
A SIMULATION FRAMEWORK FOR SERVICE-ORIENTED COMPUTING SYSTEMS

ABSTRACT

An SOA-compliant DEVS (SOAD) simulation framework
is proposed for modeling service-oriented computing sys-
tems. A set of novel abstract component models that con-
form to the SOA principles and are grounded in the DEVS
formalism is developed. The approach supports construc-
tion of hierarchical composition of service models with
feedback relationships. A SOAD Simulator (SOADS) is
designed and implemented. An exemplar model of a basic
service-oriented computing system is described. A repre-
sentative experiment capturing throughput and timeliness
QoS attributes for the exemplar model is devised, simu-
lated, and described. The paper concludes with the con-
cept of community-based development of the SOAD
framework and tools.

1 INTRODUCTION

Many of today’s computer-based systems are challenging
to build since they are distributed and operating in chang-
ing environments. A central requirement for a system is to
be flexible in that its parts are loosely coupled while the
system as a whole can satisfy quality attributes known as
run-time (e.g., performance and availability) and non-run-
time (e.g., reusability and integrability) observable. To
build such systems, service-oriented computing paradigm
based on Service Oriented Architecture (SOA) framework
has been proposed (Y. Chen and Tsai 2008; Erl 2006).

To achieve the goals set forth for service-oriented
computing, a growing number of researchers are formulat-
ing detailed concepts, methods, and techniques that can be
used to build service-based systems. The most common
approach in defining a system’s structure and behavior is
to develop models. The choice of a model is driven by the
role it can play in the system development and operation
lifecycle. For example, a model can be at the architectural
level or be complete and sufficiently detailed to be auto-
matically implemented. Models can be developed to define

technical requirements and architectural design of a ser-
vice-based system. Such models may, for example, repre-
sent dynamics of the services and their interactions in order
to study the system’s capability to support the quality of
service attributes such as performance, timeliness, accu-
racy, and security.

To design service-based software systems capable of
satisfying multiple Quality of Service (QoS) attributes, si-
mulation-based modeling is desirable. For instance, in the
context of our research (Yau et al. 2008), simulation plays
a central role in enabling tradeoff study among time-based
quality of service attributes. The basic need is to have an
Adaptive SBS (ASBS) where its QoS can be observed by a
Monitoring system and controlled by an Adaptation sys-
tem. The users can select services and list their expected
QoS under the presence of some uncontrollable, but pre-
dictable environmental fluctuations. To develop the ASBS
framework – design, implement, and test the Monitoring
and Adaptation systems – we can develop a set of real
composite and simulated services. Together, real and simu-
lated services enable analysis and design capabilities that
are impractical to support by either real or simulated ser-
vices alone. With simulated services, the Monitoring and
Adaptation systems can themselves be real services and
thus support carrying out varying kinds of experimenta-
tions.

In order to develop and use simulated services, it is
important to have a modeling and simulation framework
that is theoretically sound, has one or more robust imple-
mentations, and is simple to use. One such framework is
the Discrete Event System Specification (DEVS) formal-
ism (Zeigler, Praehofer, and Kim 2000) with implementa-
tion such as DEVSJAVA (ACIMS 2001). This modeling
formalism is positioned to specify and simulate SOA-
compliant simulation models.

Hessam Sarjoughian

Sungung Kim
Muthukumar Ramaswamy

 Stephen Yau

Arizona Center for Integrative Modeling and Simulation
School of Computing and Informatics

Arizona State University, Tempe, Arizona, 85271-8809, USA

845 978-1-4244-2708-6/08/$25.00 ©2008 IEEE

Proceedings of the 2008 Winter Simulation Conference
S. J. Mason, R. R. Hill, L. Mönch, O. Rose, T. Jefferson, J. W. Fowler eds.

Sarjoughian, Kim, Ramaswamy, and Yau

 2

2 MOTIVATION

There exist basic differences between SOA principles and
the underlying concepts of general-purpose modeling and
simulation frameworks. They do not account for the SOA
concepts and principles such as service autonomy and
loose coupling. Based on this observation and the antici-
pated growth in simulating service-oriented software sys-
tems, we propose developing an SOA-compliant simula-
tion framework. A suitable modeling framework is DEVS.
A set of generic model abstractions for services and their
relationships are needed. The simulation of the models
should capture the inherent properties of SOA-compliant
software systems. The simulation framework must have a
set of SOA elements (i.e., publisher, subscriber, broker
services, and messages) and relationships (e.g., subscriber
can discover published services only via a service broker)
that comply with the SOA principles. The resulting SOA-
compliant simulation framework can support creating dif-
ferent user-specific simulation models that are built on the
top of verifiably correct SOA model components.

