
SIMULATION OF STOCHASTIC HYBRID SYSTEMS WITH SWITCHING AND REFLECTING BOUNDARIES

Derek Riley
Xenofon Koutsoukos

ISIS/EECS Vanderbilt University
Nashville, TN 37235, U.S.A.

Kasandra Riley

HHMI Yale University
New Haven, CT 05620, U.S.A.

ABSTRACT

Modeling and simulation of biochemical systems are impor-
tant tasks because they can provide insights into complicated
systems where traditional experimentation is expensive or
impossible. Stochastic hybrid systems are an ideal modeling
paradigm for biochemical systems because they combine
continuous and discrete dynamics in a stochastic frame-
work. Simulation of these systems is difficult because of
the inherent error which is introduced near the boundaries.
In this work we develop a method for stochastic hybrid
system simulation that explicitly considers switching and
reflective boundaries. We also present a case study of
the water/electrolyte balance system in humans and pro-
vide simulation results to demonstrate the usefulness of the
improved simulation techniques.

1 INTRODUCTION

Modeling and analysis of biochemical systems are important
tasks because they can provide insights into complicated
systems where traditional experimentation is difficult or
costly. Biological systems are often mixtures of continuous
and discrete (hybrid) processes with complicated dynamics,
so decoupling and studying the individual components can
shed light on the function of the entire system. Biochemical
processes are also inherently probabilistic because of the
uncertainty of molecular motion, so models that incorporate
stochasticity can provide more realistic insight into the dy-
namics of the system when analyzed. However, simulation
of these stochastic hybrid models is a challenging task.

Simulation is a powerful analysis technique, but simu-
lation methods must be chosen to ensure the most accurate
results are generated. Simulation of systems with hybrid dy-
namics is especially challenging because of the error which
is introduced near the switching and reflecting boundaries.
A trajectory can be tested at each time step, and when it has
crossed a boundary, the step is reversed and the boundary
is handled. However, error is introduced because the actual

trajectory can cross the boundary and return in between time
steps without detection. An improvement to this method is
to use probabilistic techniques to calculate the probability
that the trajectory will hit the boundary in the next timestep.
In this paper we develop a method for simulating Stochastic
Hybrid Systems (SHS) with absorbing and reflecting bound-
aries that uses the boundary hit probabilities to reduce the
approximation error.

To demonstrate the simulation technique, we present a
case study on water/electrolyte balance in humans. All or-
ganisms must regulate the balance of water and electrolytes.
In humans, this regulation is part of a system that involves
the kidneys, circulatory system, pituitary gland, and other
minor components. We have developed a SHS model of
this intricate system to demonstrate our improved simulation
methods when encountering switching and reflecting bound-
aries. We present the model as well as simulation results
to highlight our improved boundary simulation methods.

A recently renewed interest in the field of biochemical
system modeling has increased the quality and diversity
of the models created. Biological protein regulatory net-
works have been modeled with hybrid systems using linear
differential equations to describe the changes in protein
concentrations and discrete switches to activate or deacti-
vate the continuous dynamics based on protein thresholds
(Ghosh and Tomlin 2004). Biomolecular network model-
ing using hybrid systems is accomplished by using differen-
tial equations to model feedback mechanisms and discrete
switches to model changes in the underlying dynamics
(Alur et al. 2001). A modeling technique that uses poly-
nomial SHS to construct models for chemical reactions is
presented in (Hespanha and Singh 2005). A SHS model of
a genetic regulatory network is compared to a deterministic
model in (Hu, Wu, and Sastry 2004). Switching thresholds
for piecewise-affine models of genetic regulatory networks
are studied in (Drulhe et al. 2006).

SHS models of biochemical systems using reac-
tion rate analysis have been developed and simulated in
(Salis and Kaznessis 2005). A biochemical system drug

804 978-1-4244-2708-6/08/$25.00 ©2008 IEEE

Proceedings of the 2008 Winter Simulation Conference
S. J. Mason, R. R. Hill, L. Mönch, O. Rose, T. Jefferson, J. W. Fowler eds.



