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ABSTRACT 

We present adaptive computation-block caching that sup-
ports improved performance and is suited for agent-based 
simulations.  The approach is illustrated in SASSY (Scal-
able Agents Simulation System).  SASSY leverages a Par-
allel Discrete Event Simulation for performance, but pro-
vides an agent-based API to the developer.  Agent-based 
simulation is suited to computation-block caching because 
relevant calculations completed at each event may be rela-
tively heavyweight and may be repeated.  The potential 
savings of avoiding a computation entirely may offset the 
overhead cost of caching.  The approach is refined through 
the use of statistical methods for choosing which computa-
tion blocks should be cached or not.  If the relevant compu-
tation is trivial, caching is not worth the cost. In other cases 
caching provides a substantial speedup.  Our mechanism 
tracks these costs online and adjusts accordingly. It re-
quires no additional coding but is automatically integrated 
into applications.  We assess the  performance of the ap-
proach in a benchmark-application. 

1 INTRODUCTION 

Caching the results of expensive and redundant computa-
tions or database retrievals improves application scalability 
and execution time.  The idea of providing caching is not 
new but has been around since the 1960s when it was first 
introduced to  improve the performance of the Model 85, 
part of the System/360 IBM product line.  Typical parallel 
and distributed discrete event simulations (PDES) re-
compute events in time stamp order, without exploiting a 
computational result cache even if events may have been 
processed earlier.  It is thought that for most such simula-
tions events are fine grained (light weight) computations 
and these computations do not offset the overhead of cach-
ing enough to provide an improvement in performance. 
However a growing need exists for applications that sup-

port agent-based simulation (ABS), in which events are 
coarser-grained than the events assumed by traditional 
PDES systems. 

PDES events typically require less than a millisecond 
(Steinman and Wong 2003; Das et al. 1994), while ABS 
events typically run for tens of milliseconds or longer. This 
is because ABS involves deliberative agents as well as re-
active agents. Reactive agents simply retrieve pre-set 
behaviors similar to reflexes without maintaining any 
internal state while deliberative agents behave more like 
they are thinking, by searching through a space of 
behaviors, maintaining internal state, and predicting the 
effects of actions. Agent based simulations of robots (e.g., 
TeamBots (Balch 1998) and Player/Stage (Gerkey et al. 
2003)) often assume a time step rate of 33 msec as this cor-
responds to the frequency at which a video camera delivers 
images.  Further, all of the intervening time is typically 
used to process the information and compute a movement 
command.  However, these agent-based simulations do not 
scale well. 

Agents in an ABS normally rely on a sense-think-act 
cycle. Agents sense the environment, consider what to do, 
and then act. Tile World, a test bed to evaluate reasoning 
of agents, requires substantial time to deliberate (Pollack 
and Ringuette 1990).  Tile World  was proposed in 1990 by 
Pollack and Ringuette and consists of a grid of cells on 
which various objects, such as tile workers, tiles, obstacles 
and holes, can exist. The tile workers (agents) can move 
up, down, left or right, and their objective is to pick up and 
move tiles so as to fill holes. Each hole has an associated  
point value that is awarded to the agent upon filling the 
hole. A hole varies in size and point value. The agents 
know how valuable each hole is in advance; their overall 
goal is to get as many points as possible. Tile world simu-
lations are dynamic because the environment changes con-
tinually over time. The objects appear and disappear at 
rates pre-determined by parameters of the simulator.   