Before we proceed further, we note that simulation of
an SOA-based software system should account for both
software and hardware aspects. The software aspect refers
to the core SOA principles. The concept of an SOA-
compliant DEVS Simulator is based on partitioning the
core SOA principles into two parts called simple and com-
plex. The term simple is used to refer to service-based sys-
tems that cannot have services added/removed at run-time;
there is limited support for loose coupling. The term com-
plex is used to refer to service-based systems that can have
their structures changed at run-time. Therefore, separation
of the SOA principles into simple and complex parts helps
build the proposed SOAD framework in two stages. The
simple part focuses on the autonomy, abstraction, service
contract, reusability, composability, and statelessness prin-
ciples. The complex part focuses on the loose coupling and
discoverability principles. The hardware aspect refers to
physical and non-service components that are responsible
for the execution of services and their interactions. Model-
ing of hardware – i.e., a collection of computing nodes
(processors and routers/switches) and network links – is
essential for capturing the dynamics of the services. This is
because hardware components responsible for the execu-
tion of the services and communication of messages di-
rectly impact QoS attributes.

The above considerations lead us to the development
of the SOAD framework and realization where (1) Models
represent the static software aspect of the SOA capabilities,
(2) Simple models of the hardware accounting for commu-
nication delay and bounded data transmission volume are
used, (3) Models defined in (1) are extended to represent
the dynamic aspect of the SOA capabilities, and (4) Mod-
els defined in (2) are extended to represent details of com-
puting nodes including routing devices, communication
links, and protocols are used. In this paper, a basic SOAD

Simulator is developed to support Items 1 and 2. The ad-
vanced concepts and capabilities contained in Items 3 and
4 can be introduced into SOADS to simulate systems hav-
ing dynamic structures and complex behaviors arising from
mixed software and hardware interactions.

3 BACKGROUND

The DEVS and SOA share important concepts even though
their uses are intrinsically different – one is intended to
build service-oriented software systems and the other to
simulate component-based systems. Their commonality
lies in their view of (i) software or simulated systems to be
either flat or hierarchical, (ii) feed forward and feedback
interactions, and (iii) sequential and parallel execution.
However, these system-level concepts have different ab-
stractions. The SOA framework’s abstractions are rela-
tively at a higher level compared with those of the DEVS
framework. The basic concepts, principles, and artifacts of
these frameworks are described next. Some of their main
similarities and differences are also exposed.

3.1 SOA Framework

The desire for enterprise systems that have flexible archi-
tectures, detailed designs, implementation agnostic, and
operate efficiently continues to grow. A major effort to-
ward satisfying this need is to use Service Oriented Archi-
tecture. Moreover, there is new research and development
in order to achieve more demanding capabilities (e.g.,
workflow service composition with run-time adaptation to
changing QoS attributes) that have been proposed for ser-
vice-based systems, especially in the context of system of
systems.

A basic concept is for SOA to enable specifying the
creation of services that can be automatically composed to
deliver desired system dynamics while satisfying multiple
QoS attributes. The principal artifacts of SOA are pub-
lisher, subscriber, and broker services (Erl 2006). The
communication protocols for these general-purpose ser-
vices are supported with WSDL, UDDI, and SOAP
(Møller and Schwartzbach 2006). The publisher and sub-
scriber services are also sometimes referred to as provider
and requester, respectively. A publisher registers its service
descriptions (WSDL) with the broker service and a sub-
scriber can find services it is searching for if they are regis-
tered with a broker. The broker uses its service registry us-
ing UDDI to identify matched service descriptions. Then, a
subscriber can invoke a publisher and obtain the requested
service. The message interactions among the services are
supported by the SOAP mechanism.

A fundamental SOA concept is to enable flexible
composition of independent services in a simple way. The
simple concept is crucial since it separates details of how a
service is created and how it may be used. This kind of
modularity is defined based on the concept of brokers and

846

Sarjoughian, Kim, Ramaswamy, and Yau

 3

its realization as the broker service. The SOA conceptual
framework lends itself to the separation of concerns rang-
ing from application domains (e.g., business logic) IT in-
frastructure to the choices of programming languages and
operating systems. The interoperability at the level of ser-
vices means loose coupling of reusable services.

The high-level description of the SOA principals does
not account for the operational dynamics of SOA, espe-
cially with respect to time-based operations. Therefore,
understanding the dynamics of a service-based system us-
ing simulation is important. Simulation can also support
specific kinds of service-based software systems that are
targeted for business processes with specialized domain
knowledge. For example, given the steps in creating a ser-
vice (e.g., defining service capabilities, selecting services,
specifying service flows, and deploying services) they may
be supported with component-based, scalable, and efficient
simulation. A simulation framework capable of modeling
SOA-compliant software systems offers a basis that can be
extended to conceptualize and evaluate interesting aspects
of higher-levels of services (e.g., automated service com-
position) for different application domains.

3.2 DEVS Framework

Simulation is considered useful and increasingly indispen-
sible across all phases of system development lifecycle
(i.e., conceptualization, design, implementation, deploy-
ment, and operation). This observation applies to service-
based systems since component-based simulation and ser-
vice-based systems are based on fundamental concepts of
components and their interactions. A component-based
modeling framework such as (DEVS) is well positioned to
create model abstractions for service-based systems. The
SOA principles including autonomy, composability, and
reusability of services with message-based interactions fit
well the DEVS modeling formalism. This is because the
dynamics of a typical SBS system can be characterized in
terms of time-based modular and hierarchical reactive si-
mulation model components. These simulation model
components can process input events (messages) and gen-
erate output events (messages). The DEVS formalism pro-
vides abstract formulation for describing concurrent proc-
essing and the event-driven nature of arbitrary system
configurations and executions. Parallel atomic/coupled
DEVS models can be executed in distributed settings (in-
cluding grid services), and therefore is a suitable modeling
framework to characterize complex, large-scale service-
based systems.

