific version for hospi-
tals (Harrell and Price 2003) and EnterpriseDynamics of-
fers suites dedicated to modelling of airports and train net-
works (www.enterprisedynamics.com).

In several projects, we have encountered the difficul-
ties and challenges that developers of sets of model con-
structs have in order to make sure that other people can
benefit from the set and can reuse the components to com-
pose their own simulation models. A first project was for
detailed control of automatic guided vehicles and the sec-
ond one was for passenger movements at airports. Section
2 describes the pitfalls for the development of a set of
model constructs we encountered in these projects, and in
literature.

During the simulation studies we have overcome most
of these pitfalls by either spending more time, by adjusting
the set, or by providing additional training to the model
developers. In section 3 we show four key ways how to
improve the usability and flexibility of sets of model con-
structs. The main proposal is a better and improved struc-
ture for model constructs which is described in section 4
together with guidelines how to build according to this
structure. Finally, in section 5 and 6 we describe the bene-
fits of following these guidelines and further research find-
ings.

2 PITFALLS IN WORKING WITH CUSTOM
SETS OF MODEL CONSTRUCTS

The following pitfalls have been identified by researchers
that worked with model constructs of domain specific si-
mulation environments.
• Scope of model developer is limited by model con-

structs (Sol 1982).
• Lack of trust results in less motivation to use domain

specific extension (Balci 1997).
• Lack of insight in model constructs results in ignoring

of domain specific extension (Kasputis and Ng 2000).

DESIGN GUIDELINES FOR SIMULATION BUILDING BLOCKS

Alexander Verbraeck

Delft University of Technology
Faculty of Technology, Policy and Management

Jaffalaan 5, 2628 BX
Delft, THE NETHERLANDS

 Edwin C. Valentin

Systems Navigator
Delftechpark 38, 2628 XH
Delft, THE NETHERLANDS

923 978-1-4244-2708-6/08/$25.00 ©2008 IEEE

Proceedings of the 2008 Winter Simulation Conference
S. J. Mason, R. R. Hill, L. Mönch, O. Rose, T. Jefferson, J. W. Fowler eds.

Verbraeck and Valentin

• Use of model constructs that are not suited for repre-

sentation of certain system elements (Pater and Te-
unisse 1997).

• Model developers do not understand model construct
(Barton et al 2003).

• Model developers do not know how to parameterize
model construct (Barton et al. 2003).

• Difficult to compose simulation model, because im-
portant model constructs are missing (Barton et al.
2003).

• Mistakes of model developer are hard to overcome
(Diamond et al. 2002).

• Model developers know something is wrong, but can-
not identify what to do about it (Barton et al. 2003).

• Model constructs do not provide performance indica-
tors wanted by the problem owner (Diamond et al.
2002).

• Model developers are limited by parameters and mod-
el constructs (Page and Opper 1999).

• A solution is identified that can not be represented by
model constructs (Davis et al. 2000).

• Adjustments of model constructs required to represent
solution are time consuming (Barton et al. 2003).

We have encountered several of the above mentioned

pitfalls also during our projects for the development and
use of sets of specific model constructs for AGV control
and studying passenger flows at airports. As we knew these
pitfalls could occur, we could quickly overcome them, but
nevertheless they required extra attention from the devel-
opers and the model builders.

Besides the documented pitfalls we also encountered
some new pitfalls which have not mentioned before in lit-
erature to our knowledge.
• Certain system elements can not be represented by

model constructs.
• Model composition from developed domain specific

model constructs is only applied for infrastructure sys-
tem elements, not for control.

• Model developers can adjust internal logic of model
constructs.

• It is difficult to compose a simulation model by per-
sons other than developer(s) of the domain specific ex-
tension.

• Replacement of model constructs by new logic causes
errors in model constructs that were linked or con-
nected.