(Uhrmacher et al. 2000) implemented Tile World in 
JAMES, a DEVS based simulation system, and found that 
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''thinking time'' required  almost 80% of an agent’s  time 
step, where a time step was close to 1 second.  The sense 
and act components used less than 20% of the total simula-
tion time.  (Lees et al. 2004)  parameterized thinking time 
and  compared thinking and reactive agents (where reactive 
agents require little or no thinking time as they react di-
rectly to their sensor inputs) in a shared and central envi-
ronment in Tile World. They experimented with a modest 
number of agents (up to 64 agents) using a Linux cluster.  
The deliberating agents use an A* planner to generate 
plans of routes to tiles and holes within the tile world. 
Their planner incorporates a 10 ms “deliberation delay” per 
plan.  A* is a classic and frequently used planning algo-
rithm in agent based simulations that finds the least cost 
path between an initial point and a goal. It was proposed by  
(Hart et al. 1968) in the late sixties.  A* provides an opti-
mal solution plan to the path planning problem but it does 
not provide any performance guarantee. A* overhead 
ranges between 10 ms and 1,000 ms on a 2GHz Pentium 
(Balch 2008).  While there are many extensions to A* 
(e.g., D* uses the initial plan as a baseline to plan new 
paths in dynamic environments instead of recreating the 
path from scratch (Stentz 1994)) and alternate planning al-
gorithms, A* remains popular as it is simple to implement 
and provides descent performance. 

The thinking step independent of particular planning 
algorithm, as observed by the agent-based simulation 
community, ranges from a complex step requiring lengthy 
computation (e.g., 1 second (Uhrmacher et al. 2000) or 10 
ms to 1000 ms (Balch 2008)) to a reactive step with negli-
gible ‘thinking time’. Accordingly, the performance of an 
agent-based  simulation can be improved significantly by 
speeding up the lengthy thinking process.  We exploit vari-
able thinking time and use adaptive caching in which we 
cache the input parameters and the results of lengthy think-
ing in order to avoid re-computation – but avoid caching 
computations where the relevant time is trivial, such as 
with reactive agent that do not think, where caching may 
not be worth the cost.  

An agent’s thinking process may involve several input 
parameters and  possibly depend on a large state space, and 
the probability of encountering exactly the same set of pa-
rameters  and state variables can be low. Thus, caching the 
ultimate result of the whole thinking process may not be 
beneficial as the cache hit rate can be minimal.  Here, our 
approach of  block caching enables breaking the thinking 
process into smaller units that may be more amenable to a 
caching mechanism and less (as a whole) dependent on the 
state space.  

Our caching is flexible and transparent to the user --- 
the application developer, as it requires no additional cod-
ing or recoding. By using a software cache pre-processor, 
caching code is integrated and compiled automatically and 
transparently with the ABS applications. Our motivation is 

to make caching transparent to the user while improving 
scalability and performance. 

 
2      RELATED WORK 
 
Caching is used in different applications and is integrated 
at different levels into the architecture including software, 
language systems and hardware.  Function caching or 
memoization is a technique suggested by the programming 
language research community to improve the performance 
of functions by avoiding redundant computations. Here, 
function inputs and corresponding results are cached in an-
ticipation of later reuse (Bellman 1957; Michie 1968; Pugh 
1989). 

Function caching is used for incremental computa-
tions, dynamic programming and in many other situations. 
Incremental computations allow for slight variation in 
function input. It makes use of previous results and adjusts 
it to generate new output. Using function caching to obtain 
efficient incremental evaluation is discussed in (Pugh and 
Teitelbaum 1989). Deriving incremental programs and 
caching intermediate results provides a framework for pro-
gram improvement (Liu and Teitelbaum 1995). Memoiza-
tion is available today as part of the Java programming 
language.  

Walsh and Sirer proposed simulation staging, a form 
of function caching, as a way to improve the performance 
of a sequential discrete event simulation in applications 
with a substantial number of redundant computations 
(Walsh and Sirer 2003). Their approach provides signifi-
cant speedup (up to 40x in a network application), but re-
quires extensive structural revision of code at the user ap-
plication level.   

Contrary to our approach, function caching techniques 
do not consider the cost of consulting the cache and are not 
adaptive.  Observe that if the cost of checking the cache 
exceeds the cost of just doing the computation, caching 
will degrade performance. Function caching also relies on 
an assumption of  no side effects (e.g., by variables in the 
state space) and that the function produces only one output. 

