
A MODELING-BASED CLASSIFICATION ALGORITHM VALIDATED WITH SIMULATED DATA

Karen Hovsepian
Peter Anselmo

Subhasish Mazumdar

Computer Science Department
New Mexico Tech
801 Leroy Place

Socorro, NM 87801, U.S.A.

ABSTRACT

We present a Generalized Lotka-Volterra (GLV) based ap-
proach for modeling and simulation of supervised inductive
learning, and construction of an efficient classification al-
gorithm. The GLV equations, typically used to explain
the biological world, are employed to simulate the process
of inductive learning. In addition, the modeling approach
provides a key advantage over the more conventional con-
straint and optimization-based classification algorithms, as
influences of outliers and local patterns, which can lead to
problematic overfitting, are auto-moderated by the model
itself. We present the bare-bones algorithm and motivate the
model through axiomatic postulates. The algorithm is vali-
dated using benchmark simulated datasets, showing results
competitive with other cutting-edge algorithms.

1 INTRODUCTION

Within the expansive field of Artificial Intelligence, super-
vised inductive machine learning is a crucial area concerned
with algorithms for classification of observations based on
existing observation/class example pairs. The term induction
is due to this learn-from-examples framework. The observa-
tions can be either simulated or real, and a good supervised
inductive machine learning algorithm is one that general-
izes from the provided examples with most confidence and
least error. Such accurate classification can provides usable
information that otherwise would be difficult and costly to
obtain.

The field of supervised inductive machine learning has
seen powerful and robust algorithms, with good generaliza-
tion characteristics, as in the example of the well-known
Support Vector Machines (Cortes and Vapnik 1995), the
Genetic Algorithm (Mitchell 1996), Artificial Neural Net-
works (Abdi, Valentin, and Edelman 1999). Most of these
algorithms are constraint-based, seeking to minimize the

error on the dataset of provided examples, also known as
the training dataset. The motivation for training (empiri-
cal) error minimization is due to the well-known Empirical
Risk Minimization (Vapnik and Chervonenkis 1989) learn-
ing principle. Some robust algorithms from the list of
abovementioned algorithms are also optimized, seeking to
minimize the error in a way that maximizes the confidence
of the classification decision.

We present a classification algorithm based on a model
that simulates the induction process taking place in the
space of training observations. The states of this model
are what we call classification confidences, measuring the
classification influences of the example observations. Our
model describes the induction of these confidences and is
based on the Generalized Lotka-Volterra (GLV) equations
(Lotka 1925; Volterra 1926).

The original and the main context for GLV equations is
the modeling of ecological systems, where the states of the
model are population densities of the biological species in
question. The flexibility of the GLV equations is that they can
describe several types of interaction dynamics that take place
within the ecological system, such as predation, competition
(for resources), and mutualism/cooperation. The discrete-
time GLV equation is defined as:

α
(i)
t = α

(i)
t−1 +biα

(i)
t−1

1− ciα
(i)
t−1 +

N

∑
j=1
j 6=i

ai, jα
(j)
t−1

 (1)

where α
(i)
t is the population density of the ith species during

period t. The model contains fixed constants bi and ci,
known as the “per capita growth rate” and the coefficient
of within-species interaction, respectively. These specify
the rate of free growth from period-to-period and the rate
at which the density reaches its intrinsic limit, known as
the carrying capacity of the ecosystem for that species, due

768 978-1-4244-2708-6/08/$25.00 ©2008 IEEE

Proceedings of the 2008 Winter Simulation Conference
S. J. Mason, R. R. Hill, L. Mönch, O. Rose, T. Jefferson, J. W. Fowler eds.

Hovsepian, Anselmo, and Mazumdar

to competition for resources by members of the species.
Naturally, the full ecological model contains several GLV
equations, each describing a single biological species.

The term ∑
N
j=1
j 6=i

ai, jα
(j)
t−1 is the component of the model

responsible for introducing interactions. The constants ai, j
specify the sign and strength of interactions between every
pair of species. When ai, j is negative, the species j has a
negative effect on the growth of species i. If a j,i is also
negative, we have an example of competition. Conversely,
if both ai, j and a j,i are positive, the pair of species are
in a mutualistic/symbiotic relationship. Another common
interaction type is predation, when species i, the predator,
has a negative effect on species j, the prey, while j has a
positive effect on i.