An atomic model (formalized as 〈X, S, Y, δext, δint,
δconf, λ, ta〉) characterizes the structure and behavior of in-
dividual components in terms of inputs (X), outputs (Y),
states (S), and functions. The external (δext), internal (δint),
confluent (δconf), output (λ), and time advance functions
(ta) define a component’s behavior over time. A coupled
model (formalized as 〈X, Y, D, {Md}, EIC, IC, EOC〉) is

defined in terms of its constituent atomic and/or coupled
models. A coupled model can be constructed by compos-
ing models into hierarchical tree structures, and is defined
in terms of its constituent (atomic and/or coupled) models.
The input and output sets X and Y have the same specifica-
tion as those of the atomic model. D is a set of component
names and Md is a set of atomic and/or coupled compo-
nents, and EIC, EOC, and IC are external input, external
output, and internal couplings, respectively. The behavioral
semantics of the DEVS models are defined in atomic and
coupled abstract simulation protocols. The execution or-
dering of the atomic model functions is determined by the
atomic simulator. Similarly, the transmission of the mes-
sages among the atomic and coupled models is determined
by the coupled simulator. One of the object-oriented reali-
zations of the DEVS formalism and its associated simula-
tion protocol is DEVSJAVA.

3.2.1 Dynamic Structure and SW/HW Models

The basic atomic and coupled models are not sufficient for
modeling the kinds of SOA complexities that need to be
simulated. For example, to model the addition or removal
of services at run-time, it is important for a DEVS simula-
tion model to change its structure dynamically, which can
be by adding or removing atomic and coupled models.
This concept is known as variable or dynamic structure
DEVS (Zeigler et al. 2000). One realization of this concept
is called Dynamic Structure DEVS, which at its core has
an Executive model component with rules for adding and
deleting model components during simulation (Barros
1997). Another important contributor to the complexity of
SOA is the dependency on hardware. While atomic and
coupled models can represent the software aspect of a ser-
vice, it is also important to model the hardware aspect of
the resources (e.g., processors, switches, and network
links) on which the services execute and interact. To model
both software and hardware aspects and the mapping of the
former to the latter, the DEVS/DOC, a software/hardware
co-design approach has been developed (Hild, Sarjoughian,
and Zeigler 2002). In this environment, disparate software
components executing on distributed hardware components
can be modeled and simulated. This approach supports
quantum level abstraction of software and hardware com-
ponents.

4 SOAD FRAMEWORK CONCEPT

Earlier, we described the details of the SOA and DEVS
frameworks. An important consideration in choosing a
modeling and simulation framework is its direct support
for message-based communication among independent
model components. This is important since the concept of
SOA is grounded in autonomous services that can only in-
fluence each other via messages. The combination of pub-
lisher and subscriber interaction via messages matches well

847

Sarjoughian, Kim, Ramaswamy, and Yau

 4

the strict modularity of the DEVS framework. Further-
more, as noted above, the capability for parallel simulation
of services with arbitrary combined feed forward and feed-
back message flows has been a key consideration in the se-
lection of the DEVS framework in this research.

The basic idea for the SOAD framework is to enable
modeling and simulating primitive and composite services
as if they were real as in actual services. The concept of
simulated services is distinct from that of simulated ob-
jects. The DEVS and object-orientation concepts, com-
pared to DEVS and SOA, are closely related. The SOA is
defined in terms of principles that are intended to guide ar-
chitecture, design, implementation, testing, and operation
of service-based systems. These principles may be used to
develop details of SOA which can result in different reali-
zations both for the SOA itself as well as user applications.
The DEVS formalism, on the other hand, is a mathematical
specification intended for developing time-based models
that can be simulated. We also note that while atomic and
coupled models require abstract atomic and coupled simu-
lators in order to be executed, the services (publisher, sub-
scriber, and broker) contain their own execution logics.

Given the disparities between DEVS and SOA frame-
works, our aim is to develop a framework for SOAD. Two
basic approaches can be taken. One is to infuse the concept
and capabilities of DEVS concepts and capabilities into the
SOA framework. The other is to extend the DEVS frame-
work such that it can account for the SOA concept and ca-
pabilities. In this work, we choose the latter approach.

Before we consider the SOA and DEVS frameworks
together, it is important to recall that one is intended to
build real services and the other to build simulated ser-
vices. In this section, DEVS framework refers to DEVS
with Dynamic Structure capability. Also, it is useful to ap-
preciate that while a primitive (subscriber or publisher) ser-
vice and atomic model can be considered as components
(or objects), their underlying concepts are inherently dis-
tinct. Furthermore, the concept of a composite service (ei-
ther as publisher or subscriber) differs from that of a cou-
pled model. The following reveals similarities and
differences between the SOA and DEVS frameworks.

Broker
Service

Publisher
Service

Subscriber
Service

1

3

4

5

2

publish, request,
response messages

data service messages

Broker
Service

Publisher
Service

Subscriber
Service

1

3

4

5

2

publish, request,
response messages

data service messages

Figure 1: Basic SOA services and messaging patterns

• The concept of autonomous services corresponds to
the concept of modularity of atomic and coupled
models. DEVS models are defined in terms of generic
transition (δext, δint, δconf), output (λ) and time ad-
vance (ta) functions.