The PDES community have proposed different tech-
niques of reusing computations. In cloning (Hybinette and 
Fujimoto 2001) simulations cloned at decision points share 
the same execution path before the decision point and thus 
only perform those computations once; after the decision 
point simulations can further share computations as long as 
the corresponding computations  across the different simu-
lations are not yet influenced by the decision point. Up-
dateable simulation proposed by (Ferenci and Fujimoto 
2002) updates the results of a prior simulation run, called 
the base-line simulation, rather than re-executing a simula-
tion from scratch.  A drawback of this latter approach is 
that one must manage the entire state-space  of the baseline 
simulation.  Both of these mechanisms are appropriate for 
multiple similar simulation runs.  
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 Another related approach used in optimistic simulators 
to improve the performance of rollbacks, lazy re-
evaluation, caches the original event in anticipation of it 
being re-used after a rollback and thus avoiding re-
computation (West 1988). Lazy evaluation, however, is 
only beneficial for events on the same execution path. 

We recently developed LP caching  (Chugh and Hybi-
nette 2004) for parallel and distributed simulators. LP 
caching is distinct  from the work presented in this paper, 
block caching.  Both approaches are independent of the 
simulation engine (i.e., it supports both conservative and 
optimistic simulation executives). However, in LP caching 
the middleware exploits the PDES paradigm of logical 
processes (LPs) and messages by intercepting communica-
tions between the simulation application and the simulation 
executive (See left of Figure 1). Here the caching middle-
ware is situated between the simulation kernel and the si-
mulation application. When the kernel delivers an event to 
the kernel, the caching software intercepts it. In the case of 
a cache hit, the retrieved resultant state and message or 
messages are passed back to the kernel without the need to 
consult the application code. This scheme, as with our pro-
posed approach,  is also adaptive in the sense that it avoids 
consulting the cache when the computation is negligible. A 
significant between LP caching and block caching is that 
block caching does not rely on a simulation paradigm but 
can be plugged in to a variety of applications and applica-
tion levels (see left of Figure 1 for an example on how it is 
be integrated with a PDES simulation); it is simulation in-
dependent.  Block caching can improve the performance of 
functions or blocks transparently without any need for ap-
plication developer intervention (however a block or chunk 
of code currently requires annotations at the  beginning and 
end of potential block of code with a comment) of both the 
simulation application and simulation executive. Similar to 
(Walsh and Sirer 2003)’s approach (it can split a large 
computation into smaller sub-computations whose inputs 
and result(s) are cached to further improve performance. 

 

 
Figure 1: Caching Approaches: Our earlier approach (left) 
and our proposed approach (right). 

 
Our goal of transparency is inspired by JiST, which  

infuses sequential discrete simulation semantics directly 
into the Java Virtual Machine (JVM) to provide a transpar-
ent user programmer interface (Barr et al. 2004).  In JiST a 
rewriter reprocesses or rewrites simulation application 
class code in order to incorporate embedded simulation 

time operations. The rewriter is a dynamic class loader. It 
intercepts all class load requests and subsequently verifies 
and modifies the requested classes. The program transfor-
mations occur once, at load time, and does not rewrite the 
during execution. Although JiST does not provide caching 
functionality we hope in future work to explore embedding 
our caching middle-ware into the JVM to improve the in-
terface and further transparency.  

We propose computation-block caching, a transparent, 
flexible and adaptive approach to reduce redundant compu-
tations. It is transparent in the sense that no recoding is re-
quired on the part of application programmers. It is flexible 
since it can decompose large computations into smaller and 
potentially re-order to improve performance.  It is adaptive 
in the sense that the caching mechanism is turned on when 
statistics shows that the benefit of caching exceeds compu-
tation by a pre-specified factor.  In the next sections we 
will discuss the approach, implementation and discuss ini-
tial performance results. 