3 KEY ELEMENTS TO IMPROVE SETS OF
MODEL CONSTRUCTS

3.1 Simulation Building Blocks

We think that a lot of the pitfalls can be resolved if the
model constructs have a different structure that is prepared

for reuse and maintenance, instead of only grouping a col-
lection of model constructs together. The specific devel-
oped constructs that are following the new structure and
architecture will be called a simulation building block.
 Simulation building blocks are forthcoming out of the
research of the BETADE-research group, a group of re-
searchers at the Delft University of Technology that
worked on defining, specifying and using building blocks
in different modelling domains, including geo-information,
web-services and discrete event simulation
(www.betade.tudelft.nl). The BETADE-research group ap-
ply the following definition: “A building block is a self-
contained, interoperable, reusable and replaceable unit,
encapsulating its internal structure and providing useful
services or functionality to its environment through pre-
cisely defined interfaces.” (Verbraeck et al. 2002).
 The term self-contained in the definition of a building
block refers to the use of local information and local proc-
esses. Information is used within a building block that
represents the state of the building block and affects behav-
ior to external events. This information is used for the
processes and functions the building block performs. Once
the building block receives an external event to perform a
function, it can execute this function with the information
and process descriptions that are part of the building block.
Within simulation building blocks this means that the
building block keeps track of its own attributes and has all
the knowledge and capabilities to represent the behavior of
the system element it represents. We will enable this by
storing data locally in the simulation building block and
divide the functionality and services in a simulation build-
ing block over different elements with each their own part
of the system representation. These elements will be re-
ferred to as building block elements.
 Interoperable means that the building block is coop-
erating with other building blocks. This might seem to be
contradictory with self-contained, but a simulation model
cannot consist of one super building block. Different sys-
tem elements are represented by different simulation build-
ing blocks. These system elements together form the sys-
tem to be simulated. These system elements in reality
exchange information and entities, the same occurs be-
tween simulation building blocks. However, due to the
self-containment of simulation building blocks the way si-
mulation building blocks interoperate needs to follow cer-
tain rules, i.e. by precisely defined interfaces. The ability to
be interoperable starts from the idea that simulation build-
ing blocks are part of a set. This set consists of a family of
building blocks which are composed of the same type of
building block elements, e.g. an ‘area’ (a surface in the
terminal) in the airport case study. In addition, the set of
simulation building blocks consists of building blocks rep-
resenting infrastructure or physical elements and building
blocks for control or management. These simulation build-
ing blocks for control are represented as a process descrip-

924

Verbraeck and Valentin

tion and use pointers to be interoperable with simulation
building blocks for infrastructure or physical elements.
 Reusable for a simulation building block means that
the simulation building blocks are instantiated more than
once in a simulation model or the simulation building
block is instantiated in simulation models of several simu-
lation studies. Especially when a simulation building block
is reused in a simulation model several times, it is neces-
sary to be able to parameterize the simulation building
block according to the shape and behavior of the system
elements it represents. The reuse is also achieved by the
use of building block elements inside a simulation building
block which enables flexibility and ability to extend the set
of building blocks with new building block elements in-
stead of directly develop new building blocks.
 A building block is replaceable if it can be removed
from a system and another building block can take its place
in the system. The system still works after the change, it
might even act better, cheaper, more efficient or whatever
objective it was aimed at. For example, replacing a CPU in
computer by a newer model will result that the computer is
still capable of executing the same software, but it can do it
faster. The same applies for simulation building blocks.
Replacing one simulation building block by another build-
ing block is a type of experimentation to evaluate system
alternatives. The replaceability is achieved via the family
of simulation building blocks that operate together with
other simulation building blocks via standardized inter-
faces.
 Encapsulating its internal structure means that
whatever intelligent or secret mechanism is inside, the user
does not need to know or find out. The model developer
does not need to know what is inside a simulation building
block. The internal working of a simulation building block
is shown via the outside by the state of the simulation
building block. The user interface will be the only thing the
model developer will observe, but this can vary depending
on the type of model developer, e.g. allow expert users a
small peek into inner workings.
 Building blocks are part of a system for a reason. This
reason or reasons are useful services or functionality that
the building block provides to a system. Every simulation
building block in a simulation model should add something
to the overall system representation; otherwise it could
have left out of the scope of the simulation model. In addi-
tion, the service a simulation building block provides is to
other building blocks in the system. A separation can be
made between the type of services and functionality and
how they are allocated to simulation building blocks, be-
cause no simulation building block in a domain specific
extension provides all services and functionalities in the
system. Most services or functionalities will be offered by
building block elements inside the simulation building
block. In some cases the desired service or functionality
needs to be performed by the model developer by integrat-

ing the building block with model constructs of the generic
simulation environment
 Building blocks encapsulate their internal structure
and are self-contained, yet they provide services to other
building blocks and are interoperable. This means that
somehow they exchange information. This information ex-
change cannot all be done through ad-hoc connections be-
tween building blocks, because then the building block is
hard to replace by other building blocks, which will not
have the same interfaces. Therefore, building blocks need
to have precisely defined interfaces. A building block
contains several types of precisely defined interfaces for
different purposes. These purposes are exchange informa-
tion and entities with other building blocks, parameteriza-
tion by the model developer, and collection of statistics at
the end of the simulation run. A part of the statistics and
state representations of the simulation building block is al-
so represented via an interface for visualization and anima-
tion.