Riley, Koutsoukos, and Riley

model based on physical interactions at the molecular
level has been developed in (Ramos et al. 1999). An
early stochastic model of the water/electrolyte balance
system is presented in (Leaning et al. 1985), and a non-
stochastic model with experimental results is presented in
(Karanfil 2005).

Simulation of SHS is challenging because it must accu-
rately combine numerical integration methods for Stochastic
Differential Equations (SDEs) and detection/approximation
of boundary crossings and reflections. Numerical inte-
gration of SDEs is accurate if the trajectory is suffi-
ciently far from any boundaries; however, when the tra-
jectory is close to a boundary, large errors can be in-
curred. A technique for accurately detecting absorbing
boundaries has been developed for one-dimensional sys-
tems (Mannella 1999), and extensions have been proposed
that scale to higher dimensional systems (Lamm 1983).
The boundary crossing detection algorithm presented in
(Peters and Barenbrug 2002) uses analysis of moments to
improve the accuracy of the approximation. Methods for
approximating reflecting boundaries have also been studied
previously (Constantini, Pacchiarotti, and Sartoretto 1998),
and an improved technique for approximating reflecting
boundaries is presented in (Gobet 2001).

In this work we develop an advanced simulation tech-
nique for SHS that employs improved boundary approxima-
tion methods for absorbing and reflecting boundaries utiliz-
ing probabilistic methods. Simulation methods for SHS have
been developed for the modeling language Charon, but the
focus is on concurrency, and the behavior close to the bound-
aries is not studied (Bernadskiy, Sharykin, and Alur 2004).
Improved absorbing boundary detection methods have
been incorporated into a SHS simulation algorithm in
(Riley, Koutsoukos, and Riley 2008). In this paper we ex-
tended the previous work by adding an improved reflecting
boundary detection method and integrating it into a com-
prehensive SHS simulation algorithm. We also present a
new case study to demonstrate the algorithm.

The rest of this paper is organized as follows: Section
2 will describe Stochastic Hybrid Systems, Section 3 will
cover simulation of stochastic hybrid systems including the
absorbing and reflecting boundary techniques, Section 4
will present the case study of the water balance system, and
Section 5 will conclude the work.

2 STOCHASTIC HYBRID SYSTEMS

We use the SHS model formally defined in
(Bujorianu and Lygeros 2004). To establish the no-
tation, we let Q be a set of discrete states. For each q ∈ Q,
we consider the Euclidean space R

d(q) with dimension
d(q) and we define an invariant as an open set X q ⊆R

d(q).
The hybrid state space is denoted as S =

⋃
q∈Q{q}×Xq.

Let S̄ = S ∪ ∂S and ∂S =
⋃

q∈Q{q} × ∂Xq denote the

Figure 1: Stochastic hybrid system

completion and the boundary of S respectively. The Borel
σ -field in S is denoted as B(S).

Consider an R
p-valued Wiener process w(t) and a

sequence of stopping times {t0 = 0,t1,t2, . . .}. Let the state
at time ti be s(ti) = (q(ti),x(ti)) with x(ti) ∈ Xq(ti). While
the continuous state stays in X q(ti), x(t) evolves according
to the stochastic differential equation (SDE)

dx = b(q,x)dt + σ(q,x)dw (1)

where the discrete state q(t) = q(ti) remains constant. A
sample path of the stochastic process is denoted by xt(ω),t >
ti,ω ∈ Ω.

The next stopping time ti+1 represents the time when
the system transitions to a new discrete state. The discrete
transition occurs either because the continuous state x ex-
its the invariant X q(ti) of the discrete state q(ti) (guarded
transition) or based on an exponential distribution with non-
negative transition rate function λ : S̄ → R+ (probabilistic
transition). At time ti+1 the system will transition to a new
discrete state and the continuous state may jump according
to the transition measure R : S̄×B(S̄) → [0,1]. The evolu-
tion of the system is then governed by the SDE (1) with
q(t) = q(ti+1) until the next stopping time. If ti+1 = ∞, the
system continues to evolve according to (1) with q(t) = q(ti).

