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ABSTRACT

The trend in computing architectures has been toward multi-

core central processing units (CPUs) and graphics processing

units (GPUs). An affordable and highly parallelizable GPU

is practical example of Single Instruction, Multiple Data

(SIMD) architectures oriented toward stream processing.

While the GPU architectures and languages are fairly easily

employed for inherently time-synchronous based simulation

models, it is less clear if or how one might employ them

for queuing model simulation, which has an asynchronous

behavior. We have derived a two-step process that allows

SIMD-style simulation on queuing networks, by initially

performing SIMD computation over a cluster and following

this research with a GPU experiment. The two-step process

simulates approximate time events synchronously and then

reduces the error in output statistics by compensating for

it based on error analysis trends. We present our findings

to show that, while the outputs are approximate, one may

obtain reasonably accurate summary statistics quickly.

1 INTRODUCTION

A typical type of discrete event model is a queuing model.

Queuing models are constructed to simulate humanly engi-

neered systems where jobs, parts, or people flow through

a network of nodes (i.e., resources). The study of queuing

models, their simulation, and analysis is one of the primary

research topics studied within the discrete event simulation

community (Law and Kelton 2006).

Queuing model simulation can be expensive in terms of

time and resources in cases where the models are composed

of multiple resource nodes and tokens that flow through the

system. Therefore, there is a need to find ways to speed up

queuing model simulations so that analyses can be obtained

more quickly. Past approaches to speeding up queuing model

simulation have used asynchronous message-passing with

special emphasis on two approaches: the conservative and

optimistic approaches (Fujimoto 2000). Both approaches

have been used to synchronize the asynchronous logical

processors (LPs), preserving causal relationships across LPs

so that the results obtained are exactly the same as those

produced by sequential simulation. Most studies of parallel

simulation have been performed on Multiple Instruction,

Multiple Data (MIMD) machines or related networks to

execute the part of a simulation model or LPs. This approach

could easily be employed with a queuing model simulation

since the start of each execution needs not be explicitly

synchronized with other LPs.

Recently, parallel simulation has extended its boundary

from PCs and workstations to programmable hardware such

as a GPU, and a Cell processor (Kumar and Radha 2007).

The GPU has become an increasingly attractive option as

it is ubiquitous and has enough computational power to

substitute for the expensive clusters of workstations, at a

relatively low cost (Owens et al. 2005). However, the GPU is

SIMD-based hardware oriented toward stream processing.

SIMD hardware is a relatively simple, inexpensive, and

highly parallel architecture, but some applications cannot

easily be run using SIMD due to its lack of programming

flexibility.

Most proposed works for simulation using the GPU are

compute-intensive models with coarse-grained events while

the queuing models are too fine-grained to benefit from the

GPU. Moreover, other studies (Perumalla 2006; Ayani and

Berkman 1993) have shown that time-synchronous simula-

tion models are well suited to SIMD-style simulation while

the queuing model simulation usually has asynchronous

behavior, and thus may be less suitable.

This paper presents a new method for asynchronous

queuing network simulation on SIMD hardware. The issue

with using SIMD is that event times need to be modified so

that they could be synchronized. This process naturally leads

to approximation errors in the summary statistics yielded

from the simulation. In our experiments, the error may be

found to be acceptable for particular modeled applications

where the analyst is more concerned with speed and can

tolerate relatively minor inaccuracy in summary statistics.
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In some cases, the error can be approximated and potentially

corrected to yield more accurate statistics.

This paper is organized as follows. Section 2 describes

related work. Section 3 presents our simulation methodology

with a hybrid time synchronous/event algorithm. Section

4 shows our experimental results, including accuracy and

performance. Section 5 analyzes the errors produced by

the time interval. Section 6 concludes this approach and

presents future work.