The model we develop on the basis of the GLV equations
is also centered on interactions, but in our context interactions
are between training examples of the classification problem.
Whereas the equilibrium in an ecological model signifies a
steady-state where all surviving species coexist with each
other, our model’s equilibrium is a state where all viable data
patterns have been consulted and taken into consideration,
and a consensus on the classification confidences of the
training observations has been reached.

The outline of the paper is as follows. In the first
section we introduce the postulates that motivate the use of
our adapted model to supervised inductive learning. Then
we present the full induction model, following which we
formulate the algorithm itself, including the various essential
coefficients. Following that we present the decision function.
Lastly, we present the results of validation experiments, and
conclude with a summary of our approach and future work.

2 INDUCTION MODEL

The classification induction problem is defined as follows:
given a set of training input vectors X = {xi ∈ Rn|i =
1, . . . ,N} and a set of training output scalars, i.e. class
labels, Y = {yi ∈ {1, . . . ,k}|i = 1, . . . ,N}; find the decision
function f (α) : x∗ → ŷ, where x∗ is an unclassified input
vector, and ŷ is our estimation of x∗’s “true” output. In the
framework of machine learning, the training algorithm is
said to “choose” this decision function from the set of deci-
sion functions F = { f (x,α)|α ∈Λ} by computing/inducing
the vector α , which uniquely parameterizes the decision
function f .

2.1 Induction Postulates

At the core of our proposed model is the measure classifica-
tion confidence, which is shortened in the paper to simply
confidence. For training vectors, this quantity measures
the strength of a vector’s membership in its corresponding
class — the greater it is, the more confident we are that

the vector belongs to the class. In the context of inductive
machine learning, the trained confidences are the induction
parameters in vector α , mentioned earlier. Table 1 lists all
the symbols associated with the confidence measure.

Confidences are the states of our model. Prior to the
convergence of the model we consider the confidences to be
partially trained, with the fully trained confidences found
at the convergence of the model. In the context of machine
learning methodology, confidences are the trainable param-
eters of our decision function —vector α . Thus, solving the
convergence problem of our inductive model corresponds
to training/choosing the decision function parameters.

The first group of postulates connects the modeling
framework to the machine learning framework by present-
ing the model convergence problem and outlining how the
trained confidences are utilized in the decision function.

Postulate 2.1 Define a sequence
{

α
(i)
t

}
of partially

learned confidences for ith training vector, where t is the
learning step index. The final learned confidence is found
at the convergence limit of this sequence:

αi = lim
t→∞

α
(i)
t (2)

Postulate 2.1 states that αi, i.e. the trained confidence
for xi, is found at the convergence limit of the sequence{

α
(i)
t

}
. Consequently, induction is the process that leads

to joint convergence of all confidences.
The model that describes the induction of the partially

trained confidences is defined in postulate 2.2 as a system
of first-order recurrence equations, one for each confidence.

Postulate 2.2 Sequence
{

α
(i)
t

}
is formulated as a

recurrence equation:

α
(i)
t = α

(i)
t−1 +gi (At−1,X ,Y) , i = 1, . . . ,N, (3)

where gi (At−1,X ,Y)→R is the recurrence formula for the
ith training vector.

We adopt the GLV equations, defined earlier, to formu-
late the recurrence equations gi(· · ·). The conceptual and
philosophical motivations for using the GLV equations in
this context are described in the next section.

Postulate 2.3 Define a function hc(A,X ,Y,x∗) :
RN ×RnN ×Z+N ×Rn → R for each class label c, such
that

α̂c = hc(A,X ,Y,x∗). (4)

Then, the predicted class of x∗ is chosen by comparing the
predicted classification confidences for all class labels:

ŷ = argmax
ci

(α̂ci |i = 1, . . . ,k). (5)

769

Hovsepian, Anselmo, and Mazumdar

Table 1: All symbols related to the classification confidence concept.

αi ≥ 0 : trained classification confidence of training vector xi.
A = {αi|i = 1, . . . ,N} : vector of trained classification confidences of all training vectors.

α
(i)
t : partially trained classification confidence of ith training vector at induction step t.

Aτ =
{

α
(i)
τ |i = 1, . . . ,N

}
: vector of partially trained classification confidences at step τ .

α̂c ∈ R : predicted classification confidence of x∗, assuming it belongs to class c.

The class with the highest predicted confidence — the
class that is predicted to be the best fit for x∗ — is chosen
as ŷ.

