

TRANSPARENT AND ADAPTIVE COMPUTATION-BLOCK CACHING
FOR AGENT-BASED SIMULATION ON A PDES CORE

Yin Xiong
Maria Hybinette
Eileen Kraemer

Computer Science Department

University of Georgia
Athens, GA 30602-7404, USA

ABSTRACT

We present adaptive computation-block caching that sup-
ports improved performance and is suited for agent-based
simulations. The approach is illustrated in SASSY (Scal-
able Agents Simulation System). SASSY leverages a Par-
allel Discrete Event Simulation for performance, but pro-
vides an agent-based API to the developer. Agent-based
simulation is suited to computation-block caching because
relevant calculations completed at each event may be rela-
tively heavyweight and may be repeated. The potential
savings of avoiding a computation entirely may offset the
overhead cost of caching. The approach is refined through
the use of statistical methods for choosing which computa-
tion blocks should be cached or not. If the relevant compu-
tation is trivial, caching is not worth the cost. In other cases
caching provides a substantial speedup. Our mechanism
tracks these costs online and adjusts accordingly. It re-
quires no additional coding but is automatically integrated
into applications. We assess the performance of the ap-
proach in a benchmark-application.

1 INTRODUCTION

Caching the results of expensive and redundant computa-
tions or database retrievals improves application scalability
and execution time. The idea of providing caching is not
new but has been around since the 1960s when it was first
introduced to improve the performance of the Model 85,
part of the System/360 IBM product line. Typical parallel
and distributed discrete event simulations (PDES) re-
compute events in time stamp order, without exploiting a
computational result cache even if events may have been
processed earlier. It is thought that for most such simula-
tions events are fine grained (light weight) computations
and these computations do not offset the overhead of cach-
ing enough to provide an improvement in performance.
However a growing need exists for applications that sup-

port agent-based simulation (ABS), in which events are
coarser-grained than the events assumed by traditional
PDES systems.

PDES events typically require less than a millisecond
(Steinman and Wong 2003; Das et al. 1994), while ABS
events typically run for tens of milliseconds or longer. This
is because ABS involves deliberative agents as well as re-
active agents. Reactive agents simply retrieve pre-set
behaviors similar to reflexes without maintaining any
internal state while deliberative agents behave more like
they are thinking, by searching through a space of
behaviors, maintaining internal state, and predicting the
effects of actions. Agent based simulations of robots (e.g.,
TeamBots (Balch 1998) and Player/Stage (Gerkey et al.
2003)) often assume a time step rate of 33 msec as this cor-
responds to the frequency at which a video camera delivers
images. Further, all of the intervening time is typically
used to process the information and compute a movement
command. However, these agent-based simulations do not
scale well.

Agents in an ABS normally rely on a sense-think-act
cycle. Agents sense the environment, consider what to do,
and then act. Tile World, a test bed to evaluate reasoning
of agents, requires substantial time to deliberate (Pollack
and Ringuette 1990). Tile World was proposed in 1990 by
Pollack and Ringuette and consists of a grid of cells on
which various objects, such as tile workers, tiles, obstacles
and holes, can exist. The tile workers (agents) can move
up, down, left or right, and their objective is to pick up and
move tiles so as to fill holes. Each hole has an associated
point value that is awarded to the agent upon filling the
hole. A hole varies in size and point value. The agents
know how valuable each hole is in advance; their overall
goal is to get as many points as possible. Tile world simu-
lations are dynamic because the environment changes con-
tinually over time. The objects appear and disappear at
rates pre-determined by parameters of the simulator.

(Uhrmacher et al. 2000) implemented Tile World in
JAMES, a DEVS based simulation system, and found that

854 978-1-4244-2708-6/08/$25.00 ©2008 IEEE

Proceedings of the 2008 Winter Simulation Conference
S. J. Mason, R. R. Hill, L. Mönch, O. Rose, T. Jefferson, J. W. Fowler eds.

Xiong, Hybinette and Kraemer

''thinking time'' required almost 80% of an agent’s time
step, where a time step was close to 1 second. The sense
and act components used less than 20% of the total simula-
tion time. (Lees et al. 2004) parameterized thinking time
and compared thinking and reactive agents (where reactive
agents require little or no thinking time as they react di-
rectly to their sensor inputs) in a shared and central envi-
ronment in Tile World. They experimented with a modest
number of agents (up to 64 agents) using a Linux cluster.
The deliberating agents use an A* planner to generate
plans of routes to tiles and holes within the tile world.
Their planner incorporates a 10 ms “deliberation delay” per
plan. A* is a classic and frequently used planning algo-
rithm in agent based simulations that finds the least cost
path between an initial point and a goal. It was proposed by
(Hart et al. 1968) in the late sixties. A* provides an opti-
mal solution plan to the path planning problem but it does
not provide any performance guarantee. A* overhead
ranges between 10 ms and 1,000 ms on a 2GHz Pentium
(Balch 2008). While there are many extensions to A*
(e.g., D* uses the initial plan as a baseline to plan new
paths in dynamic environments instead of recreating the
path from scratch (Stentz 1994)) and alternate planning al-
gorithms, A* remains popular as it is simple to implement
and provides descent performance.