2 RELATED WORK

2.1 Simulation on SIMD Hardware

In the ’90s, efforts were made to parallelize discrete event

simulation using a SIMD approach given that with a balanced

workload, SIMD has the potential to significantly speed up a

simulation. The research performed in this area was focused

on replication. The processors were used to parallelize

the choice of parameter by implementing a standard clock

algorithm (Vakili 1992; Patsis, Chen, and Larson 1997).

Ayani and Berkman (1993) used SIMD for parallelizing

simultaneous event execution but SIMD was determined to

be a poor choice because of the uneven distribution of timed

events. There is a need to fill the gap between asynchronous

applications and synchronous machines so that the SIMD

machine can be utilized for asynchronous applications (Shu

and Wu 1995).

Recently, the computer graphics community has widely

published on the use of the GPU for physical and geometric

problem solving. The types of models used here have the

property of being decomposable over a variable or parameter

space, such as cellular automata (Gobron, Devillard, and Heit

2007) for discrete spaces and partial differential equations

(PDEs) (Harris et al. 2003; Nyland, Harris, and Prins 2007)

for continuous spaces. Queuing models, however, do not

adhere to this property.

Perumalla (2006) indicates that selective individual ex-

ecution such as discrete event simulation is extremely in-

efficient on the GPU. He performed the first discrete event

simulation on a GPU by running a diffusion simulation. His

hybrid algorithm combines the time-stepped and discrete

event algorithm to use the GPU as the sole architecture

in the simulation because the event scheduling method is

assumed not to be compatible with GPUs. A minimum

event time was chosen from the list of update times, and

used as a time-step to synchronously update all elements

on a grid. It was found that the GPU is well-suited to a

time-stepped algorithm and a significant performance im-

provement is expected when the problem size is larger than

an L2 cache size of the CPU.

Xu and Bagrodia (2007) proposed the discrete event

simulation framework for network simulation. They used

the GPU to distribute compute-intensive workloads, such

as differential equations and least square estimations for

high-fidelity network simulations. The two examples of

discrete event simulation are coarse-grained as well as time-

synchronous models. Perumalla’s hybrid algorithm requires

updating of the entire grid because selective updates of

individual elements are not possible on a grid.

2.2 Relaxed Synchronization

Relaxed synchronization is one of the synchronization meth-

ods to improve the performance in parallel simulation at

the cost of accuracy. Tolerant synchronization (Martini,

Rümekasten, and Tölle 1997) and unsynchronized discrete

event simulation (Rao et al. 1998) are examples of relaxed

synchronization. State-matching is the most dominant prob-

lem in a time-parallel simulation (Fujimoto 2000) as with

synchronization in a space-parallel simulation. If the ini-

tial and final states are not matched at the boundary of

a time interval, re-computation of those time intervals de-

grades simulation performance. Approximation simulations

(Wang and Abrams 1992; Kiesling and Pohl 2004) have

been used to solve this problem with a loss of accuracy in

order to improve the simulation performance.

Fujimoto (1999) proposed exploitation of temporal un-

certainty, which introduces approximate time. Approximate

time is a time interval for the execution time of the event

rather than a precise timestamp. The precise timestamp can

be relaxed into the time interval due to temporal uncertainty.

When approximate time is used, the time intervals of events

on the different LPs can be overlapped on the timeline at

one common point. Although events on the different LPs

have to wait for a synchronization signal with a conservative

method when a precise timestamp is assigned, events can

be executed concurrently if their time intervals overlap with

each other. The performance is improved due to increased

concurrency, but at the cost of accuracy in the results of

simulation. Our approach differs from this method in that

we do not assign a time interval to each event, and events

are clustered at a time interval when they are extracted from

the future event list (FEL). In addition, an approximate time

is executed based on a MIMD scheme that partitions the

simulation model whereas our approach is based on a SIMD

scheme.

Our research differs from the previous related work in

the following ways:

• The time interval is used to execute events concur-

rently for the purpose of reducing the number of idle

processors on a SIMD machine during simulation.

• The simulation runtime is reduced at the expense of

accuracy, but timestamp ordering is still preserved,

contrary to other approximation studies.
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• The simulation model is not partitioned into several

LPs, so complicated synchronization methods are

not required.