3.2 External tools and instruments

Simulation models that are created with simulation build-
ing blocks contain a standardized way the system elements
are represented. This standard format of the simulation
model enables to automate model creation, parameteriza-
tion for experiments and collection of performance indica-
tors using tools outside the generic simulation environ-
ment, but dedicated for the simulation building blocks of
the domain specific extension.

We define specific instruments in addition to the set of
simulation building blocks. This could be an application
that enables free drawing of a system in a MS-Visio® sheet
and automatically translates the drawing into a simulation
model using the defined simulation building blocks for that
domain (Mayer et al. 2004).

Other applications are parameterization via dedicated
interfaces, algorithms to check the data that is entered into
the simulation model or a dedicated database that collects
all standardized performance indicators of the defined si-
mulation building blocks and presents that into a report
(van der Hee 2002).

3.3 Support and training

The way that model developers will perform simulation
studies with the set of simulation building blocks and the
additional instruments will be different compared to a
normal simulation study and compared to the normal proc-
ess of performing a simulation study (Banks 1999). In the
case studies we encountered that we underestimated the
need of training and evaluation of the capabilities of the
simulation building blocks before the model developers
started the simulation study. Additional support material to
be able to understand and use the simulation building
blocks and the additional tools is required and possible
types of support are described in this chapter.

925

Verbraeck and Valentin

3.4 Design approach

Finally, the new concept results in a new way of develop-
ing the domain specific extension. We encountered the
need for a different perspective to the domain to make sure
that the domain specific simulation environment can be
used in different simulation studies. A new approach for
development of domain specific extensions is also needed,
because the new structure for simulation building blocks
triggers trade offs for developers of domain specific exten-
sions.

4 GUIDELINES FOR SIMULATION BUILDING
BLOCKS

4.1 Self contained

The characteristic of a building block that it is self con-
tained relates to information belonging to the simulation
building block. The state of a simulation building block is
a result of the values of its attributes. For example, a con-
trol simulation building block should send a message to an
AGV if the control simulation building block decided that
the destination of the AGV needs to change, instead of di-
rectly adjust the destination via the technical options that
the generic simulation environment offers.
Guideline 1: data belonging to a building block should
not be accessed by other building blocks directly, but
only via defined interfaces.

The characteristic of being self contained does not just
deal with the attributes of the simulation building blocks to
resemble its state, but also to the functions or processes
within building blocks. For example, the area model con-
struct used to represent infrastructure for passengers in an
airport had at least the following functions: resource limita-
tion to passengers allowed; prioritization of passengers
queuing for the area; determination duration passengers
remain in area; collect statistics of passenger in area; rela-
tion to other areas for shortest path algorithm.
 Each combination of functionalities resulted in a new
model construct to represent an area according to the spe-
cific requirements of the system. An example of an area
with several functionalities is the check-in area. At differ-
ent airports the check-in areas were all slightly different
and thus different model constructs were developed of the
check-in area resulting in large sets of variants.
 Software component developers overcome the large
sets of variants by applying the concept of Product Line
Engineering (Weis and Lai 1999). In this concept the func-
tionalities of components are divided in small objects. One
of these objects contains the core of the component that
will be the same for all variant components. The other ob-
jects are adjusted to represent the different variants. Figure
1 shows at the left side three software components, before
Product Line Engineering is applied. In these three compo-
nents you can observe three objects (purple, yellow and

green). The yellow object is the core of the component, the
green and purple objects are variants for respectively func-
tion X and function Y. Product Line Engineering enables
to find the commonality in the component variants and
combine them together. Figure 1 shows at the right side the
same three software components, but now the engineering
concept is applied and the maintenance and usability is fo-
cusing on the core of the component and its objects for var-
iation.

common part
of component

variant for
function Y

variant for
function XProduct Line

Engineering

Figure 1: Product Line Engineering; find commonality in
alternative components

 The concept of Product Line Engineering could be ap-
plied in each simulation building block, where one or more
functionalities can be observed as a functional variant.
Product Line Engineering is worth applying if variants can
be replaced by model developers to represent a slightly dif-
ferent behavior. We model these functional variants as
specific objects, which will be a part of the simulation
building blocks. We will refer to these specific objects as
building block elements.
 The simulation building block will consist of one of
the instances of building block elements for each function-
ality. In the example of Figure 2 the yellow simulation
building block will be instantiated with one of the blue and
one of the purple building block elements. The model de-
veloper thus can make a decision for one of the building
block elements. The selection for one of the building block
elements will have effects to the functionalities that the si-
mulation building block represents.