The thinking step independent of particular planning
algorithm, as observed by the agent-based simulation
community, ranges from a complex step requiring lengthy
computation (e.g., 1 second (Uhrmacher et al. 2000) or 10
ms to 1000 ms (Balch 2008)) to a reactive step with negli-
gible ‘thinking time’. Accordingly, the performance of an
agent-based simulation can be improved significantly by
speeding up the lengthy thinking process. We exploit vari-
able thinking time and use adaptive caching in which we
cache the input parameters and the results of lengthy think-
ing in order to avoid re-computation – but avoid caching
computations where the relevant time is trivial, such as
with reactive agent that do not think, where caching may
not be worth the cost.

An agent’s thinking process may involve several input
parameters and possibly depend on a large state space, and
the probability of encountering exactly the same set of pa-
rameters and state variables can be low. Thus, caching the
ultimate result of the whole thinking process may not be
beneficial as the cache hit rate can be minimal. Here, our
approach of block caching enables breaking the thinking
process into smaller units that may be more amenable to a
caching mechanism and less (as a whole) dependent on the
state space.

Our caching is flexible and transparent to the user ---
the application developer, as it requires no additional cod-
ing or recoding. By using a software cache pre-processor,
caching code is integrated and compiled automatically and
transparently with the ABS applications. Our motivation is

to make caching transparent to the user while improving
scalability and performance.

2 RELATED WORK

Caching is used in different applications and is integrated
at different levels into the architecture including software,
language systems and hardware. Function caching or
memoization is a technique suggested by the programming
language research community to improve the performance
of functions by avoiding redundant computations. Here,
function inputs and corresponding results are cached in an-
ticipation of later reuse (Bellman 1957; Michie 1968; Pugh
1989).

Function caching is used for incremental computa-
tions, dynamic programming and in many other situations.
Incremental computations allow for slight variation in
function input. It makes use of previous results and adjusts
it to generate new output. Using function caching to obtain
efficient incremental evaluation is discussed in (Pugh and
Teitelbaum 1989). Deriving incremental programs and
caching intermediate results provides a framework for pro-
gram improvement (Liu and Teitelbaum 1995). Memoiza-
tion is available today as part of the Java programming
language.

Walsh and Sirer proposed simulation staging, a form
of function caching, as a way to improve the performance
of a sequential discrete event simulation in applications
with a substantial number of redundant computations
(Walsh and Sirer 2003). Their approach provides signifi-
cant speedup (up to 40x in a network application), but re-
quires extensive structural revision of code at the user ap-
plication level.

Contrary to our approach, function caching techniques
do not consider the cost of consulting the cache and are not
adaptive. Observe that if the cost of checking the cache
exceeds the cost of just doing the computation, caching
will degrade performance. Function caching also relies on
an assumption of no side effects (e.g., by variables in the
state space) and that the function produces only one output.

The PDES community have proposed different tech-
niques of reusing computations. In cloning (Hybinette and
Fujimoto 2001) simulations cloned at decision points share
the same execution path before the decision point and thus
only perform those computations once; after the decision
point simulations can further share computations as long as
the corresponding computations across the different simu-
lations are not yet influenced by the decision point. Up-
dateable simulation proposed by (Ferenci and Fujimoto
2002) updates the results of a prior simulation run, called
the base-line simulation, rather than re-executing a simula-
tion from scratch. A drawback of this latter approach is
that one must manage the entire state-space of the baseline
simulation. Both of these mechanisms are appropriate for
multiple similar simulation runs.

855

Xiong, Hybinette and Kraemer

 Another related approach used in optimistic simulators
to improve the performance of rollbacks, lazy re-
evaluation, caches the original event in anticipation of it
being re-used after a rollback and thus avoiding re-
computation (West 1988). Lazy evaluation, however, is
only beneficial for events on the same execution path.