3 APPROACH 

We define computation block to mean a chunk of code that 
may be a Java method or a number of lines of code with or 
without invocations of methods. Computation-block cach-
ing is not as rigid as traditional function caching. It allows 
state variables to be involved in caching and the result it 
returns is not limited to returning a single value. Consider 
the following computation block as an example: 
 

   int a; 
   int b; 
   methodA( a, b, c, d );  
   if( c > d )  // c, d: state variables) 
   doSomething( c ); 
   else 
  doSomethingElse( d ); 

 
 For traditional function caching, this chunk of code is 
not easily cacheable because it violates the basic rules for 
function caching, namely, it is not a function, but involves 
multiple functions and state variables. But the simulation 
application may have every reason to want to cache this 
chunk of code. One way for traditional function caching to 
solve the problem is to cache the functions separately, but 
the amount of recoding will be substantial as each function 
will need some recoding in order to make it cacheable. 
Furthermore the functions may write or read from variables 
that are not passed in as parameters (e.g., variables a and 
b). The state variables that affect the  functions need to be 
denoted and their updated values need to be copied back to 
the state variables. 
 Block caching solves the tedious task of recoding by 
utilizing a preprocessor that automates the process by gen-
erating  a new version of the code, on-the-fly, that includes 
calls to the caching middleware. To designate a computa-
tion function as “cacheable”, the application programmer 
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provides a method-signature specification in a configura-
tion file. The following is a sample specification for a 
cacheable computation function or method called dummy1 
in the original code:  

 
 begin:dummy1 
   packageName: app     
   className: JPhold 
   return: length=double, point=int 
   parameters: int a, double b 
   stateVariables: int sex, int age  
   cachingFlag: on 
 end:dummy1 

 
Here “dummy1” is the name for a cacheable function. 

“JPhold” is the name of the Java class containing the 
function. “app” is the name of the Java package that 
“JPhold” belongs to. The passed-in parameters are an 
“int” and a “double”. There are two state variables in-
volved in the computation: “sex” and “age”. The result 
to be cached is the value of variable “length” whose data 
type is “double” and of variable  “point” whose data 
type is “int”. The caching flag for this function is set to 
be “on” for this particular run. 
 For a computation block that is not a Java method, but 
a chunk of code, we require that the application program-
mer mark the beginning and end of the block in their Java 
class code.  Note that this is not “recoding” as the markers 
are Java comments and they do not change the byte gener-
ated code. Taking the above computation block as an ex-
ample (which is a chunk of code rather than a function), 
the modified class code would look like this:  
 

   //beginComputationBlock dummy2 
   int a; 
   int b; 
   methodA(a, b, c, d);  
   if (c > d)//c,d: state variables) 
   doSomething(c); 
   else 
  doSomethingelse(d); 
   //endComputationBlock dummy2 

 
A simulation application can designate multiple 

computation blocks as “cacheable”.  A cacheable computa-
tion block does not need to be cached all the time. The user 
can specify which computation blocks to be cached for a 
certain simulation run by turning on the caching flags in 
the specification file. The caching flags can be set before 
the simulation begins to run and remain unchanged 
throughout the simulation, which is called “hard-caching”. 
The caching flags can also be set on or off during the simu-
lation run according to statistics computed on-the-fly, 
which is called “soft caching”.   

3.1 The Caching Middleware 

Our implementation includes two modules: a preprocessor 
that reads a configuration file and generates code on the fly 

and the cache middleware that manages caching and de-
termines whether to consult the cache or not. Figure 2 de-
picts the interactions between the caching modules and a 
pre-existing PDES simulation executive and its simulation 
application.  The pre-processor first reads a configuration 
file or stream (a stream if it generates code while the simu-
lation is running) then ‘recompiles’ the effected objects 
(red dashed arrows in the Figure denotes the flow of output 
of code to the effected modules). 

 
Figure 2: Workflow of Preprocessing. 