3 model construct 1 Simulation building block
6 Building block elements

Figure 2: 3 model constructs versus 1 simulation building
block with 6 building block element to represent 9 system
elements.

Guideline 2: a simulation building block consists of
building block elements to represent functions and ser-
vices.
 The building block elements that are described above
can use a variety of attributes of the simulation building
blocks to perform the function or service. The attributes
used and information to be exchanged in these building

926

Verbraeck and Valentin

block elements are available within the simulation building
block. A developer of simulation building blocks could de-
cide to introduce the reduction of data exchange of build-
ing block elements similar as described in guideline 1, i.e.
data exchange requires use of defined interfaces. However,
this will strongly reduce the understandability of the inner
logic of the building block element and therefore is seen as
unnecessary overhead.
Guideline 3: data belonging to a building block element
can be accessed by other building blocks elements of
that building block without using the interfaces of the
simulation building block.

4.2 Interoperable

The IEEE (1990) defines interoperability as “the ability of
two or more systems or components to exchange
information and to use the information that has been
exchanged.” The components that the IEEE talks about are
simulation building blocks instantiated in a simulation
model. The ability of simulation building blocks to
exchange information only applies for simulation building
blocks that belong together, i.e. simulation building blocks
member of a domain specific extension. The set of
simulation building blocks in a domain specific extension
can be structured according to different views.
 One view is the identification of families of simulation
building block. We define family as a set of simulation
building blocks that represent a type of system element in
different variants. Another view to the structure of
simulation building blocks is the difference between
infrastructure or physical building blocks and control or
management building blocks. The third view to the
structure is the view for fixed control or control in shape of
process steps.
 The areas in the domain specific extension for airports
are a clear example of a family of building blocks in the set
of model constructs. The simulation model was configured
by instantiation of various member of the area family, for
example the walking area, the conveyor, the shop, the
boarding area and the check-in counter. Possibly other sev-
eral families can be part of the simulation environment. For
example, a second family in the domain specific extension
for airports could be the mechanism of allocating airlines
to check-in counters.
Guideline 4: system elements that appear in different
variants and processes in a system are represented by a
family of building blocks and building block elements.
 In simulation studies often two types of experiments
are performed to improve the system performance. The
first option is to extend the availability of resources, the
second option is to improve the way that resources are
used. With resources we refer to things such as machines,
vehicles or people. We refer to these items as infrastructure
or physical elements of the systems. The infrastructure or
physical elements perform processes for other elements in

the system. For example, the AGVs perform a process for a
load unit or an area performs a process for a passenger.
 The processes, services and functions performed by
infrastructure is determined by control or management of
the system. For example, a management system allocates
which load unit an AGV will transport. Simultaneously a
control system makes sure that the AGV can safely move
over infrastructure track. The control system triggers when
the AGV can go and the AGV notifies the control mecha-
nism when it reaches the end of the allowed track.

Infrastructure
simulation

building block

Control
simulation

building block

triggers
activity

notifies
status change

Figure 3: Simulation building blocks that separate the con-
trol and infrastructure

Guideline 5: building blocks are of different types,

most common to have building blocks for infrastruc-
ture and for control.
 The way that the infrastructure building blocks are
controlled can be very diverse in different systems. A part
of the required flexibility in control will be achieved via
building block elements within control building blocks.
The scripts in the AGV case study provided an alternative
way for controlling the infrastructure. The control con-
sisted of a sequence of processes instead of control that
consisted out of one model construct. This approach re-
sulted in more flexibility for the control of AGVs, with the
ability to model control matching to every possible layout
of tracks.
Guideline 6: complex control mechanisms are repre-
sented using control building blocks linked together to
represent a flow.
 Interoperable means that the building blocks work to-
gether and exchange information. The building blocks that
are instantiated in the simulation model can only interact if
they are aware of each others existence. The simulation
environments offer several technical ways of achieving
awareness that other building blocks exist in the simulation
model and what they are named. The easiest way is to
point to the other building blocks via their name. This
process has been applied to the simulation models within
the AGV case study and resulted in several errors that
model constructs were not available or did not receive the
correct name. We learned that the awareness between the