We recently developed LP caching (Chugh and Hybi-
nette 2004) for parallel and distributed simulators. LP
caching is distinct from the work presented in this paper,
block caching. Both approaches are independent of the
simulation engine (i.e., it supports both conservative and
optimistic simulation executives). However, in LP caching
the middleware exploits the PDES paradigm of logical
processes (LPs) and messages by intercepting communica-
tions between the simulation application and the simulation
executive (See left of Figure 1). Here the caching middle-
ware is situated between the simulation kernel and the si-
mulation application. When the kernel delivers an event to
the kernel, the caching software intercepts it. In the case of
a cache hit, the retrieved resultant state and message or
messages are passed back to the kernel without the need to
consult the application code. This scheme, as with our pro-
posed approach, is also adaptive in the sense that it avoids
consulting the cache when the computation is negligible. A
significant between LP caching and block caching is that
block caching does not rely on a simulation paradigm but
can be plugged in to a variety of applications and applica-
tion levels (see left of Figure 1 for an example on how it is
be integrated with a PDES simulation); it is simulation in-
dependent. Block caching can improve the performance of
functions or blocks transparently without any need for ap-
plication developer intervention (however a block or chunk
of code currently requires annotations at the beginning and
end of potential block of code with a comment) of both the
simulation application and simulation executive. Similar to
(Walsh and Sirer 2003)’s approach (it can split a large
computation into smaller sub-computations whose inputs
and result(s) are cached to further improve performance.

Figure 1: Caching Approaches: Our earlier approach (left)
and our proposed approach (right).

Our goal of transparency is inspired by JiST, which

infuses sequential discrete simulation semantics directly
into the Java Virtual Machine (JVM) to provide a transpar-
ent user programmer interface (Barr et al. 2004). In JiST a
rewriter reprocesses or rewrites simulation application
class code in order to incorporate embedded simulation

time operations. The rewriter is a dynamic class loader. It
intercepts all class load requests and subsequently verifies
and modifies the requested classes. The program transfor-
mations occur once, at load time, and does not rewrite the
during execution. Although JiST does not provide caching
functionality we hope in future work to explore embedding
our caching middle-ware into the JVM to improve the in-
terface and further transparency.

We propose computation-block caching, a transparent,
flexible and adaptive approach to reduce redundant compu-
tations. It is transparent in the sense that no recoding is re-
quired on the part of application programmers. It is flexible
since it can decompose large computations into smaller and
potentially re-order to improve performance. It is adaptive
in the sense that the caching mechanism is turned on when
statistics shows that the benefit of caching exceeds compu-
tation by a pre-specified factor. In the next sections we
will discuss the approach, implementation and discuss ini-
tial performance results.

3 APPROACH

We define computation block to mean a chunk of code that
may be a Java method or a number of lines of code with or
without invocations of methods. Computation-block cach-
ing is not as rigid as traditional function caching. It allows
state variables to be involved in caching and the result it
returns is not limited to returning a single value. Consider
the following computation block as an example:

 int a;
 int b;
 methodA(a, b, c, d);
 if(c > d) // c, d: state variables)
 doSomething(c);
 else
 doSomethingElse(d);

 For traditional function caching, this chunk of code is
not easily cacheable because it violates the basic rules for
function caching, namely, it is not a function, but involves
multiple functions and state variables. But the simulation
application may have every reason to want to cache this
chunk of code. One way for traditional function caching to
solve the problem is to cache the functions separately, but
the amount of recoding will be substantial as each function
will need some recoding in order to make it cacheable.
Furthermore the functions may write or read from variables
that are not passed in as parameters (e.g., variables a and
b). The state variables that affect the functions need to be
denoted and their updated values need to be copied back to
the state variables.
 Block caching solves the tedious task of recoding by
utilizing a preprocessor that automates the process by gen-
erating a new version of the code, on-the-fly, that includes
calls to the caching middleware. To designate a computa-
tion function as “cacheable”, the application programmer

856

Xiong, Hybinette and Kraemer

provides a method-signature specification in a configura-
tion file. The following is a sample specification for a
cacheable computation function or method called dummy1
in the original code:

 begin:dummy1
 packageName: app
 className: JPhold
 return: length=double, point=int
 parameters: int a, double b
 stateVariables: int sex, int age
 cachingFlag: on
 end:dummy1

Here “dummy1” is the name for a cacheable function.

“JPhold” is the name of the Java class containing the
function. “app” is the name of the Java package that
“JPhold” belongs to. The passed-in parameters are an
“int” and a “double”. There are two state variables in-
volved in the computation: “sex” and “age”. The result
to be cached is the value of variable “length” whose data
type is “double” and of variable “point” whose data
type is “int”. The caching flag for this function is set to
be “on” for this particular run.
 For a computation block that is not a Java method, but
a chunk of code, we require that the application program-
mer mark the beginning and end of the block in their Java
class code. Note that this is not “recoding” as the markers
are Java comments and they do not change the byte gener-
ated code. Taking the above computation block as an ex-
ample (which is a chunk of code rather than a function),
the modified class code would look like this:

 //beginComputationBlock dummy2
 int a;
 int b;
 methodA(a, b, c, d);
 if (c > d)//c,d: state variables)
 doSomething(c);
 else
 doSomethingelse(d);
 //endComputationBlock dummy2

A simulation application can designate multiple

computation blocks as “cacheable”. A cacheable computa-
tion block does not need to be cached all the time. The user
can specify which computation blocks to be cached for a
certain simulation run by turning on the caching flags in
the specification file. The caching flags can be set before
the simulation begins to run and remain unchanged
throughout the simulation, which is called “hard-caching”.
The caching flags can also be set on or off during the simu-
lation run according to statistics computed on-the-fly,
which is called “soft caching”.