2.2 Induction Model

Below we present the full formulation of the model used for
inductive machine learning. As mentioned in the Introduc-
tion, the model uses GLV equations, due to applicability of
the core concepts expressed by the GLV equations to the
paradigm of inductive learning.

α
(i)
t = α

(i)
t−1 +α

(i)
t−1

1−α
(i)
t−1 +

N

∑
j=1
j 6=i

δi, jsi, jα
(j)
t−1


i = 1, . . . ,N,

(6)

The model is based on two dynamic principles. The first is
logistic growth, characterized by near-exponential increase
of the confidences when they are small, and decay when
they reach some critical size. In the context of ecological
modeling, logistic growth allows finite convergence of the
population densities to the carrying capacity of the ecosys-
tem, caused by intra-species competition and scarcity of
resources.

In our context, logistic growth is explained with the
following postulate:

Postulate 2.4 (Maximal overfitting)

∀i, t : ∃m > 0 :
gi(At , · · ·)−gi(At−1, · · ·)

α
(i)
t −α

(i)
t−1

∝ (m−α
(i)
t−1)

The maximal overfitting postulate 2.4 states that the
slope of the recurrence function is proportional to the inflec-
tion point m minus the previous confidence α

(i)
t−1. Thus, if

confidence at the previous induction step was much smaller
than m, the direction and rate of confidence change is pos-
itive and proportionally high. In contrast, if the previous
confidence is above m, the next induced confidence will be
lower.

Essentially this postulate describes how each training
vector can attain its full potential confidence, if it were to
completely decide for itself. Consisting of this principle
alone, the model creates conditions for maximal overfitting,
because each confidence is induced in isolation relying on
the training vector alone, as if it were its own class. The part
of the equation in (6) that implements the logistic growth
principle is the term α

(i)
t−1

1−α
(i)
t−1

, with m in Postulate
2.4 equal to 1.

The second dynamic principle of the model is inter-
action between the training examples. As with logistic
growth [maximal overfitting principle], interaction is a key
principle in the context of ecological modeling, affecting
the growth/change of every species’ population density dur-
ing each discrete time period. The interaction effect can
either be positive, as between cooperating/symbiotic or-
ganisms, or negative, as in the case of competition or
harvesting/predation.

In our induction model, this principle corresponds to
regularization of learning, by relating induction of each
vector’s confidence to the induction of all other vectors’
confidences, thus moderating the maximal overfitting prin-
ciple. The following two postulates motivate positive and
negative interactions between the confidences of input vec-
tors.

Postulate 2.5 (Negative Interaction)

∀i, j, t : yi 6= y j⇒
gi(At+1, · · ·)−gi(At , · · ·)

α
(j)
t+1−α

(j)
t

< 0

The motivation for mutually negative interaction be-
tween vectors of opposing classes is that being more certain
that patterns in one part of the space belong to a certain
class implies that we are less confident in the classification
of vectors from another class, situated near or around that
part of the space.

Postulate 2.6 (Positive Interaction)

∀i, j, t : yi = y j⇒
gi(At+1, · · ·)−gi(At , · · ·)

α
(j)
t+1−α

(j)
t

> 0

770

Hovsepian, Anselmo, and Mazumdar

By contrast, postulate 2.6 states that vectors from the
same class have mutually positive effects on the growths of
each other’s confidences, justified by the shared classification
and also as a way to counteract the effect of negative
interaction with vectors of other classes.

In the model formulation, the term ∑
N
j=1
j 6=i

δi, jsi, jα
(j)
t−1

implements the interaction principle, with δi, j differentiating
between positive and negative interactions. The model also
uses the interaction strength coefficient si, j, defined for
each pair of vectors, which quantifies the strength of the
interaction. Greater si, j allows the confidence of vector j
to have greater effect on the rate and direction of change
of confidence of vector i.