927

Verbraeck and Valentin

model constructs should be flexible and not fixed in the de-
sign of the model construct.
 We introduced flexibility in defining the pointer to
other building blocks in the airport case studies. For exam-
ple, in the model construct to allocate flights to a check-in
area, we listed the check-in areas using a pointer. These
parameters were verified and error messages were gener-
ated if the pointer was invalid defined by the model devel-
oper. In that way the awareness of model constructs of
other model constructs was easier to enter, check and up-
date.
Guideline 7: building blocks should be aware of each
others existence via parameters containing pointers
saved in attributes.

4.3 Reusable and replaceable

Reuse or replacing a simulation building block in a simula-
tion model can be easily achieved for building blocks that
are part of the same set. A check-in counter in the simula-
tion study of the airports could easily be replaced by a
check-in counter with another function or the waiting area
could be replaced by shops to entertain passengers during
waiting. Replacing of elements in the simulation model can
be achieved by simulation building blocks of the same
family or by replacing building block elements of the in-
stantiated simulation building blocks. This works exactly
like defined in guideline 4.
 The use of building block elements also improves the
ability to extend the set of building blocks. System A and
B have been represented with configuring simulation
building blocks with alternative configuration of building
block elements. System C could again require an adjust-
ment or improvement to one of the simulation building
blocks that is not available to be represented with any of
the building block elements available. A new building
block element will resolve the problem. The domain spe-
cific extension includes the new building block element
and the model developer then can develop simulation mod-
els that represent sets that have not been considered in the
original design of the domain specific extension.
Guideline 8: extension of a domain specific extension
can be achieved by introducing new building block
elements for existing simulation building blocks.
 Replacing is not a direct result of using families of
building blocks, but because within the family the building
blocks have the same interface. With this interface we
mean the way building blocks interact with other building
blocks. If a control building block expects a check-in area
to send triggers and receive notifications in a certain way,
then it is important that the building block that replaces the
original check-in area handles the same type of interaction
via the same interfaces. This interface is the way that
building blocks receive the triggers to do things. Standard-
ized interfaces to enable replaceablity applies for building
block elements in exactly the same manner as for simula-

tion building blocks, because building block elements also
need to be able to replace without any further activities or
complexity for the model developer.
Guideline 9: simulation building blocks and building
block elements of the same family follow the same in-
terface requirements.

4.4 Encapsulating its internal structure

The internal structure of simulation building blocks and its
underlying building block elements are hidden behind a
user interface of the simulation building block in which the
model developer enters the values for parameters. This us-
er interface completely hides the code on the inside and
avoids that the model developer can see what is inside or
even can destroy the logic of the simulation building block
or building block element.
Guideline 10: simulation building blocks hide inner
working.

We observed that advanced experts want to dive into
the set of model constructs and see what is hidden behind
the interface. We conclude from these two observations
that the user interface is a good way to hide the inner work-
ing, but that depending on the type of model developer an
opening might be desired. Especially in the development of
the simulation building blocks and building block elements
the developers want to test and verify by evaluating the de-
tailed logic of the simulation building block or the building
block element.
Guideline 11: advanced model developers have to be
able to unhide the inner logic and see how the processes
and attributes are implemented.

4.5 Providing useful services and functions

The services and functionalities that simulation building
blocks provide are represented by building block elements.
A simulation building block can have several building
block elements for the different services or functionalities
it provides.
 The service or functionality that should be represented
by a simulation building block can be exceptional com-
pared to the normal representation of the system element in
the domain. In these cases it might not be worth to extend
the domain specific extension with new building block
elements. An alternative approach is to instantiate the de-
sired functionality of the building block via custom model
constructs of the generic simulation environment. We sug-
gest therefore that a model developer should have the pos-
sibility to use generic model constructs to represent a cer-
tain system element or part of a system element.
Guideline 12: system elements should be represented by
building block elements that can be extended with cus-
tom instantiation of model constructs of the generic si-
mulation environment.

A second alternative approach is to enable simulation
building blocks to interact with model constructs of the ge-

928

Verbraeck and Valentin

neric simulation environment. The ability to interact with
the generic model constructs of the simulation environment
result that the domain specific extension really is an exten-
sion to the simulation environment and not a partial re-
placement.
Guideline 13: a building block can connect to model
constructs of generic simulation environment.