 
The regenerated code enables the cache middleware to in-
tercept and monitor cacheable function calls (or blocks) in 
both the simulation kernel and the simulation application. 
The cache is consulted  when the overhead of the computa-
tion time exceeds the caching overhead.  
 To provide user control whether functions or blocks 
are cached – a caching flag can set be set an unset on  a per 
block basis. A block’s flag can be changed at any time, be-
fore the application runs or while it is running. The state of 
the flag (on or off) is set in the configuration stream. A 
Statistic Manager (part of the cache middleware) keep 
track of cache and computational overhead to determine 
the threshold when to consult the cache or not.  When the 
Statistic Manager determines it is worthwhile to consult the 
cache and it is a hit it returns the cached results. In the case 
of a cache miss, the cacheable computation block is carried 
out and the result is cached for later reuse. 
 We implemented the cache middleware to  run both in  
distributed mode across several machines or on a single 
machine. Both version can build multiple caches on a sin-
gle machine. 
 The cache is implemented as a Java HashTable and 
indexed by the combination of package name, class name, 
computation name, passed-in parameters and the names of 
state variables involved in the computation. The result of 
the computation is stored with the index as a key-value pair 
in the hash table.  Our caching middleware can be used 
with both conservative and optimistic simulation kernels 
(or any application). It can also be used with both ABS si-
mulation and non-ABS simulations. No changes to the un-
derlying kernel are required. No changes to the simulation 
application are required.   
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3.2 The Preprocessor 
 
Existing caching schemes are not suitable for our purposes 
because they usually require substantial recoding in order 
to use the caching facilities. By “recoding” we mean ma-
nually modifying the code of the cacheable functions, such 
as adding, deleting or rewriting lines of code. Therefore, 
such caching schemes involve “hard coding” which can be 
error-prone and time consuming. For cacheable functions, 
the recoding is usually on a function-by-function basis, i.e., 
for each cacheable function, the application programmer 
needs to do some recoding in order to make that function 
cacheable. For example, in (Chugh 2004), a cacheable 
function needs at least 4 lines of recoding.  For LP caching, 
however, a 4-line recoding may not be too much as it cach-
es one cacheable function per LP. But for computation-
block caching, LP events be decomposed and into multiple 
computation blocks to be “cacheable” (note that decom-
posing a function may also relieve chunks of code (or func-
tions) to be dependent on less state variables and each oth-
er if reordering is advantageous). If each computation 
block needs 4 lines of recoding to make it cacheable, the 
amount of recoding necessary may make the task intimi-
dating and time consuming. 
 The preprocessor in block caching completely relieves 
the application programmer of recoding in order to make a 
computation block cacheable. As Figure 2 shows, the Pre-
processor reads the configuration file and involved applica-
tion Java files to generate a new version of the application 
Java files, inserting caching-specific code that checks 
whether the caching flag is on and accesses the cache if ne-
cessary. Also Cache  middleware is updated accordingly. 
There is no need to invoke the Preprocessor for each simu-
lation run. It is invoked only when the specification for the 
cacheable computations is modified.  
 The time for preprocessing is decided by a few pa-
rameters: the number of cacheable computation blocks, the 
number of class files, and the length of class files. The 
Preprocessor scans the configuration file to find which ap-
plication Java files are involved in caching, then reads the 
files one by one and inserts caching-specific code at the 
right places.  
 