2.3 Induction Model Convergence

Before we discuss the convergence and equilibrium con-
ditions of our model, it is convenient to switch from the
discrete-time recurrence model to continuous-time differ-
ential model. The only difference introduced with this
formulation is that now induction takes place every instant
of time, whereby the confidences also change values con-
tinuously. To model this continuous, instantaneous time,
induction, a system of differential equations takes the place
of the system of recurrence equations. This means that
equations (6) are rewritten as:

dαi

dt
= αi

1−αi +
N

∑
j=1
j 6=i

δi, jsi, jα j

 , (7)

where αi is defined as a function of time. This is a system
of linear first-order differential equations. The convergence,
or equilibrium, is found by setting the right-hand side to 0,
and finding the roots (Meerschaert 1999). This results in
the following linear system of equations:

AI(1−MA) = 0, (8)

given a N× 1 vector A = {αi|i = 1, . . . ,N}, an N×N di-
agonal matrix AI =

{
AI

i,i = αi|i = 1, . . . ,N
}

, and an N×N
matrix M, defined earlier.

The system (8) may have solutions where, where some,
or indeed all, αi’s are 0, due to the term AI . However, since
the induction outcome with any training confidence equal
to 0 is not preferred, we can focus our attention only on
the parenthesized term, solving the following equation:

1−MA = 0, (9)

Solving (9) attains what is known in population ecology as
the “community equilibrium”, whereby all species coexist

in an equilibrium. This is the system we first introduced in
the beginning of the paper. To be sure that a “community
equilibrium” exists, we must ascertain that det(M) 6= 0.

The trained confidences are found by solving the linear
non-homogeneous system (9). It’s important that it is a
stable equilibrium, in order to ascertain that the partially
trained confidences will indeed converge to the fully trained
confidences. A key theorem on systems of differential
equations states that an equilibrium is stable if and only
if all eigenvalues of the Jacobian of the left hand side of
(8), evaluated at the equilibrium values, have negative real
parts (Hirsch and Smale 1974). As a necessary condition
for stability of the equilibrium the determinant cannot be
allowed to be negative.

2.4 The Convergence Solution System

Based on the above discussion, we formally present the
system of linear equations that represents the solution to
our proposed model’s convergence problem.

MA =−1, (9)

where M is a full-rank N ×N matrix, and A is a N ×
1 vector, corresponding to the aforementioned parameter
vector α . We solve the system above in order to find the
tuning parameters of our decision function; after that we
can proceed to classify new observations. Without jumping
too much ahead, we should note that the above system is the
solution to the convergence problem of our stated induction
model. Let us define M, which we call our interaction
matrix:

M =
{

Mi, j|i, j = 1, . . . ,N
}

, (10)

with Mi, j =

{
−1 if i = j
δi, jsi, j otherwise.

The sign of every off-diagonal entry in M, given by the
coefficient δi, j, depends on whether the row-indexed input
vector is from the same class as the column-indexed vector
— δi, j is 1 when yi = y j and −1 when yi 6= y j.

The absolute value of every off-diagonal entry is what
we call the “interaction coefficient” si, j ∈ (0,1], unique not
only for each i and j, but also for the order in which they
are paired: si, j 6= s j,i. We will present their full computation
formulae in the next section.

2.5 Interaction Coefficients

The interaction coefficient si, j is defined as the product
of three multipliers. These are: “similarity”, “relevance

771

Hovsepian, Anselmo, and Mazumdar

weight”, and “class bias penalty”.

si, j =[similarity]i, j

× [relevance weight]i
× [class bias penalty]y j

(11)

Kernels are central to M’s construction. The similarity
multiplier, as its name suggests, measures the similarity
between ith and jth vectors. By using kernels to compute
the similarity multiplier, we allow arbitrary levels of non-
linearity, and hence capacity, for out classifier. In our work
we have explored two kernels: the Radial Basis Function,

K(u,v) = e−‖u−v‖σ , (12)

and a kernel based on the hyperbolic tangent function,

K(u,v) = 1− tanh(‖u− v‖σ). (13)

Both kernel functions morph all Euclidean distances into
one of two polarities: 0 or 1, and σ modulates the degree
of morphing. Prior to starting the training phase, the user
chooses the kernel and the σ , which are used to compute
the interaction coefficients. For example, for high σ ’s, most
Euclidean distances are morphed into near-zero values, and
only very short Euclidean distances are morphed into values
close to 1.

[similarity]i, j = K(xi,x j) (14)

Besides the similarity multiplier, the interaction coef-
ficient is based on the relevance weight multiplier, which
also uses kernels:

[relevance weight]i =
ξi

∑
N
j=1

y j=yi

ξ j

ζi

∑
N
j=1

y j=yi

ζ j
, (15)

where the quantities ξi and ζi, which can be loosely named
“similarity to opposite classes” and “similarity to own class”,
are defined as:

ξi =

√√√√√ N

∑
j=1

y j 6=yi

(K(xi,x j))
2 (16)

ζi =

√√√√√ N

∑
j=1

y j=yi

(K(xi,x j))
2. (17)

The relevance weight multiplier is essentially the product of
two ratios, quantifying the relative distance of the ith vector
to opposite and own classes, respectively. The weight takes

on values between 0 and 1, with the more “relevant” or
“important” vectors having relevance weights closer to 1.