• The formal contract corresponds to the input/output
ports and messages (X and Y), and their couplings
(EIC, EOC, IC) subject to the strict coupled model
specification. The couplings in DEVS are fixed, al-
though the use of coupling in a simulation can be de-
cided during simulation. The concept of coupling
components via ports is absent in SOA.

• The concept of service composability is similar to
coupled model hierarchy. SOA composability is not
constrained to have strict hierarchy. This is because
DEVS hierarchy requires strict tree structure relation-
ships among (atomic and coupled) model compo-
nents. In SOA, composability is based on the broker
service which is not defined in DEVS. In DEVS, in-
put and output messages are sent and received via di-
rect couplings – i.e., the coupled model contains the
coupling relations between model components.

• The concept of abstract logic in DEVS has a theoreti-
cal basis (abstract structural and behavior syntax with
operational semantics) whereas SOA does not. For
example, δext has template syntax that has to be
completed given a component’s specific functions. In
contrast, a service has an interface template, but
without functionality.

• The basic concept of reusability in SOA is more pow-
erful than that of DEVS. This is because the broker
concept with support for publishing services and
identifying services are not defined in DEVS.

• The concept of stateless service promotes loose cou-
pling of composite services. Atomic/coupled model
components require state information which includes
time t (t ∈ S) in order to allow input and output event
synchronization.

The concepts of loosely coupled and discoverable ser-

vices are similar to dynamic structure DEVS where the
structure of a model can change during simulation execu-
tion – i.e., capability is provided for adding and removing
atomic and coupled models. The concept of executive in a
dynamic structure resembles that of a broker service, but it
is not the same as described above. As noted earlier, the
fundamental difference between DEVS and SOA is the
‘broker’ concept. The message-based interactions between
the publisher and subscriber services can only be estab-
lished by the broker service. The concept of broker is not
defined in the DEVS formalism and thus the DEVS atomic
or coupled components are not service-enabled – i.e., the
generic syntax and semantics of the atomic and coupled
components are insufficient for describing service-based

848

Sarjoughian, Kim, Ramaswamy, and Yau

 5

software systems. Furthermore, the SOA is not the same
as dynamic structure DEVS even though the structure of a
coupled model can be modified during simulation.

5 SOAD SIMULATOR FRAMEWORK

In the previous section, we described that there are basic
similarities and differences between the SOA elements and
those of DEVS. SOA framework has a higher level of ab-
straction as compared with DEVS framework. The basic
SOA model elements can be divided into two groups. First,
services, service description, and messages represent the
‘static’ part of SOA. Second, communication agreement,
messaging framework, and service registry and discovery
represent the ‘dynamic’ part of the SOA. To create the
SOAD Simulator (i.e., a generic SOA-complaint simula-
tor), counterparts of the basic elements of SOA are needed.
As shown in Table 1, we have defined a set of DEVS ele-
ments that represent the static and dynamic aspects of the
SOA. Three DEVS atomic models are proposed. Three of
these have a one-to-one correspondence with the SOA ser-
vices. The generic DEVSJAVA entity class is extended to
represent SOA service description. Entity is also extended
to represent SOA messages.

The publisher, subscriber, and broker services are the
basic elements for both service-oriented software systems.
The services can be synthesized to form primitive and
composite service composition. Next, these two service
compositions are described. A simple model of a network
is used to complement the software aspect of SOA with the
hardware aspect. It is defined as a link with finite capacity,
transportation delay, and FIFO message queuing. This
component is not a service – it models the medium through
which services send and receive messages.

5.1 Primitive SOAD Models

The generic primitive service composition using DEVS
atomic models (publisher, subscriber, and broker) is shown
in Figure 2. Messages produced by a service and consumed
by another are shown as envelops. As noted above, a mes-
sage may contain a service description or other content
consistent with a chosen messaging framework. For exam-
ple, the message from the Broker to the Subscriber is a ser-
vice description which contains an abstract definition (an
interface for the operation names and their input and output
messages) and a concrete definition (consisting of the bind-
ing to physical transport protocol, address or endpoint, and
service). Another message could be from the Publisher to
the Subscriber where the result of the requested service (re-
turned message from the Publisher). The implementation
of these messages can be based on SOAP. In the basic
SOA framework, the internal operations of atomic services
and their interactions are deferred to specific standards and
technologies (e.g., .NET (Lenz & Moeller 2003)).

Table 1: DEVS and SOA elements.