3.1 The Caching Middleware

Our implementation includes two modules: a preprocessor
that reads a configuration file and generates code on the fly

and the cache middleware that manages caching and de-
termines whether to consult the cache or not. Figure 2 de-
picts the interactions between the caching modules and a
pre-existing PDES simulation executive and its simulation
application. The pre-processor first reads a configuration
file or stream (a stream if it generates code while the simu-
lation is running) then ‘recompiles’ the effected objects
(red dashed arrows in the Figure denotes the flow of output
of code to the effected modules).

Figure 2: Workflow of Preprocessing.

The regenerated code enables the cache middleware to in-
tercept and monitor cacheable function calls (or blocks) in
both the simulation kernel and the simulation application.
The cache is consulted when the overhead of the computa-
tion time exceeds the caching overhead.
 To provide user control whether functions or blocks
are cached – a caching flag can set be set an unset on a per
block basis. A block’s flag can be changed at any time, be-
fore the application runs or while it is running. The state of
the flag (on or off) is set in the configuration stream. A
Statistic Manager (part of the cache middleware) keep
track of cache and computational overhead to determine
the threshold when to consult the cache or not. When the
Statistic Manager determines it is worthwhile to consult the
cache and it is a hit it returns the cached results. In the case
of a cache miss, the cacheable computation block is carried
out and the result is cached for later reuse.
 We implemented the cache middleware to run both in
distributed mode across several machines or on a single
machine. Both version can build multiple caches on a sin-
gle machine.
 The cache is implemented as a Java HashTable and
indexed by the combination of package name, class name,
computation name, passed-in parameters and the names of
state variables involved in the computation. The result of
the computation is stored with the index as a key-value pair
in the hash table. Our caching middleware can be used
with both conservative and optimistic simulation kernels
(or any application). It can also be used with both ABS si-
mulation and non-ABS simulations. No changes to the un-
derlying kernel are required. No changes to the simulation
application are required.

857

Xiong, Hybinette and Kraemer

3.2 The Preprocessor

Existing caching schemes are not suitable for our purposes
because they usually require substantial recoding in order
to use the caching facilities. By “recoding” we mean ma-
nually modifying the code of the cacheable functions, such
as adding, deleting or rewriting lines of code. Therefore,
such caching schemes involve “hard coding” which can be
error-prone and time consuming. For cacheable functions,
the recoding is usually on a function-by-function basis, i.e.,
for each cacheable function, the application programmer
needs to do some recoding in order to make that function
cacheable. For example, in (Chugh 2004), a cacheable
function needs at least 4 lines of recoding. For LP caching,
however, a 4-line recoding may not be too much as it cach-
es one cacheable function per LP. But for computation-
block caching, LP events be decomposed and into multiple
computation blocks to be “cacheable” (note that decom-
posing a function may also relieve chunks of code (or func-
tions) to be dependent on less state variables and each oth-
er if reordering is advantageous). If each computation
block needs 4 lines of recoding to make it cacheable, the
amount of recoding necessary may make the task intimi-
dating and time consuming.
 The preprocessor in block caching completely relieves
the application programmer of recoding in order to make a
computation block cacheable. As Figure 2 shows, the Pre-
processor reads the configuration file and involved applica-
tion Java files to generate a new version of the application
Java files, inserting caching-specific code that checks
whether the caching flag is on and accesses the cache if ne-
cessary. Also Cache middleware is updated accordingly.
There is no need to invoke the Preprocessor for each simu-
lation run. It is invoked only when the specification for the
cacheable computations is modified.
 The time for preprocessing is decided by a few pa-
rameters: the number of cacheable computation blocks, the
number of class files, and the length of class files. The
Preprocessor scans the configuration file to find which ap-
plication Java files are involved in caching, then reads the
files one by one and inserts caching-specific code at the
right places.