3 HYBRID TIME-SYNCHRONOUS/EVENT
APPROACH

3.1 Methodology and Algorithm

We used a parallel simulation method based on a SIMD

scheme so that events with the same timestamp value are

executed concurrently. If there are two or more events with

the same timestamp, they are clustered into a list, and each

event on the list, to be executed concurrently, is sent to

each processor. The algorithm combines the processors, or

CPU and GPU, into a master-slave paradigm. One master

processor, or CPU, works as the control unit, and several

slave processors, or GPUs, execute the programmed codes

or kernels.

The simulation begins with the extraction of the event

with the lowest timestamp from an FEL in the master

processor. Event extraction continues for as long as the

next event has the same timestamp. All events with the

same timestamp are created as a current event list (CEL)

from the FEL. Each event in the CEL is sent to one of the

slave processors. When the master processor assigns events

to slave processors, dynamic mapping is used between the

logical and physical processors. After execution on a slave

processor, the results and timestamp increments for the next

execution are returned to the master processor. Then, the

next corresponding event is scheduled to the FEL with a

timestamp increment. Until all the results are received from

the slave processors, the master processor does not proceed

to extract the next event for the purpose of synchronizing

the parallel simulation.

However, it is improbable that several events will occur

at a single point of simulated time. In this case, many

slave processors will be idle, waiting for the end of the

current execution on other slave processors. This makes

the overall performance inefficient. If the length of the

timestamp is further away from the precise timestamp, more

events can be gathered into the CEL. To have more events

occurring concurrently and reduce the load imbalance across

the processors, we introduce a time interval instead of a

precise time. The master processor extracts events from

the FEL at the end of the time interval. Clustering events

that occur within a time interval makes it possible for many

more events to be executed at a single point of simulated

time, which prevents the slave processors from being idle,

and achieves more effective parallel processing.

Figure 1 illustrates a time-synchronous/event algorithm

written in Java pseudo-code. A time-synchronous/event

algorithm is a hybrid algorithm of discrete event simulation

and time-stepped simulation. The main difference between

the two types of discrete simulation is a time-advance

algorithm. Our approach is similar to a time-stepped

simulation in that we execute events at the end of the time

interval to improve the degree of parallelism. However,

time-stepped simulation can be inefficient if the state

changes in the simulation model occur irregularly, or if

event density is low at the time interval. The clock has to

advance to the next time-step with idle processing time if

there is no event at the current time-step, and this reduces

the efficiency of the simulation.

public static void main()
while (currentTime <= simulationTime)

eventList = NextEventTI(interval);

executes eventList;

end while
end main

public eventlist NextEventTI(interval)
eventTime = the lowest timestamp from FEL;

currentStep = the smallest multiple of

time interval greater than or equal to eventTime;

while (eventTime <= currentStep)

currentList += currentEvent;

end while
currentTime = currentStep;

return currentList;

end NextEventTI

Figure 1: Hybrid time-synchronous/event algorithm

Our approach is based on discrete event simulation in

that the clock advances by the next event, rather than the

next time-step. When the NextEventTI() method is called, it

checks the event with the lowest timestamp from the FEL.

The NextEventTI() method extracts all events from the FEL

at a time when their timestamp is less than, or equal to

the currentStep. The currentStep is the smallest multiple of

the time interval that is greater than or equal to the current

event time. Extracted events are clustered into a CEL and

executed concurrently. The time interval in our approach is

used to execute events concurrently rather than to advance

the clock. After executing events, the clock advances to the

next lowest event time, and not to the next time-step.