SOA Model Elements SOAD Model Elements

services (publisher, sub-
scriber, broker)

atomic models (publisher, sub-
scriber, broker)

service description entity (service-information)
messages entity (service-lookup & ser-

vice-message)
messaging framework ports & couplings
service registry & discovery executive model
service composition coupled models (primitive and

composite)

Publisher/Subscriber with Broker Coupled Model

Identify-
publisher

Broker

identify-
publisher

found-
publisher

Publisher

request-
services

publish-
service

publish-
service

Subscriber

Found-
publisher

publish-
service

identify-
publisher

request-
service

publish-
service

request and response messages input port output port
data service messages publish messages

msg

msg

Publisher/Subscriber with Broker Coupled Model

Identify-
publisher

Broker

identify-
publisher

found-
publisher

Publisher

request-
services

publish-
service

publish-
service

Subscriber

Found-
publisher

publish-
service

identify-
publisher

request-
service

publish-
service

request and response messages input port output port
data service messages publish messages

request and response messages input port output port
data service messages publish messages

msgmsg

msgmsg

Figure 2: SOAD primitive service composition

5.2 Composite SOAD Models

An essential capability for simulating service-based soft-
ware systems is to support modeling of composite service
composition. As shown in Figure 2, a composite service
composition has publisher or subscriber service which it-
self is a primitive service composition. Since broker ser-
vice is required for both primitive and composite service
composition, two cases can be considered – i.e., either a
single broker service or multiple broker services are used.
Both cases can be supported. Use of a single broker service
is shown in Figure 3. To avoid cluttering Figure 3, the bro-
kers shown in the Subscriber and Publisher services are the
ones that are used for these brokers (this is shown with
shaded background for the two brokers and their cou-
plings). The three kinds of couplings provided in coupled
DEVS models supports use of a single broker for the pri-
mitive service compositions (i.e., Subscriber and Pub-
lisher) and their composite (hierarchical) service composi-

849

Sarjoughian, Kim, Ramaswamy, and Yau

 6

tion. As can be seen, for example, Publisher1 service has
the role of a subscriber with respect to the Subscriber2
which has the role of a publisher. The common concept of
DEVS and SOA modularity allows creating composite ser-
vice composition without restrictions. The DEVS hierar-
chical coupled modeling naturally supports multiple hier-
archical broker services.

Broker

Publisher1
(subscriber) Subscriber1

Broker

Subscriber

Broker

Publisher2 Subscriber2
(publisher)

Publisher

Broker

Publisher1
(subscriber) Subscriber1

Broker

Subscriber

Broker

Publisher2 Subscriber2
(publisher)

Publisher

Figure 3: SOAD composite service composition

6 SOAD SIMULATION ENVIRONMENT

The above SOAD modeling and simulation approach has
been realized using the DEVS-Suite (Kim, Sarjoughian, &
Elamvazhuthi 2008), a new generation of the DEVSJAVA
simulation environment. A set of generic SOAD models
are designed and implemented (Kim 2008). They represent
static and dynamic aspects of service-oriented software
systems. These models are partitioned according to the
SOA Models which extend the DEVS Models. The SOAD
models are generic in the sense of the generality supported
by SOA and DEVS. Specific SOA models (called Applica-
tion Model) can be used to describe hierarchical service-
oriented software systems. A basic hardware model is also
developed, but due to lack of space it is not included here.
These models are executed using the DEVSJAVA simula-
tion engine.

6.1.1 Messages

Three generic message types called ServiceInfo, Service-
Lookup, and ServiceMessage are specified. They are ab-
stractions of the WSDL and SOAP specifications. The Ser-
viceInfo and ServiceLookup correspond to the WSDL
specification. These two message types are needed for pub-
lishing services and their discovery. The ServiceInfo mes-
sage is used for publishing a service with the broker. It
contains a service definition given a service name, service
description, service type, the list of endpoints, and binding
information. The port and coupling concepts do not have a

one-to-one correspondence the WSDL’s port and binding
elements – they serve as counterparts to the physical ad-
dress at which a service can be accessed and the transport
technology for message communication. The Service-
Lookup message is used to find the desired service in the
broker using a service name and an endpoint in the mes-
sage. ServiceMessage message type corresponds to the
SOAP specification. It is required to define the data con-
tent that is exchanged between a subscriber and a pub-
lisher. The differences between the ServiceMessage and
the other messages are the data is actually used in the sub-
scribed publisher and it must specify the destination of the
message.

6.1.2 Primitive Services

The specifications for the primitive SOA publisher, sub-
scriber, and broker service are defined as DEVS atomic
models shown in Figure 4. The ServiceBroker has a con-
tainer (UDDI) to store ServiceInfo messages. The Service-
Subscriber maintains a list of services to lookup a broker.
The ServicePublisher defines specific behaviors of its end-
points in the performService method. Depending on the
subscribed port (i.e., an endpoint), the performService can
execute different functions and return a Pair which defines
data type and value (this is used as data in the ServiceMes-
sage). Since multiple users can subscribe to an endpoint at
the same time, the RequestList in the ServicePublisher is
devised to handle multiple user subscriptions simultane-
ously. These requests are processed using FIFO scheme.
For brevity, some methods such as δext and δint (see Section
3.2) for the services are not shown in the class diagrams.

6.1.3 Primitive Service Composition

As shown in Figure 5, the SOAD has primitive services
with a network link and transducers). Based on generic in-
terfaces defined for SOA services, default couplings are
defined. Furthermore, default couplings are also defined
for the network and transducer models. Therefore, to mod-
el a primitive service composition, it is necessary to con-
struct the list of subscribers and publishers.