4.6 Well defined interfaces

A simulation building block contains interfaces that serve
different aims, during the model development, during the
simulation run and during the analysis of the simulation
experiment. The interface with the simulation model de-
veloper, used mainly during model development, is to sup-
port understanding of the possible use of the simulation
building block and to enable the model developer to easily
parameterize the simulation building block. The interfaces
used during the simulation run are interfaces to other simu-
lation building blocks to exchange information and to trig-
ger functions and processes of the other building blocks in
the simulation model. Finally, the interfaces to be used
during analysis are used by the analyst during the simula-
tion run and after the simulation run is completed. The in-
terface is the visualization of the state of the simulation
building block including its current operation during the
simulation run. The interface contains reporting of statis-
tics gathered inside the simulation building block after the
simulation run is completed.

We first describe the interface used by the model de-
veloper for parameterization, which is primarily build up
on the features of the generic simulation environments to
offer dialogs and consequently hide the inner working. Si-
mulation building blocks require a similar parameterization
to represent a system element of a specific system, see
Figure 4.
 The user interface will contain fields in which the
model developer can enter the parameters for processes or
statistical distributions, the availability of resources or the
initial state of a simulation building block. The value that
the model developer enters in the user interface of the si-
mulation building block will be used during the simulation
run and for the initialization of the simulation building
block.
Guideline 14: the model developer is allowed to adjust
parameters of a simulation building block via a dedi-
cated user interface.

The user interface has an additional advantage that the
developers of the simulation building block should use to
the maximum. In a generic model construct the user inter-
faces are kept generic. For example, a process model con-
struct uses the term “Process duration” while the process
model construct refers to the process to repair break down.
Terminology in the user interface clarifies the use and ca-
pabilities of the simulation building block in a domain and

supports a model developer to make the correct choices for
configuring.

Figure 4: User interface for a simulation building block

Guideline 15: terminology in the user interface pro-
vides insight in the suitability of a building block and
importance of its parameters.
 Model developers will use the user interface of the si-
mulation building block to enter their data. At the moment
that they are feeding their data into the simulation building
block, automatically a check can be performed to verify the
use of the simulation building block by the user.
Guideline 16: parameters in a user interface of a simu-
lation building block can be provided by model devel-
opers in a limited range of valid values.
 The parameters that a model developer will use to con-
figure an instance of a simulation building block in a simu-
lation model will be different between projects. In some
projects with a domain specific extension all parameters
will be custom defined, in another simulation study it is
sufficient to have some domain average values.
Guideline 17: parameters in a user interface of a simu-
lation building block should have logic default values.
 Documentation is an important instrument for model
developers to understand how a simulation building block
should be used. However, model developers will not spend
hours to read a user manual. They need to have easy access
to relevant support and explanation that links to the simula-
tion building block they are working with.
Guideline 18: User interface of a simulation building
block should provide relating support to model devel-
oper
 The building block elements that represent functions
and services of the simulation building block are hidden
for the model developer inside the simulation building
block. There can be different technical solutions to enable
the model developer to change building block elements de-
pending on the used generic simulation environment, but
whatever technical option the generic simulation environ-

929

Verbraeck and Valentin

ment offers, the model developer will do so via the user
interface.
Guideline 19: User interface of a simulation building
block can be used by model developer to select building
block elements.
 Handling interaction between building blocks is one of
the main features required for successful replaceability of
simulation building blocks in a simulation model. A build-
ing block in a simulation model cannot be replaced by an-
other building block if the two building blocks use differ-
ent ways of interacting with the rest of the building blocks
in the simulation model. Figure 5 is a schematic represen-
tation of the interaction issue as it appeared in the AGV
case study. At the left hand side the interaction between
different model constructs to the Terminal Manager (or-
ange star) is shown. In the right picture an alternative Ter-
minal Manager model construct is used, enforcing that the
cross changes the interaction. The model construct can thus
not be replaced without changing the interaction originat-
ing from other model constructs.

Original model construct Alternative model construct

X

Figure 5: Unstructured interaction model constructs

 In software development the issue with interaction has
been tackled in two steps. The major step is to create
awareness during the development of the software applica-
tions. Software developers enforce themselves to make
sure that their components can follow a structure agreed
with all developers. This way of developing software com-
ponents is known as Design By Contract or Programming
By Contract.