However, if events are executed only at the end of

the time interval, the results lose accuracy because each

event has to be delayed in its execution compared to its

original timestamp. Fortunately, we can approximate the

error due to the stochastic nature of queues. For small

and non-complex queuing networks, the analytic model can

provide the statistics without running a simulation based on

queuing theory, albeit with assumptions and approximations

(Kleinrock 1975; Bolch et al. 2006). We use queuing theory
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to estimate the total error rate. The time interval can be

another parameter of the queuing model combined with two

other parameters: arrival and service rate. With the use of

the time interval, the error rate caused by the time interval

is related to the arrival and service rates, and the amount

of error depends on the values of these parameters. The

relationships between the time interval and parameters are

described in Section 4 and 5.

3.2 Timestamp Ordering

In parallel simulation, the purpose of synchronization is to

process the events in timestamp order to get the same results

as those of sequential simulation. Relaxed synchronization

allows the timestamp ordering to be violated within certain

limits, whereas our approach does not allow it. We need

not synchronize the clocks between processors due to the

global event list and clock. The master processor does not

proceed in extracting the next event list until it receives the

results from all the slave processors. The error caused by

the time interval is different from the causal error because

the timestamp ordering is preserved even though events are

clustered at the end of the time interval. The synchronous

step of the simulation preserves the executions of events

in timestamp order, blocking the event extractions from the

FEL before the current events finish scheduling the next

events.

A lookahead can be used as a time interval. If a

time interval is set to be less than the lookahead in the

simulation model, all events in the current time interval are

independent of each other. The timestamp of the new event,

generated by the currently executed events, must be larger

than the time of the current time-step because the minimum

increment of the next event time is greater than a time

interval. This guarantees that it is safe to process the events

in the current time interval at the same time since no events

can be scheduled before the currently executed events. In

this case, the causal relationship between events, as well as

the timestamp ordering, is preserved as synchronization in

a conservative approach.

3.3 Open and Closed Queuing Networks

Queuing networks are classified into two types: open and

closed (Bolch et al. 2006). Let a token denote any type

of customer that requests service at the service facility.

The main difference between these two types of queuing

networks is that the open queuing network has new arrivals

during simulation. The number of tokens in the open queuing

network at an instant of time is always different due to the

arrival and departure rates. The closed queuing network has

a constant number of tokens during simulation since there

are no new arrivals and departures. The error rate produced

by the use of a time interval will be different between the

two queuing networks since the number of tokens in the

system affects the simulation results.

In the open queuing network, the arrival rate remains

constant even if the events are only executed at the end of

each time interval. A delayed execution time for each event,

compared to its precise timestamp, decreases the departure

rate from the queuing network, resulting in an increased

number of tokens in the system. As the number of tokens

increases, the waiting time also increases since the length

of the queue at the service facility increases. In the closed

queuing network, we only need to consider the arrival and

departure rates between the service facilities because there

is no entry from the outside. The delayed tokens arrive at

the next service facility as late as the difference between

their original timestamps and actual execution times. The

length of the queue at the service facility remains unchanged

by the time interval because all tokens in the system are

delayed at the same rate.

4 EXPERIMENTAL RESULTS

4.1 Simulation Environment

We initially conducted experiments over clusters of work-

stations. The clusters used for the simulation are composed

of 24 Sun workstations interconnected by a 100Mbps Ether-

net. Each workstation is a Sun SPARC 1GHz machine with

a running version 5.8 of the Solaris operating system with

512MB of main memory. The application was developed

using SimPack (Fishwick 1992). SimPack is a simulation

toolkit which supports the construction of various types

of models and is executing the simulation. The results

represented in this paper are the average value of five runs.

4.2 Simulation Models

We used two kinds of queuing network models, closed and

open queuing networks to identify the difference between

the two models when we ran a simulation using the time

interval. We compared the results of the closed queuing

network with those of the open queuing network first, and

analyzed the accuracy of the closed queuing network.