Figure 1 shows a generic SHS model with two states
and two transitions (one probabilistic and one guarded).
The continuous dynamics of each state are defined by the
associated stochastic differential equations. The probabilis-
tic transition fires at the firing rate λ , and the guarded
transition fires when x hits the boundary x ∈ ∂X q2 . The
logical condition x ∈ ∂X q2 is often referred to as the guard
of the transition. Upon firing of a transition, the state resets
according to the map R((q,x),A).

The following assumptions are imposed on the model.
The functions b(q,x) and σ(q,x) are bounded and Lipschitz
continuous in x for every q, and thus the SDE (1) has a
unique solution for every q. The transition rate function λ
is a bounded and measurable function which is assumed to
be integrable for every xt(ω). For the transition measure, it
is assumed that R(·,A) is measurable for all A ∈ B(S) and
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R(s, ·) is a probability measure for all s ∈ S̄, and R((q,x),dz)
is a stochastic continuous kernel. Let Nt = ∑i It≥ti denote
the number of jumps in the interval [0,t]. It is assumed that
the expected number of jumps is finite for every initial state
s ∈ S, that is Es[Nt ] < ∞. A sufficient condition for ensuring
finitely many jumps can be formulated by imposing re-
strictions on R(s,A) (Bernadskiy, Sharykin, and Alur 2004,
Koutsoukos and Riley 2006).

3 SHS SIMULATION

3.1 Background

Simulating SHS is important because it can shed light on
complicated models and dynamics. However, it is challeng-
ing because the interplay between the stochastic continuous
and discrete dynamics can cause large errors if handled
incorrectly. Switching and reflecting boundaries must be
detected precisely to avoid incurring error of assuming false
crossings or missing real crossings. The error can be de-
creased by reducing the step size of the approximation, but
this comes at the cost of efficiency. Improved boundary
simulation techniques are able to take better advantage of
smaller step sizes using probabilistic sampling, but they
require more involved calculations which can decrease ef-
ficiency.

Numerical integration methods for SDEs assume that the
solution is sufficiently far from any boundaries; however,
this assumption does not hold for SHS where the effect
of the switching and reflective boundaries must be taken
into account. Large errors can be incurred if the boundary
conditions are not handled carefully. Let us assume a system
has an invariant X q with a boundary ∂X q, and the state at
time t is X(t). In the case of switching boundaries, as seen
in Figure 2, it is possible that X(t),X(t + Δt) ∈ X q, but
∃τ ∈ [t,t + Δt] where x(τ) /∈ X q. In this case, a boundary
crossing occurs in the actual execution of the SHS but not
in the approximating solution, and this discrepancy may
cause a significant error.

Reflecting boundaries are difficult to approximate be-
cause the crossing must be detected, and the reflection
must be calculated without incurring large errors. Approx-
imating the crossing of the boundary incurs similar error to
approximating the crossing of the switching boundary. Error
generated in the approximation of the crossing is amplified
when calculating the reflection, so care must be taken when
approximating the crossing. The traditional way to reflect
the process is to detect the first crossing of the boundary
and reverse the dynamics to force the system back into the
valid region. This type of reflection may not be appropriate
for the process, and care must be taken to ensure that the
process is reflected into a valid state. Therefore, improved
methods are necessary to ensure the crossing and reflection
are calculated accurately.