The final multiplier used to define the interaction co-
efficients is the class bias penalty, computed on the basis
of the distance to own class, defined above:

[class bias penalty]y j = 1−
θy j

∑
k
c=1 θc

(18)

θc =
∑

N
i=1
yi=c

ζi

Nc
. (19)

where Nc is the number of input vectors in class c. Essen-
tially, θc is a measure of spread for class c.

The above definitions of the components of matrix
M illustrate that it is not positive-definite. While kernel
functions are central to its construction, matrix M cannot
be categorized as a kernel Gram matrix, used in methods
like Support Vector Machines and regularized least-squares.
A kernel Gram matrix consists only of kernels. Matrix M
on the other hand consists of coefficients, in which kernels
serve a specific role — quantifying the similarity between
vectors.

Once all interaction coefficients are computed and the
matrix is constructed, the algorithm simply solves the system
(9). The solution is performed by first computing the LU
decomposition and solving two easier subproblems. This is
a standard method used by most commercial solvers. With
the solution to (9) found, we have the parameter vector of
our decision function and we can proceed to classification
of new unclassified vectors.

2.6 Heuristic Motivation of Interaction Coefficients

Here we present an explanation of the modeling logic and
motivation for the use of kernels and the multipliers of the
interaction coefficients (11). The similarity multiplier (14)
is the basis of the interaction coefficient. The basic heuristic
at work here is that more similar vectors should experience
more interaction and have stronger effect on induction of
each other’s confidences. For this simple reason, kernels are
ideal, since they attain values close to 1 for highly similar
vectors and values closer to 0 for dissimilar vectors. For
vectors of the same class, the rationale for stronger positive
interaction resulting from more similarity is that increased
sharing of patterns between vectors of the same class further
cements our confidence that these shared patterns belong
to their common class. For vectors of different classes,
on the other hand, more similarity suggests that stronger
competition should take place, since the patterns in such a
small space can’t belong to both classes at the same time.

Next we try to explain the basis for multiplying the
similarity by the relevance weight. Broadly speaking, the
goal is to adjust the raw potential interaction strength of

772

Hovsepian, Anselmo, and Mazumdar

Figure 1: An example illustrating how vectors have unique
priorities and relevances within their classes.

each vector xi, which is given by the similarity multiplier,
by a scalar that represents how important it is to interact
with xi. This is done because not all vectors in the dataset
are as relevant as others. Some vectors play pivotal roles in
assuring high confidences for other vectors in their classes,
while others are so far from the ‘action’ that they are virtually
irrelevant.

From the earlier section, the relevance weight is equal
to a product of two ratios:

[relevance weight]i =
ξi

∑
N
j=1

y j=yi

ξ j

ζi

∑
N
j=1

y j=yi

ζ j
(15)

The first ratio ranks, as a scalar between 0 and 1, xi’s relative
similarity to other classes. The nearer a vector is to other
classes, the more contentious it is, and since it represents
the more contentious patterns, it gains priority with respect
to all positive and negative interactions.

As an example of this prioritization, we refer to Figure
1. By virtue of its proximity to the opposite class, x plays
an important role in assisting the confidences of vectors in
its class, including those of the less contentious y and z.
Hence, we need to concentrate z’s positive effect on x at the
cost of its effect on y, even though x and y are equidistant
from it.

The second ratio in (15) ranks, as a scalar between 0 and
1, xi’s relative similarity to its own class. The purpose of this
ratio is to more accurately compute the relevance weights
for vectors that are situated far from their own classes. The
reasoning is that a vector, even one situated near opposite
classes, that does not represent its class very well cannot be
as relevant as one that does. More specifically, this quantity
would make sure that extreme outliers, i.e., vectors situated

near other classes, but far from their own classes, do not
end up with very large relevance weights.

In general terms, the relevance weight is defined on the
basis of the joint assessment of how well the vector defines
the contentious patterns and how well it defines the bulk
of its own class, or the easier patterns. The intuitive result
is that a highly relevant vector xi is one that captures the
difficult patterns, which however have a decent chance of
being determined to belong to xi’s class.