Figure 6: Structured interaction simulation building blocks

Figure 6 shows the effect of the interfaces. Other simula-
tion building blocks no longer interact with something in-
side the model construct, but send their trigger or event to
the interface of the simulation building block. Internally
the simulation building block will redistribute the triggers
to the appropriate building block element. The original
building block on the left hand side in Figure 6 can be re-
placed by an alternative building block (right hand side of

Figure 6) without any changes required to the other simula-
tion building blocks in the simulation model.
Guideline 20: a simulation building blocks has a de-
fined interface that receive triggers from other simula-
tion building blocks in the simulation model and redis-
tribute the trigger internally.
 The interfaces have an additional function besides re-
distributing. They can also be used for checking the state
of a simulation building block before continuing with a
trigger. For example, an AGV cannot receive the trigger
“pick up load” if it is currently in maintenance. Another
check that the interface can perform is capture triggers that
are not supposed to be received by a simulation building
block.
Guideline 21: the interface of a simulation building
block contains evaluations of the state of the trigger
and the building block to determine whether the build-
ing block can handle the trigger.
The last type of interfacing of a simulation building block
is the interfacing it provides to the analyst to evaluate the
behavior of the system. This interface is used during the
simulation run or afterwards to visualize the states and key
performance indicators.
 Visualization during the simulation run is provided by
animation elements that are part of the simulation building
block. Figure 7 shows animation using a set of pictures.
Depending on the state of the simulation building block
another picture is shown. Other options are counters and
texts that show for example the number of entities sealed at
the building block or the number of breakdowns that ap-
pear.

Figure 7: Four status visualizations of a building block

Guideline 22: a simulation building block contains pic-
tures, numbers and other elements to support visualiza-
tion of the state and key performance indicators during
simulation run.

5 APPLICABILITY

The guidelines for simulation building blocks have been
successfully applied in the development of different do-
main specific simulation extensions and new sets of simu-
lation building blocks for supply chains, food factories,
hospitals and container terminals.
While we implemented these domain specific sets of simu-
lation building blocks we identified for almost each guide-
line a trade off for different ways that we could add more
flexibility or increase ease of use. For example, the deci-

930

Verbraeck and Valentin

sion for the number of building block elements to use in-
side a simulation building block to represent its internal
functions to follow guideline 2.

6 CONCLUSION

The guidelines helped in making building blocks more
flexible and enabled reuse over different simulation stud-
ies. Together with the additional tools introduced in section
3.2, better documentation introduced in section 3.3 and an
alternative design approach of section 3.4 we can develop
better sets of simulation building blocks and also enable
others to develop better simulation building blocks.

The trade offs that we encountered during the applica-
bility of the building blocks require further analysis that
will result in an improvement of the applied design ap-
proach and guidelines.

REFERENCES

Balci, O., 1997. Principles of simulation model validation,
verification, and testing. Transactions of the Society
for Computer Simulation International, 14(1):3-12.

Banks, J., 1999. Introduction to simulation. In Proceedings
of the 1999 Winter Simulation Conference, ed. P. A.
Farrington, H. B. Nembhard, D. T. Sturrock , G.W.
Evans, 7-13. Piscataway, New Jersey: Institute of
Electrical and Electronics Engineers, Inc.

Bapat, V., D. T. Sturrock, 2003. The Arena product family:
enterprise modeling solutions In: Proceedings of the
2003 Winter Simulation Conference ed. S. Chick, P.J.
Sanchez, D. Ferrin, D. J. Morrice, 210-217. Piscata-
way, New Jersey: Institute of Electrical and Electron-
ics Engineers, Inc.

Barros, F. A., A. Lehmann, P. Liggesmeyer, A. Verbraeck,
B. P. Zeigler, 2004.
http://www.dagstuhl.de/04041/, [accessed
May 10, 2008].

Barton, R. R., P. A. Fishwick, R. G. Sargent, J. O.
Henriksen, J. M. Twomey, 2003. Panel: simulation –
past, present and future. In Proceedings of the 2003
Winter Simulation Conference, ed. S. Chick, P. J. San-
chez, D. Ferrin, D. J. Morrice, 2044-2050. Piscataway,
New Jersey: Institute of Electrical and Electronics En-
gineers, Inc.