Figure 2: A SHS trajectory close to a boundary

The error introduced by the various approximation meth-
ods is quantified by the concept of order of convergence
and defines the quality of the approximation for stochas-
tic simulation techniques. An approximation X Δt(T ) at
time T with step size Δt converges with order γ strongly
to the actual trajectory x(T ) if there exists c > 0 such
that E

(∣∣x(T )−XΔt(T )
∣∣) ≤ cΔtγ . XΔt(T ) converges with

order γ weakly to x(T ) if there exists c > 0 such that
E

(∣∣ f (x(T ))− f (XΔt(T ))
∣∣)≤ cΔtγ for a given class of mea-

surable functions f (Kloeden and Platen 1999). Strong con-
vergence implies that the trajectory is a possible trajectory
of the system, and weak convergence implies that the com-
puted trajectory only preserves the moments of the actual
trajectory.

3.2 Simulation of SDEs

Simulation of SDEs can be performed using Taylor schemes
of various orders. The simplest Taylor approximation
scheme is the Euler Maruyama (EM) method which is
a first-order approximation. The kth component of the EM
scheme is given by

Xk
n+1 = Xk

n + bkΔt +
m

∑
j=1

σ k, jΔW j

for k = 1,2, ...,d where ΔW j is the normally-distributed
increment of the jth component of the d-dimensional Wiener
process W assuming a d-dimensional drift coefficient b and
a d ×m diffusion coefficient σ .

The Milstein Method (MM) is a second-order Taylor
scheme. The higher order terms require more computation;
however, the approximation maintains an acceptable effi-
ciency for most systems. It extends the EM method by
adding terms to the approximation; however, if the diffu-

806



Riley, Koutsoukos, and Riley

sion coefficient σ is constant, all higher order approximation
terms are zero (Kloeden and Platen 1999). The diffusion
term σ in our case study is constant, so we only present
the EM method in this work.

Taylor schemes can have strong order of convergence
of γ = 0.5 to γ = 3.0 and weak order of convergence of
γ = 1.0 to γ = 6.0 depending on the number of approxi-
mating terms (Kloeden and Platen 1999). The computation
of higher order terms requires many more operations and
can be prohibitively complicated and expensive; therefore, a
tradeoff must be reached to achieve the appropriate accuracy
and efficiency. The EM method is simple to implement,
but achieves a strong convergence of γ = 0.5 and weak
convergence γ = 1.0, whereas the MM has a strong order
of convergence of γ = 1.0.

3.3 Switching Boundaries

During the execution of a SHS, the process can hit a switching
boundary defined by the invariants. At a switching boundary
the continuous process is halted and re-started in a new state
after executing any transition resets. Switching boundaries
can therefore be treated as absorbing boundaries. It is
important to accurately estimate the time and location that
the process is absorbed to minimize the error introduced
into the approximation.

The easiest way to detect an absorbing boundary is
to check the state against the invariants at each step of
the approximation. Let us assume the state at time t is
X(t). If X(t) ∈ X q, but X(t + Δt) /∈ X q, then the process
is rolled back to time t and re-started in the new state.
This method has a strong order of convergence of γ = 0.5
(Peters and Barenbrug 2002).

An improved method for absorbing boundary detec-
tion based on probabilistic sampling was developed in
(Gobet 2001). The approach can be used with boundaries
that are hyperplanes or sufficiently smooth. The biochemical
models we consider have boundaries that are hyperplanes,
so this approach is valid for these systems. The probability
that the state trajectory has hit the boundary between t and
t + Δt is

P(hit) = exp

(−2(n.(Xt −Xab))(n.(Xt+Δt −Xab))
n.(σ(Xt)σ∗(Xt)n)Δt

)

where the switching boundaries are hyperplanes ∂X q ={
x ∈ R

d(q) : n.(x−Xab) = 0
}

, n is the unit vector normal to

the boundary ∂X q, Xab ∈R
n is the position of the absorbing

boundary, and Xt is the computed continuous state at time t.
For simplifying the notation we have chosen to describe the
diffusion σ(Xt) as only depending on the continuous state,
but the actual diffusion may depend on the discrete state
as well. This improved method achieves a weak order of

Figure 3: Boundary reflection problem

γ = 1.0 assuming that the boundary is sufficiently smooth
(Gobet 2001).