3.3 The Statistics Manager

A feature of our method is that it allows both “hard cach-
ing” and “soft caching” options (recall that soft caching
enables adaptive caching). The Statistics Managers man-
ages soft and hard caching. The Statistics Manager is
composed of two sub-managers. One sub-manager com-
putes the average caching overhead and the cost for each
cacheable computation block on the target computer sys-
tem. A default program is provided for measuring the
cache overhead on the target system. An interactive user

interface is provided so the user can specify the range and
distribution of each parameter and state variable for their
cacheable computation blocks. With this information and
the specification of the cacheable computation blocks, the
Statistics Manager creates a stub program for each of the
computation block, generates parameters and state vari-
ables according to the user-specified ranges and distribu-
tions, executes each computation block 100 times and re-
ports the average time for each computation block as the
cost of that computation block. The users compare the
computation cost with the caching overhead to decide
whether the “caching” flag should be turned on, and if on,
what threshold value should be selected. The other sub-
manager gathers information about the parameters, state
variables and length of the computation as the simulation
runs. It then decides whether the caching flag should be
turned on or off for a certain cacheable computation. If the
benefit of caching surpasses a certain threshold specified
by the user beforehand, or generated on-the-fly, caching
will be turned on, otherwise, it will be turned off.

4 PERFORMANCE

Caching efficiency depends on at least three factors: cost
of a cacheable computation, number of such computations,
and the caching overhead. In general, we expect better
performance from caching as the cost of computation in-
creases and as the cost of cache consultation decreases.
There are a few other issues to consider as well. At initiali-
zation time, the cache is empty – and therefore not at all
effective. However, as the cache “warms” up, the perform-
ance improves. Accordingly, longer simulations are more
likely to benefit from caching. The size of the cache is also
important because for a given cache size, the number of
key-value pairs stored is inversely proportional to the size
of the cache. When the number of key-value pairs exceeds
the cache size, either some of them will be cleared from the
cache, or the cache size has to be increased, which means
allocation of new memory space and a large amount of co-
pying.
 In our experiment, quantitative results were obtained
using JPHold, a Java version of the PHold application (Fu-
jimoto, 2001). JPHold provides a synthetic workload using
a fixed message population. Upon receiving a message, the
LP schedules a new event whose destination LP is drawn
from a uniform distribution ranging from 0 to one less than
the number of LPs, which means that each LP is equally
likely to be the destination of a message.
 We tested our caching scheme on SASSY, an optimis-
tic PDES simulation executive implemented in Java (Hy-
binette et al. 2006) running of UNIX Workstations (pri-
marily SUN Ultra workstations) connected via
Ethernet/Fast Ethernet to SUN Microsystems. Three types
of experiments were performed: 1) Experiments as proof of
concept of the basic caching technique; 2) Experiments to

858

Xiong, Hybinette and Kraemer

evaluate the role that pre-run statistics play in aiding deci-
sion making; and 3) Experiments to study the benefit of
adaptive caching using statistics computed on-the fly.
 Each of our experimental runs is defined by a set of
parameters: the number of PEs (simulation schedulers), the
number of Logical Processes (LPs, an LP is logically a se-
quential simulation ‘process’ scheduled by a PE), the mes-
sage population, total events to be processed, the initial
cache size, the load factor of the hash table, the computa-
tion granularity and more. For our experiments reported
here, we used 10 machines that ran 40 PEs with a total of
1000 LPs evenly distributed over the 40 PEs. As worksta-
tions may have external loads and processes (not necessar-
ily related to our simulation runs) while we ran our ex-
periments we averaged the run time over all LPs to get the
“mean time per event” which is then used in the speedup
computation. For each setting, we ran the simulation 10
times and used the mean time in our reported results.

4.1 Basic Caching Experiments: Speedup

We evaluated speedup by running the same program with a
certain setting for both cache-on and cache-off options.
That is, for each run, we controlled for all parameters ex-
cept the cache-on/cache-off parameter. No overhead is
introduced in the cache-off condition.
 Figure 3 shows the speedup of cache-on vs. cache-off
by computation granularity. We defined granularity ac-
cording to the caching overhead and computation cost on
our system. The lowest line represents the speedup for
computations with fine granularity, which had a mean
processing time of 1.689 ms; the middle line represents the
speedup for computations with mid granularity, which had
a mean processing time of 6.498 ms; and the top line repre-
sents the speedup for computations with coarse granularity
and a mean processing time of 16.053 ms.
 From Figure 3 we can see that the speedup is domi-
nated by computation granularity and number of total
events processed. Coarse granularity computation resulted
in the greatest speedup. For the same granularity, the
longer the computation runs, the greater speedup we would
gain by turning cache on, until the cache hit rate ap-
proaches 100%, at which point the speedup curve flattens
out.