3.3 The Statistics Manager 
 
A feature of our method is that it allows both “hard cach-
ing” and “soft caching” options (recall that soft caching 
enables adaptive caching).  The Statistics Managers man-
ages soft and hard caching.  The Statistics Manager is 
composed of two sub-managers. One sub-manager  com-
putes the average caching overhead and the cost for each 
cacheable computation block on the target computer sys-
tem. A default program is provided for measuring the 
cache overhead on the target system. An interactive user 

interface is provided so the user can specify the range and 
distribution of each parameter and state variable for their 
cacheable computation blocks. With this information and 
the specification of the cacheable computation blocks, the 
Statistics Manager creates a stub program for each of the 
computation block, generates parameters and state vari-
ables according to the user-specified ranges and distribu-
tions, executes each computation block 100 times and re-
ports the average time for each computation block as the 
cost of that computation block. The users compare the 
computation cost with the caching overhead to decide 
whether the “caching” flag should be turned on, and if on, 
what threshold value should be selected. The other sub-
manager gathers information about the parameters, state 
variables and length of the computation as the simulation 
runs. It then decides whether the caching flag should be 
turned on or off for a certain cacheable computation. If the 
benefit of caching surpasses a certain threshold specified 
by the user beforehand, or generated on-the-fly, caching 
will be turned on, otherwise, it will be turned off. 

4 PERFORMANCE 

Caching efficiency depends on at least three factors: cost 
of a cacheable computation, number of such computations, 
and the caching overhead. In general,  we expect better 
performance from caching as the cost of computation in-
creases and as the cost of cache consultation decreases.  
There are a few other issues to consider as well. At initiali-
zation time, the cache is empty – and therefore not at all 
effective. However, as the cache “warms” up, the perform-
ance improves. Accordingly, longer simulations are more 
likely to benefit from caching. The size of the cache is also 
important because for a given cache size, the number of 
key-value pairs stored is inversely proportional to the size 
of the cache. When the number of key-value pairs exceeds 
the cache size, either some of them will be cleared from the 
cache, or the cache size has to be increased, which means 
allocation of new memory space and a large amount of co-
pying. 
 In our experiment, quantitative results were obtained 
using JPHold, a Java version of the PHold application (Fu-
jimoto, 2001). JPHold provides a synthetic workload using 
a fixed message population. Upon receiving a message, the 
LP schedules a new event whose destination LP is drawn 
from a uniform distribution ranging from 0 to one less than 
the number of LPs, which means that each LP is equally 
likely to be the destination of a message.  
 We tested our caching scheme on SASSY, an optimis-
tic PDES simulation executive implemented in Java (Hy-
binette et al. 2006) running of UNIX Workstations (pri-
marily SUN Ultra workstations) connected via 
Ethernet/Fast Ethernet to SUN Microsystems. Three types 
of experiments were performed: 1) Experiments as proof of 
concept of the basic caching technique; 2) Experiments to 
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evaluate the role that pre-run statistics play in aiding deci-
sion making; and 3) Experiments to study the benefit of 
adaptive caching using statistics computed on-the fly.  
 Each of our experimental runs is defined by a set of 
parameters: the number of PEs (simulation schedulers), the 
number of Logical Processes (LPs, an LP is logically a se-
quential simulation ‘process’ scheduled by a PE), the mes-
sage population, total events to be processed, the initial 
cache size, the load factor of the hash table, the computa-
tion granularity and more. For our experiments reported 
here, we used 10 machines that ran 40 PEs with a total of 
1000 LPs evenly distributed over the 40 PEs. As worksta-
tions may have external loads and processes (not necessar-
ily related to our simulation runs) while we ran our ex-
periments we averaged the run time over all LPs to get the 
“mean time per event” which is then used in the speedup 
computation. For each setting, we ran the simulation 10 
times and used the mean time in our reported results. 

4.1 Basic Caching Experiments: Speedup  

We evaluated speedup by running the same program with a 
certain setting for both cache-on and cache-off options.  
That is, for each run, we controlled for all parameters ex-
cept the cache-on/cache-off  parameter.   No overhead is 
introduced in the cache-off condition. 
 Figure 3 shows the speedup of cache-on vs. cache-off 
by computation granularity. We defined granularity ac-
cording to the caching overhead and computation cost on 
our system. The lowest line represents the speedup for 
computations with fine granularity, which had a mean 
processing time of 1.689 ms; the middle line represents the 
speedup for computations with mid granularity, which had 
a mean processing time of 6.498 ms; and the top line repre-
sents the speedup for computations with coarse granularity 
and a mean processing time of 16.053 ms.  
 From Figure 3 we can see that the speedup is domi-
nated by computation granularity and number of total 
events processed. Coarse granularity computation resulted 
in the greatest speedup. For the same granularity, the 
longer the computation runs, the greater speedup we would 
gain by turning cache on,  until the cache hit rate ap-
proaches 100%, at which point the speedup curve flattens 
out. 