3.4 Reflective Boundaries

Invariants may include reflective boundaries in addition
to the switching boundaries. These invariants can cause
the process to be reflected obliquely when it reaches the
boundary. For example, all biochemical systems cannot
contain negative concentrations of any chemicals, or some
biochemical processes also have saturation limits which
impose upper limits on concentrations. In both cases when
the process reaches the boundary, it should be reflected to
mimic the behavior of the real world system.

The traditional way to handle reflective boundaries is
to detect them like absorbing boundaries and reflect the
dynamics when the process leaves the valid state space
defined by the invariants (Gobet 2001). Let us assume a
system has an invariant X q with a reflective boundary, and
the state at time t is X(t). If X(t) ∈ X q, but X(t + Δt) is
computed to be outside of X q, then the process is reflected
in the direction normal to the boundary X(t +Δt).n = X(t).n
where n is the unit vector normal to the boundary. In Figure
3 the reflected boundary is detected at t +Δt but the actual
trajectory should have been reflected before then, so the
trajectory is rolled back to time t. This method has a weak
order of convergence of γ = 0.5 (Gobet 2001).

The improved method described in (Gobet 2001) de-
fines a new diffusion process which adds the effect of the
reflection to the original SDE:

dx = b(q,x)dt + σ(q,x)dw+ n(q,x)dk
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where n(q,x) is a unit vector normal the boundary at state
(q,x), k =

∫ t
0 1X∈∂Ddk, ∂D is the reflective boundary, and

Xrb is the position of the reflective boundary.
The approximation of the process is calculated using:

Xt+Δt = Xt + bΔt + σΔW + nΔk

where ΔW is a normally-distributed pseudo-random number
and Δk = kt − kt+Δt . Approximating kt is achieved using
the technique described in (Gobet 2001):

kt = max(0,zt) .n

zt = Xt −Xrb +
1
2

(
σW + bt +

√
|σ |2 V +(σW + bt)2

)

where V = ε(1/2t) is an exponentially-distributed random
variable independent of W . This equation is derived from the
solution to the Skorohod problem and results in a weak order
1.0 approximation of the reflecting boundary ( Gobet 2001).

3.5 SHS Simulation Algorithm

Simulation of SHS requires the combination of simulation
methods for SDEs, switching boundaries, reflecting bound-
aries, and probabilistic transitions. We have implemented
the improved absorbing boundary detection method and
incorporated it into the EM method to improve the SHS
simulation algorithm. At each time step we calculate the
probability of hitting all nearby boundaries P(hit). We then
select the boundary with the highest hitting probability and
compare the probability to a uniformly-distributed number
U1. When U1 < P(hit), then we consider the boundary to
be hit, and we execute the transition resets and restart the
process in the new state.

We have also incorporated the improved reflecting
boundary method into the SHS simulation algorithm. At
each step we begin by storing the previous Δk value and
calculating the new Δk. If the trajectory is close to a reflect-
ing boundary, we add Δk to the EM computation according
to the method described earlier.

To simulate probabilistic transitions, we use the tech-
nique described in (Bernadskiy, Sharykin, and Alur 2004).
We begin by computing the hitting probability at each
step using the following equation P(hit) = exp(−λ (t −
tTimeO f LastFire)). We then compare P(hit) to a uniformly-
distributed number U2, and when U2 < P(hit) we as-
sume the transition has fired. We initially assume the
tTimeO f LastFire = 0, and we update it each time the transition

fires. The following algorithm describes a single step of
the combined iterative technique.