 ViewableAtomic

(from simView)

ServiceBroker
start : double
available_time : double
UDDI : ArrayList

publish()
subscribe()
publishCompositeService()

ServiceSubscriber
startTime : double
lookupList : ArrayList
ServiceRequest : ServiceMessage

out() : message

ServicePublisher
Processing_time : double
ServiceName : String
ServiceDescription : String
ServiceType : String
Endpoints : ArrayList
RequestList : ArrayList
msgQ : Queue

performService(data : Pair) : Pair

Figure 4: Primitive publisher, subscriber, and broker service
models

850

Sarjoughian, Kim, Ramaswamy, and Yau

 7

6.1.4 Composite Service Composition

The composite service composition is similar to the primi-
tive service composition, except there is no list for sub-
scribers since publishers in the composite service composi-
tion can be also subscribers. The flow of service
invocations needs to be specified given the specifics of the
service-based systems that are being modeled. This is a ba-
sic capability for hierarchical service composition which
has to be extended to support different kinds of workflow
patterns (Russell, Hofstede, Aalst, & Mulyar 2006).

 ServiceBroker

start : double
available_time : double
UDDI : ArrayList

publish()
subscribe()
publishCompositeService()

(from GenService)

ServiceRouter

trasmissionTime : double
network_traffic : double
outputPort : String

(from GenService)

ServiceSubscriber

startTime : double
lookupList : ArrayList
ServiceRequest : ServiceMessage
lookUp : ServiceLookup

(from GenService)

ServicePublisher

Processing_time : double
ServiceName : String
ServiceDescription : String
ServiceType : String
Endpoints : ArrayList
RequestList : ArrayList
msgQ : Queue

performService()

(from GenService)

ServiceTransducer

in : ArrayList
out : ArrayList
observation_time : double

compute_TP()
compute_TA()

(from GenService)
ServiceComposition

BrokerList : ArrayList
RouterList : ArrayList
PublisherList : ArrayList
CoupledPublishersList : ArrayList
SubscriberList : ArrayList
TransducerList : ArrayList

ServiceComposition()
ServiceComposition()
BrokerRouterConstruct()
PublisherConstruct()
CompositeConstruct()
SubscriberConstruct()
TransducerConstruct()
CouplingConstruct()

(from GenService)

1

11

1..*
1

1..*
1

1..*

1

1..*

1

1..*

1

1..*

1

1..*

1

1..*

1

Figure 5: Model of primitive service composition

6.2 Example Simulation Model

Models for the primitive and composite service composi-
tions are developed in the DEVS-Suite simulator which
supports SOAD. The model shown in Figure 6 has 4 soft-
ware components (one subscriber (Travel Agent), two pub-
lishers (USZip and Ski Resort), and one broker (Broker))
and one simple hardware component (Router Link) (Kim
2008). The model also includes five transducers for each of
the software and hardware components. Another simula-
tion model is for a real Voice Communication Service
(Yau, Ye, Sarjoughian, & Huang 2008) which was used to
validate the design and implementation of the SOADS en-
vironment. The Travel Agent Service and Voice Commu-
nication Service are used to show the primitive and com-
posite service compositions.

Figure 6: Travel Agent Service primitive composite model

The simple Travel Agent Service can be used to illus-

trate modeling the basic throughput, timeliness, and accu-
racy quality attributes of SOA-compliant software-based
systems. For example, the dynamics of the Travel Agent
can be observed in terms of the events it generates and
consumes. The output events are defined for the service
lookup, the service lookup retry, and the publisher service
request. The scheduling of these events is defined in δint
and δext. The output events times relative to time instances
at which they can be generated are defined to be 0.5, 0.0,
and 1.0 second, respectively. The first event is scheduled
by the internal transition function. The second and third
events are due to the external transition function – i.e.,
processing of the input events from the Broker. There is
also another external transition function for processing the
input event as it is received from a publisher (either USZip
or Ski Resort). The time allocated for δext is 1.0 second.
The dynamics of the USZip and Ski Resort are the same.
Each takes 1.0 second to process a request received from
the Router Link and produce an output event. The Router
Link takes 0.5 second to deliver a publisher’s output event
as an input event to a subscriber. The Router Link takes
also 0.5 second to deliver a subscriber’s output event as an
input event to a publisher. The Broker takes 0.0 seconds to
respond to the Travel Agent (whether it finds a requested
service or not). For simplicity, in this example, the sub-
scriber sends its requests to the publishers sequentially, but
simultaneous requests are straightforward to model. Table
2 shows sample quality of service measurements for the
Travel Agent Service operating for a period of 71.5 sec-
onds. These generic metrics are captured by the transduc-
ers. The generic SOA DEVS models have stochastic tim-
ings, but the results given in Table 4 are based on
deterministic timings in order to verify the logical correct-
ness of the primitive service composition.