 
4.2 Pre-run Statistics Computation 
 
To evaluate the overhead of caching, we used the Statistics 
Manager to collect and compute statistics and the cost of 
the cacheable computations on our workstations with a 
benchmark application. The benchmark uses a Fibonacci 
computation to measure the caching overhead. The first 
number of the Fibonacci sequence is 0, the second number 
is 1, and each subsequent number is equal to the sum of the 
previous two numbers of the sequence itself. The Fibo-

nacci sequence has some qualities that suit measuring the 
cache overhead and the computation cost. First,  it needs 
only 1 parameter so we can easily control the range of this 
parameter which, in turn, controls the cache hit rate; sec-
ond, the time needed for the recursive computation of Fi-
bonacci number covers a wide spectrum of time lengths, so 
we can generate workload of all kinds of granularities with 
the Fibonacci function; and third, it is easy to implement. 
Of-course the caching overhead varies depending on the 
application but a Fibonacci benchmark provides a reason-
able ballpark estimate. 
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           Figure 3: Speedup by Computation Granularity. 
 
 We obtained the mean computation time for different 
values of the input parameter k by running Fibonacci on a 
certain k 100 times. . Table 1 shows a few lines from the 
statistics we gathered about running Fibonacci on our sys-
tem: 

Table 1: Computation Costs. 
 

k result mean 
Cumulative 

mean 
20 6765 0.16 0.025 
30 832040 19.31 1,689 
31 1346269 31.31 2.644 
35 9227465 214.9 16.05 
40 1.02E+08 2379.3 155.7 

    
 
 In the above table, k is the input parameter for the Fi-
bonacci function. The “result” column contains the result 
for the Fibonacci function with input  k. The “mean” col-
umn shows the mean cost for computing Fibonacci num-
bers with a certain k. The last column contains the cumula-
tive mean, which is the mean for the computation costs of 
Fibonacci sequence with parameters from 1 to k, namely, 
the mean of Fibonacci(1) + Fibonacci(2) + … + Fibo-
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nacci(k).  By measuring the cache overhead and computa-
tion cost, we conclude that it is worthwhile to cache a func-
tion (or block) on SASSY when the granularity of compu-
tation is at least 1.5 ms (this is for 10 machines and the test 
environment described earlier). 

4.1.1 Adaptive Caching Experiment: Hard Caching 

With the pre-computed statistics presented in the previous 
section, we know that any computation with a granularity 
greater than 1.5 ms is a potential candidate for our caching 
scheme, i.e., turning on cache will potentially enhance per-
formance. As a test, we selected a computation block that 
has a computation granularity of 2.64 ms. We designated it 
“cacheable” and turned on the caching flag for this compu-
tation block.  
 Figure 4 shows the speedup of cache-on over cache-
off for this computation block.  
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Figure 4: Speedup: Hard Caching. 
 