The third and final multiplier of the interaction co-
efficient is the class bias penalty multiplier. Class bias is
determined by how large and how ‘tight’ the class is relative
to others. The size of the class is simply the number of vec-
tors in the class and the tightness is determined by the sum
of similarities of all vectors in the class to all other vectors in
the class. Loosely speaking vectors of larger and/or tighter
classes enjoy more and/or stronger positive interactions. An
artifact of this relative class superiority is that these vectors
will attain higher confidences than vectors of other classes.
Consequently, this class will enjoy “unfair competition” and
will outclass all other vectors simply because the training
dataset contains more or more tightly grouped examples
of this class. It brings to mind the well-known maximal
margin separation based classifiers, such as SVMs (Cortes
and Vapnik 1995). The underlying principle is that to be
as general as possible, the classifier should be as impartial
in its treatment of the classes as possible. This is achieved
with the optimization framework.

3 DEPLOYING THE DECISION FUNCTION

Once the system (9) has been solved and the learned confi-
dences have been found, we use them to predict the class of
a new vector x∗. As postulate 2.3 shows, in order to predict
its class, we must first find the predicted confidences of x∗,
for each class in the data.

The complete approach would be to add x∗ and its
assumed class to the training data, and relearn the confi-
dences of all vectors (training plus the unlabeled), from
amongst which we only use the confidence of the unlabeled
vector. A more efficient approach however is to keep all
the learned training confidences fixed, which is justifiable
if we note that they are in a stable equilibrium — the state
that is most robust under perturbations. With this in mind,
we present the recurrence equation for α̂t |c, which can be
seen as the sequence of semi-estimated confidences for x∗,
under assumption that it belongs to class c.

α̂t+1|c = α̂t |c + α̂t |ci

1− α̂t |c +
N

∑
j=1

δ
∗
j|cs∗j|cα j

 , (20)

773

Hovsepian, Anselmo, and Mazumdar

(a) Example with three outliers; σ = 0.5 (b) Example with two outliers; σ = 0.03.

Figure 2: Example illustrating the implicit control of overfitting with σ .

where δ ∗j|c, and s∗j|c are the identical to δi, j and si, j in (6),
except that vector xi is replaced with x∗, and the class yi is
replaced with the assumed class c.

In a sense, the above equation does not have any modeled
interaction, since αi’s are constant values at this point.
All it exhibits is logistic growth, where the constant term
∑

N
j=1 δ ∗j|cs∗j|cα j either increases or decreases the upper-bound

on α̂t |c. This means that the only factor that affects the
difference between all the predicted confidences is this
summation term. Consequently, we can define the predicted
confidence of x∗ for each assumed class as this summation:

α̂c =
N

∑
j=1

δ
∗
j|cs∗j|cα j. (21)

The toy example in Figure 2 (next page) illustrates the
role that σ plays in not only defining the overall nonlinearity
of classification boundary, but also in the implicit control of
outliers and overfitting. In Figure 3, a large σ ensures that
all three outliers of the cross-marks class have high enough
confidence that unlabeled data around them are classified as
cross-marks. However, by reducing the value of σ , we allow
interactions to take a bigger part in defining the induction
outcome, which, due to their location, forces the three
outliers to become ineffectual in the context of classifying
unlabeled data. A large σ sets maximal overfitting (cf.
postulate 2.4) as the main effective inductive principle of
the model by reducing the interaction effect, which benefits
outliers due to their difficult location. This can cause poor

generalization by forcing classification of the space around
outliers that does not fit the general patterns of the data.

Conversely, a small σ increases the visibility of vectors
to each other, which increases the association and inter-
dependence between the confidences. As a result, the overall
distribution of the vectors can affect the confidence of
such outliers, with the more drastically unusual vectors
being dominated and attaining ineffective confidences at
convergence. According to statistical learning theory, more
inter-dependence and association between the vectors is
preferred to more individualistic learning, because it makes
induction more robust and less sensitive to noise and outliers.

In summary, the σ parameter combines capacity control
and overfitting control by controlling how effective the
model is in weeding out outliers and noise that degrade the
conditioning of the system matrix.