4.2.1 Closed Queuing network

The first model is the queuing network of the toroidal topol-

ogy based on PHOLD (Fujimoto 1990). The application is

an example of the closed queuing network interconnected

with the service facility. Each service facility is connected

to its four neighbors. When the token arrives at the service

facility, the service time is assigned to the token by the ran-

dom number generator with exponential distribution. After

being served by the service facility, the token moves to one

of its four neighbors selected with uniform distribution.
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Communication delay of the null message between

master and slave processors was measured as less than 1

millisecond (ms), but it overwhelms ten microseconds (μs)

of the computation speed for each event. We configured

the computation granularity to 1 ms, adding the 1 ms delay

method to the event processing routine. The values of various

parameters can be important factor affecting accuracy and

performance. We ran the simulation with several parameter

settings, such as the time interval, message population, mean

service time, and the number of service facilities, to see the

effect of those parameters.

4.2.2 Open Queuing Network

We modified the closed queuing network (CQN) model

(Bagrodia and Takai 2000) into the open queuing network,

as shown in Figure 2. The original model consists of N
linear queuing networks with one switch and k servers.

We modified this model, adding new arrivals from the

calling population and the branch at the end of the linear

queuing network. A new token arrives at the system

based on arrival rate λ from the calling population.

The new arrival token is assigned to one of the linear

queuing networks with uniform distribution. After being

served at the last server in the linear queuing network,

the token completes its job and exits the system with

probability Po, or is assigned to the switch with probability

Pi. The switch forwards the token to one of the linear

queuing networks with uniform distribution. The arrival

and service times are determined by exponential distribution.

Calling

Population

pi

Switch Server po

Switch po

pi

Switch po

pi

Server Server

Server Server Server

Server Server Server

Figure 2: 3 (switches) × 3 (servers) open queuing network

4.3 Accuracy

4.3.1 Open vs. Closed Queuing Network

The values of parameters and the number of service facilities

for closed and open queuing networks are configured to get

similar results when the time interval is set to zero. The

results for various time intervals are compared with those

of a time interval of zero to determine the accuracy. The

mean service time of the facility is set to 5 with exponential

distribution for both queuing networks. In the closed queuing

network, the message population – the number of initially

assigned tokens per service facility – is set to 1. In the open

queuing network, the probability Po is 0.25 and Pi is 0.75.

We used the 16×16 topology as a basis for the experiment

to determine the accuracy and performance.

Two summary statistics are presented to see the dif-

ference by using the time interval, as shown in Figure 3.

Sojourn time is the average time for a token to stay per

service facility including the wait time in the queue. Uti-

lization represents the performance of the simulation model.
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Figure 3: Summary statistics of queuing network simulations

In each subsequent plot, the time interval is on the

horizontal axis. A time interval of zero indicates no error in

accuracy. As the interval increases, the error also increases

for the variable being measured on the vertical axis. Figure

3(a) shows the average sojourn time of open and closed

queuing networks for the time interval. It takes much longer

for a token to pass a facility in the open queuing network

since the number of tokens grows in the open queuing

network, compared to the closed queuing network as the

time interval increases. Figure 3(b) shows the utilization for

the time interval. Utilization of the closed queuing network

drops since arrivals for each facility are delayed due to
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the time interval, but that of the open queuing network is

almost constant since the increased number of tokens fills

up possible idle time.

4.3.2 Effects of Parameter Settings on Accuracy

The closed queuing network was used for simulation to

determine the effects of the parameter settings on accuracy.

Figure 4(a) shows the utilization of the 16×16 toroidal

queuing network, with variation in the mean service time

for the time interval. As the mean service time increases,

the ratio of the delayed time of a token at the service facility

to the mean service time decreases. The error, therefore,

decreases as the mean service time increases for the same

time interval.
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Figure 4: Statistics with varying parameter settings

Figure 4(b) shows the utilization with variation in the

message population (MP) and the number of facilities for

the three cases. Case1 and Case2 have the same density

of tokens, and Case1 and Case3 have the same number

of tokens. The same message population produces nearly

the same error in the results, regardless of the number of

facilities. We can say that the number of facilities has little

impact on the error rate, as shown in Figure 4(b).