Algorithm 3.1: SHSSIMULATIONSTEP(X k
t ,SimLength)

kt+Δt = Xt −Xrb+

+ 1
2

(
σW + b(t + Δt)+

√
|σ |2 V +(σW + b(t + Δt))2

)

Δk = max(kt+Δt ,0).n− prevΔk
XN

t+Δt = XN
t + bN(t + Δt)+ σNΔW + n(Δk)

t ++

if U1 = rand(0,1) < exp(
−2(n.(Xk

t −Xab))(n.(Xk
t+Δt−Xab))

n.(σσ∗(Xt)n)Δt )
then FireGuardedTransition

if U2 = rand(0,1) < exp(−λ (t − tTimeO f LastFire))
then FireProbabilisticTransition

The approximations using the EM method, boundary
methods, and probabilistic transitions converge to the actual
solution individually as the step size is decreased to zero, so
their combination will also converge to the correct solution.
By combining methods with higher order convergence, we
reduce approximation error more quickly than the lower
order methods therefore improving efficiency and accuracy.
The traditional absorbing and reflecting boundary algorithms
have a weak order of convergence of γ = 0.5, while the
improved methods both have a weak order of convergence
of γ = 1.0 (Gobet 2001). The combined SHS algorithm we
present therefore has a weak order of γ = 1.0 since the EM
has a weak order of convergence γ = 1.0 and the other two
included methods also have a weak order of convergence
of γ = 1.0. The MM method can be used to improve the
SDE approximation as well, but is not necessary for the
case study in this paper.

Error is introduced into the calculated SHS trajectory
in several different ways. Approximation of the SDE intro-
duces higher-order errors which are not calculated due to
computational inefficiency. Error due to the use of pseudo-
random numbers is typically not a concern for smaller
simulations, but large simulations or Monte Carlo methods
must use pseudo-random generators which do not repeat as
often as the efficient generators to avoid this type of error.
Finally, step size inherently introduces error in the SDE and
boundary calculations as described earlier by the order of
convergence γ .

Accurate simulation of the trajectory near intersections
of boundaries is a difficult problem, and must be handled
carefully to minimize error. When the trajectory is in close
proximity to multiple reflecting or absorbing boundaries, our
algorithm considers the boundary with the highest hitting
probability at each time step.
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4 CASE STUDY: Water Balance

4.1 Background

Water/electrolyte balance regulation in mammals is vital
to life. If too much salt is present, dehydration occurs,
leading to discomfort, performance degradation, and even
death. If too much water is present, arterial pressure rises
dangerously and the nervous system begins to malfunction.
Therefore, virtually every living organism has a system that
regulates water balance. In humans, this system includes
blood pressure sensors, the kidneys, the hypothalamus, and
other minor organs.

Anti-diuretic hormone (ADH) is a nine amino acid
peptide hormone secreted by the hypothalamus. ADH is
released when the body senses the intake of too much salt
or a shortage of water. Upon these conditions ADH signals
to the kidneys to retain water to compensate and bring the
body back to equilibrium. Upon secretion, ADH travels
through the bloodstream to exert the majority of its ef-
fects on specific receptors (arginine vasopressin receptor
2; AVPR2) in specialized cells within the kidney tubules.
When ADH binds AVPR2, a chain of intracellular signaling
events take place. The succession of signaling events ulti-
mately results in additional insertion of extra water channels
(aquaporins;AQP2) into the apical membrane of the cell.
Aquaporins allow water to pass out of the nephrons and be
re-collected into the cells. Once the water is reabsorbed, a
smaller, more concentrated amount of urine is excreted.

The insertion of AQP2 channels into the cell’s outer
membrane is a highly regulated, multistep process. AQP2
is synthesized in the cell and inserted into intracellular
membrane structures called vesicles. When called upon by
ADH-AVPR2 interaction and resulting intracellular signal-
ing, attachment and tethering proteins specifically direct the
vesicles to fuse with the outer membrane of the cell. The
fusion event results in the addition of the AQP2 molecules
to the outer membrane. The total number of available
AQP2-containing vesicles and the attachment and tethering
proteins are both inherently limited in any given cell result-
ing in a saturation point for sensitivity of the cell to ADH
(Noda and Sasaki 2006).