4.2 Pre-run Statistics Computation

To evaluate the overhead of caching, we used the Statistics
Manager to collect and compute statistics and the cost of
the cacheable computations on our workstations with a
benchmark application. The benchmark uses a Fibonacci
computation to measure the caching overhead. The first
number of the Fibonacci sequence is 0, the second number
is 1, and each subsequent number is equal to the sum of the
previous two numbers of the sequence itself. The Fibo-

nacci sequence has some qualities that suit measuring the
cache overhead and the computation cost. First, it needs
only 1 parameter so we can easily control the range of this
parameter which, in turn, controls the cache hit rate; sec-
ond, the time needed for the recursive computation of Fi-
bonacci number covers a wide spectrum of time lengths, so
we can generate workload of all kinds of granularities with
the Fibonacci function; and third, it is easy to implement.
Of-course the caching overhead varies depending on the
application but a Fibonacci benchmark provides a reason-
able ballpark estimate.

Speedup by Granularity

0

1

2

3

4

5

6

7

8

9

10

100k 500k 2000k 4000k 8000k

Total Processed Events

S
pe

ed
up

 (c
ac

he
 o

n
vs

. o
ff) coarse

mid
f ine

 Figure 3: Speedup by Computation Granularity.

 We obtained the mean computation time for different
values of the input parameter k by running Fibonacci on a
certain k 100 times. . Table 1 shows a few lines from the
statistics we gathered about running Fibonacci on our sys-
tem:

Table 1: Computation Costs.

k result mean
Cumulative

mean
20 6765 0.16 0.025
30 832040 19.31 1,689
31 1346269 31.31 2.644
35 9227465 214.9 16.05
40 1.02E+08 2379.3 155.7

 In the above table, k is the input parameter for the Fi-
bonacci function. The “result” column contains the result
for the Fibonacci function with input k. The “mean” col-
umn shows the mean cost for computing Fibonacci num-
bers with a certain k. The last column contains the cumula-
tive mean, which is the mean for the computation costs of
Fibonacci sequence with parameters from 1 to k, namely,
the mean of Fibonacci(1) + Fibonacci(2) + … + Fibo-

859

Xiong, Hybinette and Kraemer

nacci(k). By measuring the cache overhead and computa-
tion cost, we conclude that it is worthwhile to cache a func-
tion (or block) on SASSY when the granularity of compu-
tation is at least 1.5 ms (this is for 10 machines and the test
environment described earlier).

4.1.1 Adaptive Caching Experiment: Hard Caching

With the pre-computed statistics presented in the previous
section, we know that any computation with a granularity
greater than 1.5 ms is a potential candidate for our caching
scheme, i.e., turning on cache will potentially enhance per-
formance. As a test, we selected a computation block that
has a computation granularity of 2.64 ms. We designated it
“cacheable” and turned on the caching flag for this compu-
tation block.
 Figure 4 shows the speedup of cache-on over cache-
off for this computation block.

Speedup: Hard Caching

1.35

1.4

1.45

1.5

1.55

1.6

1.65

100k 400k 800k 1200k 1600k

Total Processed Events

S
pe

ed
up

 (c
ac

he
 o

n
vs

. o
ff)

Figure 4: Speedup: Hard Caching.

4.1.2 Adaptive Caching Experiments: Soft Caching

Relying on pre-computed statistics is appealing because it
is easy to use and the performance enhancement is guaran-
teed if the computation granularity can be accurately com-
puted beforehand. For simple computations, especially
those driven by random numbers, if we know the distribu-
tion of the random numbers, we can use our Statistics
Manager to obtain computation granularities in advance.
But for computations that involve parameters whose distri-
butions are unknown beforehand, it is hard to compute sta-
tistics for their computation granularities without running
the simulation.
 Our Statistics Manager continuously collects statistics
while the simulation is running –- so it is not necessary to

provide pre-computed statistics. It computes (and re-
computes) statistics on-the-fly and makes decisions as to
whether the cache should be turned on or off for a certain
cacheable computation, according to the statistics and a
threshold (pre-computed or not).
 To test the on-the-fly decision making effectiveness of
the Statistics Manager, we modified the previously-
mentioned computation block to involve one state variable
in its computation. The state variable is “energy” which in-
dicates how much energy the agent possesses, which helps
the agent to decide whether the task is worth taking up. If
“energy” is lower than a predefined threshold, the agent
gives up the task until a later time when its “energy” is re-
gained. We then ran the testing program with cache-off ,
“hard caching” and “soft caching” options. With “soft
caching”, the Statistics Manager starts by gathering infor-
mation about the cost of the computations and frequency of
cache reference. After some time, it accumulates enough
information to approximate the cost for the passed-in pa-
rameters and the state variable. When it sees those parame-
ters and the state variable, it first finds out the approximate
cost and compares the cost with the pre-computed cache
overhead. If the cost is greater than the threshold, it turns
cache on. If the cost is less than the threshold, it turns the
cache off.
 Figure 5 shows the speedup of “hard caching” vs. “soft
caching”. The blue (lower) line represents the speed up
gained over cache-off by “hard caching”, i.e. cache is
turned on at the very beginning of the simulation (and does
not change). The pink (top) line represents “soft caching”,
i.e., the cache is turned off for fine-granularity computa-
tions and on for coarse-granularity computations.