4.1.2 Adaptive Caching Experiments: Soft Caching 

Relying on pre-computed statistics is appealing because it 
is easy to use and the performance enhancement is guaran-
teed if the computation granularity can be accurately com-
puted beforehand. For simple computations, especially 
those driven by random numbers, if we know the distribu-
tion of the random numbers, we can use our Statistics 
Manager to obtain computation granularities in advance. 
But for computations that involve parameters whose distri-
butions are unknown beforehand, it is hard to compute sta-
tistics for their computation granularities without running 
the simulation.  
 Our Statistics Manager continuously collects statistics 
while the simulation is running –- so it is not necessary to 

provide pre-computed statistics. It computes (and re-
computes) statistics on-the-fly and makes decisions as to 
whether the cache should be turned on or off for a certain 
cacheable computation, according to the statistics and a 
threshold (pre-computed or not). 
 To test the on-the-fly decision making effectiveness of 
the Statistics Manager, we modified the previously-
mentioned computation block to involve one state variable 
in its computation. The state variable is “energy” which in-
dicates how much energy the agent possesses, which helps 
the agent to decide whether the task is worth taking up. If 
“energy” is lower than a predefined threshold, the agent 
gives up the task until a later time when its “energy” is re-
gained. We then ran the testing program with cache-off , 
“hard caching” and “soft caching” options. With “soft 
caching”, the Statistics Manager starts by gathering infor-
mation about the cost of the computations and frequency of 
cache reference. After some time, it accumulates enough 
information to approximate the cost for the passed-in pa-
rameters and the state variable. When it sees those parame-
ters and the state variable, it first finds out the approximate 
cost and compares the cost with the pre-computed cache 
overhead. If the cost is greater than the threshold, it turns 
cache on. If the cost is less than the threshold, it turns the 
cache off. 
 Figure 5 shows the speedup of “hard caching” vs. “soft 
caching”. The blue (lower)  line  represents the speed up 
gained over cache-off by “hard caching”, i.e. cache is 
turned on at the very beginning of the simulation (and does 
not change). The pink (top) line represents “soft caching”, 
i.e., the cache is turned off for fine-granularity computa-
tions and on for coarse-granularity computations. 
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Figure 5: Hard Caching vs. Soft Caching  over Cache-off. 
 
“Hard caching” and “soft caching” have their own fa-

vorite cases where one performs better than the other. For 
those computation blocks that mainly rely on input pa-
rameters whose distribution can be decided in advance, 
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“hard caching” is more advantageous because  by the help 
of the Statistics Manager we can easily find out its compu-
tation cost. But for computation blocks that involve pa-
rameters whose distribution relies on run-time situation, 
“soft caching” would be more advantageous because the 
Statistics Manager will “learn” from the changing situa-
tion.   

 

5 CONCLUSIONS AND FUTURE WORK 

We designed and implemented computation-block caching, 
a new caching scheme to support agent-based simulation 
which usually involves complex and length computation in 
its typical “sense-think-act” cycles. We experimentally 
proved its merits in applicability and performance.  
 The proposed caching mechanism handles both side 
effects (or dependencies of state variables) and the return 
of multiple results. The computation blocks are not limited 
to functions (or methods). It does not require recoding ei-
ther on the application level or on the kernel level. We de-
signed and developed a preprocessor that reads the applica-
tion-provided specifications and generates a cacheable 
version for each specified computation block. The specifi-
cation for cacheable computation blocks can be modified 
any time as needed. The preprocessor is invoked only 
when modifications are made to the specifications. 
 Further the caching scheme is adaptive in the sense 
that cache can be turned on and off for each individual ca-
cheable computation block according to statistics gathered 
before hand or on-the-fly, thus applicable to   simulations 
with variable degree of being reactive and deliberate. We 
provided a Statistics Manger to facilitate both hard caching 
and soft caching.  
 We experimentally proved that caching performance is 
dominated by computation granularity while also affected 
by many other factors including cache hit rate, all of which 
can be manipulated to improve performance.  
 We have tested our caching scheme on the JPHold 
program. Our future work includes demonstrating applica-
bility of our computation block caching in biological and 
game models - such as a 2D lung tumor model and the Tile 
world. As a preliminary study of computation block cach-
ing mechanism, we focused on eliminating recoding, ac-
commodating state variables and collecting statistics while 
controlled for rollbacks. In our future work, we will study 
the impact of computation block caching on rollback and 
other simulation kernel dynamics.  
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