Table 2: Selected metrics for the Travel Agent Service
model

Component Quality of Service Measurements

Travel
Agent

Average Turnaround Time (sec): 2.0
Total size of data received (Kbytes): 640.0
Number of subscribed publishers: 2

USZip Publisher Throughput (msgs/sec): 0.156
Amount of data received (Kbytes): 320.0
Number of subscribers: 1

Ski Resort Publisher Throughput (msgs/sec): 0.156
Amount of data received (Kbytes): 320.0
Number of subscribers: 1

Router Average Transmission Time (sec): 0.5
Total size of message received (Kbytes): 1280.0
Utilization for a period of time (%): 1.7073

851

Sarjoughian, Kim, Ramaswamy, and Yau

 8

7 RELATED WORK

Within the simulation community the interest has focused
on the use of web services for distributed simulation. For
example, the core HLA capabilities (IEEE 2000) can be
extended with SOA concepts (e.g., (X. Chen, Cai, Turner,
and Wang 2006)) or web services used for distributed si-
mulation (e.g., (Hu, Zeigler, Hwang, and Mak 2007)). Web
services are also proposed to define an ontology with a cor-
responding software infrastructure for simulation model
reuse (Bell, Cesare, Lycett, Mustafee, and Taylor 2007).

A framework has been developed using HLA to sup-
port web services verification and validation (Tsai et al.
2007). Processes, services, and workflows are described
using the Process Specification and Modeling Language
(PSML). The modeling language used in this framework
uses HLA for simulation execution. The PSML and DEVS
models have basic differences such as explicit representa-
tion of time, event preemption, and closure under coupling.
Another important difference is the mapping from DEVS
and PSML to SOA. SOAD is defined in terms of the basic
SOA elements (subscriber, publisher, and broker) as well
as the primitive and composite service composition. From
a higher perspective, SOAD is targeted for modeling and
simulation of service-based computing systems whereas
PSML is targeted for their actual realizations.

Some other approaches have also been proposed to
support some software engineering phases of service-
oriented systems such as workflow designs. One approach
is based on use of Petri Nets formalism (Srini and Sheila
2003). It has been developed to analyze various aspects of
web services such as complexity. The DAML-S ontology
is used for describing web services that can be simulated
using KarmaSIM simulator. An execution scheme based on
situation calculus is mapped to Petri Nets modeling ele-
ments and thus supports performance analysis, verification,
and validation of web services. This approach, however,
does not provide a direct mapping from the SOA basic
elements to the Petri Nets modeling elements. Agent-based
simulation is used to model service chaining (Anderson,
Rothermich, and Bonabeau 2005). The simulator allows
macro-level modeling and testing of web services with
support for network-like visualization. This simulation fo-
cuses on the Web services flow patterns. Another simulator
which is a Java-based tool has been proposed for studying
performance of service-oriented software systems (John,
John, Lei, and Na 2006). For validation of service-based
software systems, a UML simulator has also been proposed
(Hiroyuki, Taku, Toshiyuki, and Sadatoshi 2006). It sup-
ports execution of BPEL4WS models described in UML.
The simulator is developed for BPEL/UML models where
interface of services can be simulated and used in conjunc-
tion with real services. The execution of the BPEL/UML
models are defined in terms of Activity Hyper-graph and
implemented as web services.

Considering the approaches briefly reviewed in rela-
tion to SOAD, it is useful to consider support for represent-
ing (logical and real) time. The explicit use of time (dis-
crete values) in services is crucial in developing verifiably
correct simulation models of dynamical real services. The
time-based execution of each model plays an important
role in developing dynamical simulations that can be vali-
dated. For example, a simulated service where its opera-
tions take real time to complete can be used instead of a
real service. Direct representation of time, therefore, is
necessary for characterizing complex structures and behav-
iors of services. This, in turn, supports evaluating time-
based quality of service attributes such as throughput. Of
these, the approach which uses the Petri Nets formalism
enjoys explicit use of time. However, the situation calculus
for the DAMIL-S supports sequencing of actions (i.e., time
is not explicitly accounted for). Furthermore, unlike the
proposed SOAD, none of the above approaches are formal-
ized to model and simulate services that may change their
structures at run-time and separately modeling service-
oriented software systems in terms of their hardware and
software layers.

8 CONCLUSION

The basic goal for the proposed SOAD framework is to
take advantage of fundamental commonalities between
SOA and DEVS. As we have shown, the simulated ser-
vices share important characteristics with those of real ser-
vices. This is useful because users interested in simulating
service-oriented services can use the SOA principles and
the component-based modeling concepts. An important ob-
servation for the proposed framework is that the DEVS
formalism is well positioned to support modeling of (i)
services with dynamic structures and (ii) separately model-
ing software and hardware aspects of service-based soft-
ware systems. The extension of the SOAD with the key
capabilities is under development. The SOAD framework
has the potential to inspire and serve as a basis for commu-
nity-based development of realistic SOA. A community of
researchers and developers, akin to the community who
has developed the ns-2 simulator, can introduce important
capabilities such as modeling and simulating complex
workflow patterns. Development of expressive and robust
model libraries are very useful for advancing simulation-
based design of service-based software systems where dis-
parate quality of service attributes such as timeliness and
accuracy can be evaluated and analyzed systematically and
efficiently.

ACKNOWLEDGEMENT

This research is supported by NSF Grant number CCF-
0725340.

852

Sarjoughian, Kim, Ramaswamy, and Yau

 9

REFERENCES

ACIMS. 2001. Arizona Center for Integrative Modeling
and Simulation. 2007, from
http://www.acims.arizona.edu/SOFTWARE.