Hard Caching vs. Soft Caching

1.15

1.35

1.55

1.75

1.95

2.15

2.35

100k 400k 800k 1200k 1600k

Total Processed Events

Sp
ee

du
p

(c
ac

he
 o

n
vs

. o
ff)

Soft Caching

Hard Caching

Figure 5: Hard Caching vs. Soft Caching over Cache-off.

“Hard caching” and “soft caching” have their own fa-

vorite cases where one performs better than the other. For
those computation blocks that mainly rely on input pa-
rameters whose distribution can be decided in advance,

860

Xiong, Hybinette and Kraemer

“hard caching” is more advantageous because by the help
of the Statistics Manager we can easily find out its compu-
tation cost. But for computation blocks that involve pa-
rameters whose distribution relies on run-time situation,
“soft caching” would be more advantageous because the
Statistics Manager will “learn” from the changing situa-
tion.

5 CONCLUSIONS AND FUTURE WORK

We designed and implemented computation-block caching,
a new caching scheme to support agent-based simulation
which usually involves complex and length computation in
its typical “sense-think-act” cycles. We experimentally
proved its merits in applicability and performance.
 The proposed caching mechanism handles both side
effects (or dependencies of state variables) and the return
of multiple results. The computation blocks are not limited
to functions (or methods). It does not require recoding ei-
ther on the application level or on the kernel level. We de-
signed and developed a preprocessor that reads the applica-
tion-provided specifications and generates a cacheable
version for each specified computation block. The specifi-
cation for cacheable computation blocks can be modified
any time as needed. The preprocessor is invoked only
when modifications are made to the specifications.
 Further the caching scheme is adaptive in the sense
that cache can be turned on and off for each individual ca-
cheable computation block according to statistics gathered
before hand or on-the-fly, thus applicable to simulations
with variable degree of being reactive and deliberate. We
provided a Statistics Manger to facilitate both hard caching
and soft caching.
 We experimentally proved that caching performance is
dominated by computation granularity while also affected
by many other factors including cache hit rate, all of which
can be manipulated to improve performance.
 We have tested our caching scheme on the JPHold
program. Our future work includes demonstrating applica-
bility of our computation block caching in biological and
game models - such as a 2D lung tumor model and the Tile
world. As a preliminary study of computation block cach-
ing mechanism, we focused on eliminating recoding, ac-
commodating state variables and collecting statistics while
controlled for rollbacks. In our future work, we will study
the impact of computation block caching on rollback and
other simulation kernel dynamics.

REFERENCES

Balch, T. 1998. Behavioral diversity in learning robot-
teams. Ph. D. thesis, College of Computing, Georgia
Institute of Technology.

Balch, T. 2008. Personal Communication, College of
Computing, Georgia Institute of Technology.

Barr, R., J. Zygmunt , R. R. Haas. 2004. JiST: Embedding
Simulation Time into a Virtual Machine. Proceedings
of EuroSim Congress on Modeling and Simulation
September 2004.

Chugh A. and M. Hybinette. 2004. Towards Adaptive
Caching for Parallel and Discrete Event Simulation. In
Proceedings of 2004 Winter Simulation Conference,
eds. R. G. Ingalls, M. D. Rossetti, J. S. Smith, and B.
A. Peters, 336–343. Piscataway, New Jersey: Institute
of Electrical and Electronics Engineers, Inc.

Ferenci, S., R. M. Fujimoto, M. H. Ammar, K. Perumalla
and G.R. Riley. 2002. Updateable Simulation of
Communication Networks. In Proceedings of the
Workshop on Parallel and Distributed Simulation
:107-114.

Fujimoto, R. M. 1990. Performance of Time Warp under
synthetic workloads. Proceedings of the SCS Multi-
conference on Distributed Simulation 22: 23–28.

Gerkey, B., R.T. Vaughan, and A. Howard, 2003. The
Player/Stage project: Tools for multi-robot and dis-
tributed sensor systems. Proceedings of the Interna-
tional Conference on Advanced Robotics, 317–323.
Coimbra, Portugal.

Hart, P. E., Nilsson, N. J.; Raphael, B. 1968. "A Formal
Basis for the Heuristic Determination of Minimum
Cost Paths". IEEE Transactions on Systems Science
and Cybernetics SSC4 (2): 100–107.