4.4 Performance

The performance is calculated by comparing the runtime of a

parallel simulation with that of a sequential simulation. We

can expect better performance as the time interval increases

since many events are clustered at one time interval, however,

a large time interval also introduces more errors in the results.

Figure 5(a) shows the improvement in the performance

of the closed queuing network for the number of processors

and the time interval, with the same values of parameters that

were used in Figure 3. As expected, a larger time interval

leads to better performance. However, performance was

not improved even though the number of processors was

increased from 2 to 16 when a SIMD parallel simulation

scheme was used in the case where the time interval was set

to zero. Many processors are idle since there are few events

at a single point of simulated time. A large time interval

does not always yield good performance. The performance

improvement is related to both the number of events in one

time interval and the load balance. Specific information

for the simulation model is often needed to determine the

level of acceptable accuracy loss and the desired speed

improvement in the simulation.
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Figure 5: Performance improvement

Figure 5(b) shows the performance improvement for

the message population and the number of facilities with
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the same parameter settings, as shown in Figure 4(b). This

graph also indicates that the speed of the simulation is

heavily dependent upon the number of events during a time

interval.

4.5 GPU Experiment

The GPU experiment was conducted on a Dell XPS 710.

The XPS has an Intel Core 2 Extreme Quad processor with

2.66GHz and 3GB of main memory. Two Nvidia GeForce

8800 GTX GPUs (NVIDIA Corporation 2006) are deployed

on the XPS. Each GPU has 768MB of memory with a

memory bandwidth of 86.4GB/s. The CPU communicates

with the GPU via PCI-Express with a maximum of 4GB/s

in each direction. The GeForce 8800 GTX GPU is the first

GPU model unifying vertex, geometry and fragment shaders

into 128 individual stream processors (SPs). Each SP can

process the instructions in SIMD fashion. The application

was developed using the CUDA (NVIDIA Corporation 2007)

with SimPack. CUDA is a unified hardware and software

solution that allows the GeForce 8 series GPU to process

kernels on a specified number of threads. The active events

are selectively extracted from an event list and mapped into

streams as an array. The functions for event execution are

programmed into the kernel. This approach allows the CPU

to process an event list and to create streams while the GPU

executes streams in parallel.

The toroidal queuing network model was used for simu-

lation with a mean service time of 5, a time interval of 1 and

the message population of 1, with variations in the number

of facilities. During the simulation, the GPU produces two

random numbers for each active token; the service time

at the current service facility by exponential distribution,

and next service facility by uniform distribution. When

the CPU calls the kernel and passes the streams of active

tokens, threads on the GPU generate the results in parallel,

and return them to the CPU. The CPU schedules the tokens

using these results. No artificial delay method was used in

the GPU experiments.

Figure 6 shows the performance improvement in the

GPU experiments. The CPU-based simulation showed better

performance in the 16×16 facilities because (1) the sequen-

tial execution time in one time interval on the CPU was not

long enough compared to the data transfer time between the

CPU and GPU (2) the number of events in one time interval

was not enough to maximize the number of threads on the

GPU. The GPU-based simulation outperforms the sequen-

tial simulation when (1) is satisfied, and the performance

increases when (2) is satisfied. However, the performance

was not good enough when we compare the results with

other coarse-grained simulations. In the SIMD execution,

some parts of codes are processed in sequence, such as

the instruction fetch. The event processing method (e.g.,

the event insertion and extraction) performed in sequence

represents over 95% of the overall simulation time while

the event execution time (e.g., random number generation)

is reduced by utilizing the GPU. If we can parallelize this

part on the GPU, much better performance is expected since

event processing method occupies the large portion of the

overall simulation time in discrete event simulation.
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Figure 6: Performance improvement by GPU experiment

5 ERROR ANALYSIS

In this section, we explain how the error equation is derived

and the error is corrected to improve the accuracy of the

resulting statistics. The closed queuing network is used for

these analyses because there are, relatively, more parameters

to consider in the open queuing network, such as the arrival

rate and routing probability.