When ADH is withdrawn, AQP2 accumulates in spe-
cial membrane domains (clathrin-coated pits), which are
subsequently engulfed (endocytosed) by the cell. Endocy-
tosed AQP2 receptors are then recycled within the cells,
ready for the next ADH signal. AQP2 is continuously and
quickly recycled between the cell surface and intracellular
compartments, rebounding between upper and lower limits
for AQP2 cell surface localization. This behavior results in
a reflection of the observed effects at the ADH saturation
limit (Noda and Sasaki 2006).

4.2 SHS Model

normal
dx=b(q1,x)dt+σ(q1,x)dw

0<x3<12

dehydrated
dx=b(q2,x)dt+σ(q2,x)dw

0<x3<12

x1<18.65x2

x1>18.8x2

Figure 4: SHS model of the water balance model

We have developed a SHS model of the water/electrolyte
balance system, seen in Figure 4. The SHS has been
adapted from the SDE model in (Leaning et al. 1985) to
include the hybrid thirst/dehydration mechanism described
in (Karanfil 2005). The model includes two discrete states:
normal and dehydrated. Transitions between the normal
and dehydrated modes are defined by the transition guards
in Figure 4 and are based on the ratio of water to salt (or
electrolyte concentration) in the body derived from data in
(Karanfil 2005).

We define three continuous states: total body water x1,
total body salt x2, and ADH x3 within each discrete state.
The dynamics for the water and salt variables were based on
simple input/output differences in the system with an added
diffusion term that models uncertainty and system vari-
ability (Leaning et al. 1985). SDEs are used with constant
diffusion because of the uncertainty of molecular interac-
tions in these types of biochemical systems. Fluid output
is directly dependent on the ADH concentration which is
in turn affected by the fluid/salt ratio in the body.

The following SDEs desribe the continuous dynamics
in the normal state

dx1 = ( fin −45x−.76
3 )dt + .1dw1

dx2 = (sin − sout)dt + .1dw2

dx3 = (−4.5)dt + .1dw3

where fin describes the amount of fluid input to the system
per unit time, sin describes the amount of salt input to the
system per unit time, sout describes the amount of salt output
from the system per unit time, and w = [w1,w2,w3]T is a
three-dimensional Wiener process.

The next set of equations describe the dynamics when
the body is in the dehydrated state determined by the elec-
trolyte concentration.
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Table 1: Model Coefficients

Variable Value
fin 40
sin 2
sout 2

dx1 = ( fin −45x−.76
3 )dt + .1dw1

dx2 = (sin − sout)dt + .1dw2

dx3 =
(

80∗ x2

x1

)
dt + .1dw3

The constants for the continuous dynamics were adapted
from (Leaning et al. 1985) to match the experimental data
in (Karanfil 2005). We fit the experimental data to curves
and determined appropriate adaptations for the dynamics
when necessary. The values we used for our experiments
can be found in Table 1. The fluid input fin can be modeled
as a continuous stream or discrete input, so for simplicity
we consider only the continuous stream. Since our focus
was primarily on the water balance, we modeled s in and
sout as constant functions; however, these could be easily
extended to model more realistic behavior if salt balance is
the focus of the analysis.

Because ADH cannot have a negative value a reflective
boundary is defined for x3 at the value of zero. We also define
a reflective boundary at x3 = 12 to mimic the saturation limit
of ADH in the kidneys. The limit is defined by the invariants
in the system x3 ∈ 0,12. This range will not necessarily be
the same for every person, but seems reasonable based on
experimental data from (Karanfil 2005).

Simulation of this model is important because it may
help improve the understanding of the biological system
and identify statistically significant aberrations in patients.
Efficient, accurate simulation techniques are important to be
able to refine the model and perform Monte Carlo analysis
on the simulation data.