4 PRELIMINARY EXPERIMENTAL VALIDATION

As mentioned earlier, the solution to the system (9) comes
down to computing the LU decomposition, after which
two easier systems are solved quickly. Our code relies
on the block algorithm routines provided in the powerful
Linear Algebra PACKage (LAPACK) library (Anderson et al.
1999).

To provide some preliminary experimental validation,
we compare our algorithm in the context of a well-quoted
classification algorithm evaluation paper by Meyer et al.
(Meyer, Leisch, and Hornik 2003), which compares the
performance of 18 popular modern algorithms, including

774

Hovsepian, Anselmo, and Mazumdar

Table 2: Simulated benchmark datasets used in this study.

observations # features

circle 1200 2
spirals 1200 2

twonorm 1200 20
threeorm 1200 20
ringnorm 1200 20

Support Vector Machines (Cortes and Vapnik 1995), Neural
Nets (Abdi, Valentin, and Edelman 1999), Double Bagging
(Hothorn and Lausen 2003), on 21 benchmark datasets,
most taken from the UCI machine learning database (Blake
and Merz 1998). In this paper we report results for the five
simulated datasets found in the paper. Results of experi-
ments on other benchmark sets and ongoing development
of this approach can be gleaned from the following site:
http://www.nmt.edu/̃ karen/imbl.

The five datasets are: Circle (a circle inside a square),
Spirals (two noisy intertwined spirals), twonorm (two
multinomial distributions), threenorm (two multinomial
distributions for one class and a third multinomial distribu-
tion for the third class), and ringnorm (a small multinomial
distribution inside a bigger one). The datasets are summa-
rized in Table 2.

The experimental design was as follows. Each training
dataset was randomly split into 100 unique training/testing
set pairs. Each training set contained 200 examples, with
the testing sets containing the remaining 1000 examples.
The splits were made while maintaining the same ratio
of examples in each of two classes. In order to find the
optimal parameter, the algorithm was trained on the 2/3rds
of the training set, while the accuracy was tested on the
remaining 1/3rd. The optimal σ was chosen from the
range {−102,−9.92,−9.82, . . . ,52]. Using the optimal σ

we retrained the algorithm with the full training set and
measured its accuracy on the testing set. This was repeated
for all 100 pairs, and the average accuracy was recorded.

The results are presented in Table 3. Our algorithm is
mentioned in the table under the alias IMBL, which stands
for Interaction Modeling Based Learning. In addition to
our quoted results we list the rates of top 11 algorithms;
we refer the reader to (Meyer, Leisch, and Hornik 2003)
for mean error rates of all 18 algorithms. As the table
shows, our algorithm outperforms all other 18 algorithms
on 2 datasets (Spirals and twonorm), comes in at second
place on 2 other datasets (threenorm and ringnorm) and
fourth on the last dataset (Circle).

Our algorithm requires just one user-tuned parameter,
σ . Moreover, the execution time is not sensitive to the
choice of σ . These two facts, coupled with the fact that our
algorithm comes down to computation of several weights
and solution to a linear system of equations, allowed us to
quickly find the optimal σ .

5 CONCLUSIONS AND FUTURE DIRECTIONS

The main benefit of using a simulated learning model is
that the fully trained decision function is obtained from
the stable steady-state of the model, since at this point the
parameters of the decision function attain their equilibrium
values. Here is where the choice of recurrence equation
models is important, due to the relatively simple computation
of the steady-state. The second feature of our work is the
modification of the model with coefficients based on spatial
relationships between the observations. Because learning is
not based on artificially specified criteria and constraints,
but rather on an intuitive juxtaposition of interactions and
vectors’ effect on themselves, the issue of overfitting is
handled “implicitly”. Finally, the formulation is such that
our algorithm is not limited to two classes, but is rather
inherently capable of truly multi-class classification.

Another benefit of algorithm’s simplified formulation
of training is the zero dependence of the training time-
complexity on parameter σ . In many constraint-based al-
gorithms, different parameter values may affect the time-
complexity and practical speed of the training phase. This
subtle point means, among other things, that real-time esti-
mation of the duration of batch jobs (due to varying parame-
ters) is impossible. Because training in our algorithm comes
down to a one-time computation of interaction coefficients
and solving a system of equations, there are no worst or
best cases.

There are several directions of improvement and exten-
sion that promise a more accurate and efficient algorithm.
Currently, the main focus of our work is updating and ex-
tending the formulae for computing the spatially-dependent
interaction coefficients, with emphasis on primarily accu-
racy, while keeping algorithmic complexity increase to a
minimum. An exploration of alternative interaction strength
formulae and computational implementations is ongoing.