When a token is clustered at the end of the time interval,

the token is delayed by the amount of time between the

original and actual execution times. Let d denote the delay

time. When the token moves to the next service facility,

the inter-arrival time of the next service facility increases

by an average of d. The utilization of the M/M/1 queue is

defined by λ
μ , where λ and μ refer to the arrival and service

rates, respectively (Kleinrock 1975). The equation can also

be defined by s
a , where s and a refer to the service time and

inter-arrival time, respectively. Consider the linear queuing

network with two queues, and yield statistics at an instant in

time. The equation of utilization (ρ2) for the second queue

is defined by equation (1) since the instant inter-arrival time

at the second queue is the sum of the service time at the

first queue and the delay time by the time interval (TI).

ρ2 =
s

a+d
(1)

Let an error rate denote the rate of decrease in utilization

by the time interval. The error rate e can be defined by

equation (2).

e =
ρ2

ρ1
=

a
a+d

, where ρ1 =
s
a

and ρ2 =
s

a+d
(2)
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To calculate an average d, we have to consider the probability

P0 that the service facility does not contain a token. In the

open queuing network, the increased number of tokens due

to the time interval causes the probability P0 to drop, thus

d increases exponentially. In the closed queuing network,

the probability P0 is not affected by the time interval since

all tokens are delayed, reducing the arrival rate to each

service facility. All tokens have to wait until the end of the

time interval, thus the d of a long-run time-average is TI/2.

The decline in utilization is affected by half of the time

interval. The inter-arrival time of long-run time-average ā
in equation (2) approaches s̄, the service time of a long-run

time-average. When we substitute d = TI/2 into the equation

(2), the error rate e is defined by

e =
s̄

s̄+T I/2
(3)

The utilization with the time interval, ρ(TI) is defined by

equation (3), where TI0 refers to TI of 0.

ρ(T I) =
s̄

s̄+T I/2
×ρ(T I0) =

1

1+ μT I/2
×ρ(T I0) (4)

Consequently, we can derive the equation to correct the

error in utilization. The original value of the utilization in

the toroidal queuing network can be approximated by

ρ(T I0) = (1+ μT I/2)×ρ(T I) (5)

Figure 7 shows an error rate comparison between the exper-

imental and calculated results. As the ratio of the MST to TI

increases, the difference between the two results decreases.
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Figure 7: Experimental and calculated results

The equation of the utilization for the error correction

is not derived from the analysis of individual nodes. Our

intention is to approximate the total error rate when adding

one more parameter, time interval so that the error is cor-

rected to yield more accurate results. The equation for the

total error rate is easily derived from the existing equations

of queuing theory. The equation combined with the results

from the simulation produces more accurate results without

building a complicated analytical model from each node.

6 CONCLUSION AND FUTURE WORK

We have introduced a new method for simulating queuing

models based on a SIMD scheme. There has been little

research in the use of a SIMD platform for parallelizing

the simulation of queuing models in particular. The con-

cerns in the literature regarding event distribution and the

seemingly inappropriate application of GPUs for discrete

event simulation are addressed (1) by allowing events to

occur at approximate boundaries at the expense of accuracy,

and (2) by using a detection and compensation approach to

minimize the error. Our hypothesis regarding this research

is that the SIMD architecture (as exemplified by the GPU)

is useful for approximate discrete event simulation.

One of the problems in the cluster experiments was that

the communication delay was relatively large compared to

a traditional parallel simulation scheme. However, SIMD

hardware is designed to minimize the communication cost,

and the GPU experiments show that the effect of the com-

munication delay is very small. The GPU experiments show

that some parts of codes, the event scheduling, should be

parallelized so that we can more comprehensively harness

the computational power of the GPU. We are currently

implementing the event scheduling method for the GPU.

We are currently planning research regarding the imple-

mentation of a significant real-world application using our

algorithm and analytic approach. We also plan to study

optimization approaches for allowing the user to ”dial in”

a desired accuracy/performance tradeoff.
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