Hybinette, M., E. Kraemer, Y. Xiong, G. Matthews and J.
Ahmed. 2006. SASSY: A Design for a Scalable
Agent-based Simulation System Using a Distributed
Discrete Event Infrastructure. In Proceedings of the
2006 Winter Simulation Conference, ed. L. F. Perrone,
B. Lawson, J. Liu, F. P. Wieland 926-933. Piscata-
way, New Jersey: Institute of Electrical and Electron-
ics Engineers, Inc. .

Lees, M. 2002. A history of the Tileworld agent testbed.
Computer Science Technical Report No. NOTTCS-
WP-2002-1. http://www.cs.nott.ac.uk/WP/2002/2002-
1.pdf [accessed March 29, 2008]

Lees, M., B. Logan, T. Oguara, and G. Theodoropoulos
2004. HLA_AGENT: Distributed Simulation of
Agent-Based Systems with HLA.In Proceedings of the
International Conference on Computational Science
(ICCS'04), 907-915.

Liu, Y. and T. Teitelbaum. 1995. Caching Intermediate
Results for Program Improvement. ACM SIGPLAN
Symposium on Partial Evaluation and Semantics-
Based Program Manipulation (La Jolla, CA, June
1995), 190–201.

Logan, B., Theodoropoulos, G. 2001. The Distributed Si-
mulation of Agent-Based Systems. IEEE Proceedings
Journal, Special Issue on Agent-Oriented Software

861

Xiong, Hybinette and Kraemer

Approaches in Distributed Modeling and Simulation,
February 2001.

Pollack, M. E., and M. Ringuette. 1990. Introducing the
Tileworld: Experimentally Evaluating Agent Architec-
tures. Proceedings of the Eighth National Conference
on Artificial Intelligence, AAAI Press, 183-189.

Pugh, W. 1988. An improved replacement strategy for
function caching. Proceedings of the 1988 ACM Con-
ference on Lisp and Functional Programming July
1988: 269–276.

Pugh, W. and T. Teitelbaum. 1989. Incremental computa-
tion via function caching. Conference Record of the
Sixteenth Annual ACM Symposium on Principles of
Programming Languages (Austin, Texas, Jan. 11–13,
1989): 315–328.

Steinman, J. S. and J. W. Wong. 2003. The SPEEDES per-
sistence framework and the standard simulation archi-
tecture. Parallel and Distributed Simulation, 2003
Proceedings. 10-13 (June 2003): 11 – 20.

Stentz, A. 1994. Optimal and efficient path planning for
partially-known environments. In IEEE International
Conference on Robotics and Automation.

Uhrmacher, A. M., P. Tyschler and D. Tyschler. 2000.
Modeling and simulation of mobile agents. Future
Generation Computer Systems 17 (2): 107–118.

Walsh, K. and E. G. Sirer. 2003. Staged simulation for im-
proving scale and performance of wireless network
simulations. In Proceedings of 2003 Winter Simula-
tion Conference, eds. S. E. Chick, P. J. Sanchez, D. M.
Ferrin, D. J. Morrice, 667–675. Piscataway, New Jer-
sey: Institute of Electrical and Electronics Engineers,
Inc.

AUTHOR BIOGRAPHIES

YIN XIONG is a Ph.D. student in Computer Science de-
partment at the University of Georgia. Her research inter-
ests include developing mechanisms to enable efficient and
scalable simulation systems for large scale agent based si-
mulations. She received her M. S. in Computer Science in
2001 from the University of Georgia.

MARIA HYBINETTE is an assistant professor and the
Director of the Distributed Simulation Laboratory at the
University of Georgia in Athens. She received the BS de-
gree in Mathematics and Computer Science from Emory
University in Atlanta and both her MS and PhD degrees in
Computer Science from Georgia Institute of Technology in
Atlanta. After completing her doctorate she was a research
scientist at Georgia Tech. Before joining UGA she was
employed as a simulation & modeling engineer at the
MITRE Corporation. She now directs the Distributed Si-
mulation Laboratory (DSL) at the University of Georgia.
Her research is focused on high performance simulation,
multi-agent-based simulation and experimental systems.

She is also interested in exploring alternate teaching me-
thods, e.g., teaching introductory Computer Science in
different contexts, such as multimedia, personal robots and
computational photography.

EILEEN KRAEMER is a professor in the computer sci-
ence department at the University of Georgia. She now
serves as department head. Prior to joining the faculty at
UGA, she served on the faculty at Washington University
in St. Louis in the Computer Science Department of the
School of Engineering and Applied Science, she is a co-
director of the Distributed Simulation Laboratory and
served as director of the Computer Visualization Labora-
tory. She received her Ph.D. in Computer Science in Sep-
tember of 1995 from the College of Computing at the
Georgia Institute of Technology in Atlanta.

862