Diamond, R., J. O. Henriksen, C. D. Pegden, A. P. Walker,
C. R. Harrell, W. B Nordgren, M. W. Rohrer, A. M.
Law, 2002. The current and future status of simulation
software (panel). In Proceedings of the 2002 Winter
Simulation Conference ed. E. Yücesan, C.H. Chen,
J.L. Snowdon, J.M. Charnes, 1633-1640. Piscataway,
New Jersey: Institute of Electrical and Electronics En-
gineers, Inc.

Harrell, C.R., V. Lange, 2001. Healthcare simulation mod-
elling and optimisation using Medmodel In Proceed-
ings of the 2001 Winter Simulation Conference, ed.
B.A. Peters, J.S. Smith, D.J. Medeiros, M.W. Rohrer,

233-238. Piscataway, New Jersey: Institute of Electri-
cal and Electronics Engineers, Inc.

Hee, R.van der. 2002. Building blocks for Real-Time Sup-
ply Chain, Master Thesis, Delft University of Technol-
ogy, Netherlands

Kasputis S., H. C. Ng, 2000. Composable simulations. In
Proceedings of the 2000 Winter Simulation Confer-
ence , ed. J.A. Joines, R.R. Barton, K. Kang, P.A.
Fishwick, 1577-1584. Piscataway, New Jersey: Insti-
tute of Electrical and Electronics Engineers, Inc.

Lanner Company. 2003. WITNESS User Guide. Lanner
Group Company Limited, Redditch.

Mayer, I. S., W. Bockstael-Blok, E. C. Valentin, 2004.
Containers a Drift: Visualization-simulation of an in-
land container terminal design. Simulation and Gam-
ing, 35(1):29-52.

Page, E. H., J. M. Opper, 1999. Observations on the com-
plexity of composable simulation. In Proceedings of
the 1999 Winter Simulation Conference ed. P.A. Far-
rington, H.B. Nembhard, D.T. Sturrock, G.W. Evans,
553-560. Piscataway, New Jersey: Institute of Electri-
cal and Electronics Engineers, Inc.

Pater, A. J. G., M. J. G. Teunisse, 1997. The use of a tem-
plate-based methodology in the simulation of a new
cargo track from Rotterdam harbor to Germany In:
Proceedings of the 1997 Winter Simulation Confer-
ence ed. S. Andradottir, K. J. Healy, D. H. Withers, B.
L. Nelson, 1176-1180. Piscataway, New Jersey: Insti-
tute of Electrical and Electronics Engineers, Inc.

Rockwell Software, 2000. Arena Professional – Reference
guide, Rockwell Automation, Sewickley.

Sol, H.G, 1982. Simulation in information systems devel-
opment, Doctoral Dissertation, Rijksuniversiteit Gron-
ingen, Netherlands.

Valentin, E. C., A.Verbraeck, 2005. Requirements for Do-
main Specific Discrete Event Simulation Environ-
ments. In: Proceedings 2005 Winter Simulation Con-
ference ed. M.E. Kuhl, N.M. Steiger, F.B. Armstrong,
J.A. Joines, 654-663. Piscataway, New Jersey: Insti-
tute of Electrical and Electronics Engineers, Inc.

Verbraeck A., Y. Saanen, Z. Stojanovic, B. Shishkov, A.
Meijer, E. Valentin, K.van der Meer, 2002. Chapter 2:
What are building blocks? In: Building blocks for Ef-
fective Telematics Application Development and Eval-
uation ed. A.Verbraeck, A.Dahanayake, 8-21.

931

Verbraeck and Valentin

AUTHOR BIOGRAPHIES

ALEXANDER VERBRAECK is a full professor in
Systems and Simulation in the Systems Engineering Group
of the Faculty of Technology, Policy and Management of
Delft University of Technology, and a part-time full
professor in supply chain management at the R.H. Smith
School of Business of the University of Maryland. He is a
specialist in discrete event simulation for real-time control
of complex transportation systems and for modeling
business systems. His current research focus is on
development of open and generic libraries of object
oriented simulation building blocks in Java. His e-mail
address is: a.verbraeck@tudelft.nl

EDWIN C. VALENTIN is a research fellow at the Delft
University of Technology and simulation consultant at
Systems Navigator BV in The Netherlands. His main
interest is in the creation of domain specific development
environments for discrete event simulation. Edwin has
implemented such environments at Nestlé, Sandd, and the
British Home Office. His email address is:
edwin.valentin@systemsnavigator.com

932

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