Anderson, C., J. A. Rothermich, and E. Bonabeau. 2005.
Modeling, quantifying and testing complex aggregate
service chains. Proceedings of the 2005 IEEE Interna-
tional Conference on Web Services, Orlando , Florida
, USA.

Barros, F. 1997. Modeling formalisms for dynamic struc-
ture systems. ACM Transactions on Modeling and
Computer Simulation, 7(4), 501–515.

Bell, D., S. Cesare., M. d., Lycett, N. Mustafee, and S.
Taylor. 2007, October. Semantic Web Service Archi-
tecture for Simulation Model Reuse. Proceedings of
the 11th IEEE International Symposium on Distrib-
uted Simulation and Real-Time Applications, Chania,
Crete Island, Greece.

Chen, X., W. Cai, S. J. Turner, and Y. Wang. 2006. SOAr-
DSGrid: Service-Oriented Architecture for Distributed
Simulation on the Grid. Workshop on Parallel and
Distributed Simulation Washington, DC, USA.

Chen, Y., and W. T. Tsai. 2008. Distributed Service-
Oriented Software Development. Kendall/Hunt Pub-
lishing.

Erl, T. 2006. Service-Oriented Architecture Concepts,
Technology and Design: Prentice Hall.

Hild, D. R., H. S. Sarjoughian, and B. P. Zeigler. 2002.
DEVS-DOC: A Modeling and Simulation Environ-
ment Enabling Distributed Codesign. IEEE Transac-
tions on Systems, Man and Cybernetics, Part A, 32(1),
78–92.

Hiroyuki, K., F. Taku, M. Toshiyuki, and K. Sadatoshi.
2006. A UML Simulator for Behavioral Validation of
Systems Based on SOA. Proceeding of the Interna-
tional Conference on Next Generation Web Services
Practices, Seoul, Korea.

Hu, X., B. Zeigler, M. H. Hwang, and E. Mak. 2007. DEVS
Systems-Theory Framework for Reusable Testing of
I/O Behaviors in Service Oriented Architectures. Pro-
ceeding of the IEEE International Conference on In-
formation Reuse and Integration, Las Vegas, NV,
USA.

IEEE. 2000. HLA Framework and Rules, Version IEEE
1516-2000, IEEE Press.

John, G., H. John, L. Lei, and L. Na. 2006. Performance
engineering of service compositions. Proceedings of
the 2006 international workshop on Service-oriented
software engineering, Shanghai, China.

Kim, S. 2008. Simulation of Service Based System: Model-
ing and Implementation using the DEVS-SUITE. Ari-
zona State University, Tempe, Arizona, USA.

Kim, S., H. Sarjoughian, and V. Elamvazhuthi. (in-
preparation). DEVS-Suite: A Component-based Simu-
lation Tool for Rapid Experimentation and Evaluation.

Lenz, G., and T. Moeller. 2003. .NET: A Complete Devel-
opment Cycle: Addison-Wesley.

Møller, A., and M. I. Schwartzbach. 2006. An Introduction
to XML and Web Technologies: Addison-Wesley.

Russell, N., A. H. M.t. Hofstede, W. M. P. v. d. Aalst, and
N. Mulyar. 2006. Workflow control-flow patterns: A
revised view. BPM Center Report BPM-06-22.

Srini, N., and M. Sheila. 2003. Analysis and simulation of
Web services. Computer Networks, 42(5), 675–693.

Tsai, W. T., Z. Cao, X. Wei, R. Paul, Q. Huang, and X.
Sun. 2007. Modeling and Simulation in Service-
Oriented Software Development. SIMULATION
Transactions, 83(1), 7–32.

Yau, S. S., N. Ye, H. S. Sarjoughian, and D. Huang. 2008,
October). Developing Service-based Software Systems
with QoS Monitoring and Adaptation. Proceeding of
the 12th IEEE Int'l Workshop on Future Trends of
Distributed Computing Systems, Honolulu, Hawaii,
USA.

Zeigler, B. P., T. G. Kim, and H. Praehofer. 2000. Theory
of Modeling and Simulation: Integrating Discrete
Event and Continuous Complex Dynamic Systems
Second Edition: Academic Press.

AUTHOR BIOGRAPHIES

HESSAM S. SARJOUGHIAN is Assistant Professor of
Computer Science & Engineering at Arizona State Univer-
sity and Co-Director of the Arizona Center for Integrative
Modeling and Simulation. His research focuses on multi-
formalism modeling, collaborative modeling, distributed
simulation, and software architecture. He can be contacted
at <sarjoughian@asu.edu>.

SUNGUNG KIM is a Master student in the Computer
Science and Engineering department at ASU. His research
is in the development of SOA-based simulation models. He
can be contacted at <skim109@asu.edu>.

MUTHUKUMAR RAMASWAMY completed his Mas-
ters of Engineering degree in Modeling & Simulation pro-
gram at ASU. His research area is system theory based si-
mulation of SOA-based software systems. He can be
contacted at <muthukumar.ramaswamy@asu.edu>.

STEPHEN S. YAU is Professor of Computer Science and
Engineering and Director of Information Assurance Center
at Arizona State University, Tempe. His current research
interests include cyber security, trust, privacy, software en-
gineering, distributed computing systems, and ubiquitous
computing. He can be contacted at <yau@asu.edu>.

853

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