REFERENCES

Abdi, H., D. Valentin, and B. E. Edelman. 1999. Neural
networks. Thousand Oaks: Sage.

Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel,
J. Dongarra, J. D. Croz, A. Greenbaum, S. Hammarling,
A. McKenney, and D. Sorensen. 1999. Lapack users’
guide. 3 ed. Philadelphia, PA: Society for Industrial
and Applied Mathematics.

775

Hovsepian, Anselmo, and Mazumdar

Table 3: Mean error rates of our algorithm, labeled “IMBL”, and top 11 algorithms on the five simulated benchmark datasets.
Least error rate are marked with an asterisk, while the second least rates are marked with a double asterisk.

svm lda nn f.bruto nnet glm rFrost bagg dbagg lvq IMBL

circle 2.66* 49.48 5.88 4.05** 4.17 49.49 6.73 7.47 6.59 44.3 5.52
spirals 0.81 49.99 0.17** 7.90 3.37 49.99 2.43 2.71 2.21 46.28 0.08*

twonorm 2.82** 3.16 7.27 4.13 5.32 5.64 4.09 7.96 2.83 3.07 2.45*
threenorm 15.76 18.2 25.29 21.69 22.01 18.58 18.55 21.22 17.22 14.17* 15**
ringnorm 3.58* 38.75 40.87 9.06 30.47 39.07 5.92 11.93 11.57 38.07 4.69**

Blake, C., and C. Merz. 1998. Uci repository of machine
learning databases.

Cortes, C., and V. N. Vapnik. 1995. Support-vector networks.
Machine Learning 20:273–297.

Hirsch, M., and S. Smale. 1974. Differential equations, dy-
namical systems, and linear algebra. New-York: Aca-
demic Press.

Hothorn, T., and B. Lausen. 2003. Double-bagging: combin-
ing classifiers by bootstrap aggregation. Pattern Recog-
nition 36 (6): 1303–1309.

Lotka, A. J. 1925. Elements of physical biology. Baltimore:
Williams and Wilkins.

Meerschaert, M. M. 1999. Mathematical modeling. 2 ed.
Academic Press.

Meyer, D., F. Leisch, and K. Hornik. March 2003.
The support vector machine under test. Neurocomput-
ing 55:169–186.

Mitchell, M. 1996. An introduction to genetic algorithms.
Cambridge, MA: MIT Press.

Vapnik, V. N., and A. Chervonenkis. 1989. The neces-
sary and sufficient conditions for consistency of the
method of empirical risk minimization. In Yearbook
of the Academy of Sciences of the USSR on Recogni-
tion, Classification, and Forecasting (2 ed.)., 217–249.
Nauka.

Volterra, V. 1926. Variations and fluctuations of the number
of individuals in animal species living together. In Ani-
mal Ecology, ed. R. N. Chapman, 409–448. New-York:
McGraw-Hill.

AUTHOR BIOGRAPHIES

KAREN HOVSEPIAN is a PhD candidate in Computer
Science working with Drs. Anselmo and Mazumdar. The
focus of his research dissertation is machine learning
algorithms. He has also worked on applications of machine
learning in the area of finance and bioinformatics. His email

address for these proceedings is <karen@nmt.edu>.

PETER ANSELMO is Associate Professor and Chairman
of the Management Department at New Mexico Tech. He
is also a Research Scientist at the New Mexico Tech-based
Institute for Complex Additive Systems Analysis. His
current research interests are in agent-based modeling
and simulation, with applications to complex financial
and organizational systems, and in intelligent-systems
approaches to data modeling and analysis. His email
address for these proceedings is <anselmo@nmt.edu>.

SUBHASISH MAZUMDAR is an Associate Professor of
Computer Science and Adjunct Associate Professor of Man-
agement at New Mexico Tech. His current research inter-
ests include problems of integrity of distributed and mo-
bile databases, the integration of pre-existing heterogeneous
databases and documents, as well as a conceptual modeling
approach to information systems and software development.
He has received support for his research from Sandia Na-
tional Laboratory and the National Science Foundation.
He is a member of the ACM, IEEE Computer Society,
and Sigma Xi. His email address for these proceedings is
<mazumdar@cs.nmt.edu>.

776