4.3 Experimental Results

We implemented the SHS simulation algorithm presented
in Section 3. To evaluate the performance of the algorithm
we use as a baseline a simple method that detects boundary
crossings at each time step and either rolls back (switching
boundaries) or reflects the state (reflecting boundaries) as
described in Section 3. We used the same Brownian motion
for each set of simulations to highlight the differences. In
Figure 5 the switching electrolyte boundary is presented for
the traditional and improved methods, and the difference
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Algorithm 3.1
Baseline

Mode switch (Algorithm 3.1)

Mode switch (Baseline)

Figure 5: Absorbing boundary in water balance model

between the detection times is shown by the gap between
the indicated detection points. The proposed method antic-
ipates the boundary crossing using probabilistic methods to
avoid error incurred by over-shooting the crossing, while the
baseline method re-starts the process only after the cross-
ing is detected. It is evident that the anticipatory methods
of the improved technique significantly alter the resulting
trajectory thereby reducing the error incurred. In the wa-
ter/electrolyte system this may mean that the actual system
will react sooner than the model will indicate with the tra-
ditional simulation method predicts. For these simulations
we used a step size of Δt = .05 and initial conditions shown
in Table 2.

We consider the ADH concentration to demonstrate
the reflecting boundary algorithm differences. In Figure 6
the reflecting boundary is represented by the dark line at
ADH = 12. In the baseline method, the trajectory reaches
the boundary and is kept within the valid state. However, the
dynamics of the actual system are not accurately represented
because the real system reaches a reflecting saturation level
at the boundary. In out method, the trajectory highlights
the probabilistic effect of the reflected saturation boundary.
The receptors in the real system cannot maintain the full
concentration at 12 because the molecules of ADH have to
be released to permit new molecules to bind. The receptors
cannot fire in an unbound state, so the influence of the
ADH concentration must be reduced, as is evidenced by
the small drops in concentration near the boundary. These
drops eventually lead to a distinct difference between the
outcomes of the two trajectories. While both trajectories
eventually reach an equilibrium (not included in the figure),
the difference in the dynamics leading to equilibrium may
reveal new insights into the system. For these simulations,
we used a step size of Δt = .05 and initial conditions shown
in Table 2.
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Figure 6: Reflecting boundary in the water balance model
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Figure 7: Step size comparison

The step size of the approximation directly influences
the accuracy of the approximation. In Figure 7, we compare
four different step sizes and resulting trajectories with the
same initial conditions as the absorbing boundary example.
We saved the Brownian motion from the highest-resolution
trajectory to match it at each lower-resolution time step to
ensure the comparison is appropriate. At very fine resolu-
tions the system becomes highly noisy. Thus, using more
accurate approximation techniques with higher orders of
convergence ensures that larger time steps can be used to
maintain acceptable accuracy without having to approxi-
mate the highly noisy dynamics that lead to zeno behavior
at boundaries if not handled carefully.

The performance results are presented in Table 3. We
ran 1000 sequential simulations of each algorithm at the
given resolution. The proposed method increases the running
time relative to the baseline method; however, the increase is
small, the method scales well, and the accuracy improvement

Table 2: Initial conditions

Variable x1 x2 x3

Absorbing 39790 2132 1
Reflecting 39700 2132 11

Table 3: Execution times (sec)

Resolution Baseline Algorithm 3.1
.0001 352 374
.0002 176 189
.0005 70 75
.001 37 38

is significant. The simulations were performed on a 3GHz
desktop computer with 1GB of RAM.

5 CONCLUSION

Accurate and efficient simulation of SHS is an important
task because it is an important tool that can expose the
intricacies of the complicated dynamics of highly-coupled
systems like biochemical processes. The interplay between
the continuous and discrete dynamics in SHS can intro-
duce large errors into the simulations at the boundaries, so
they must be approximated carefully. The EM technique
for simulating SDEs combined with probabilistic absorbing
boundary detection and reflecting boundary calculation im-
proves the accuracy and efficiency of the simulator when
compared with the naive approaches.
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