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ABSTRACT

The what-if analysis process is essential in symbiotic sim-
ulation systems. It is responsible for creating a number
of alternative what-if scenarios and evaluating their perfor-
mance by means of simulation. Most applications use a
reactive approach for triggering the what-if analysis process.
In this paper we describe a preventive triggering approach
which is based on the detection of a future critical condi-
tion in the forecast of a physical system. With decreasing
probability of a critical condition, using preventive what-if
analysis becomes undesirable. We introduce the notion of
a G-value and explain how this metric can be used to de-
cide whether or not to use preventive what-if analysis. In
addition, we give an example for a possible application in
semiconductor manufacturing.

1 INTRODUCTION

Symbiotic simulation is a paradigm which refers to a close
relationship between a simulation system and a physical
system and was originally defined at the Dagstuhl seminar
on Grand Challenges for Modeling and Simulation in 2002
(Fujimoto et al. 2002). An essential concept of symbiotic
simulation is the what-if analysis process (WIA process)
which is concerned with the evaluation of a number of
alternative what-if scenarios by means of simulation. As
result of the WIA process, the best decision option is de-
termined among the ones that were evaluated in respect to
the evaluation criteria used.

An important issue which has to be considered when
using symbiotic simulation is the triggering of the WIA
process. The observation of a critical condition in the
physical system is probably the most obvious reason for
triggering a what-if analysis. In this case, the purpose of
the WIA process is to find a solution to recover from the
critical condition as quickly as possible. Another reason
for triggering the WIA process could be the detection of a
future critical condition in a forecast of the physical system.
In this case, the purpose of the symbiotic simulation system
is to prevent the critical condition or, at least, minimise
its negative effects. We distinguish between these two
triggering approaches and further refer to them as reactive
WIA and preventive WIA, respectively.

The definition of a critical conditions is highly applica-
tion specific. In addition, not all kinds of critical conditions
can be forecasted. For example, sudden machine break-
downs cannot be forecasted. Using preventive WIA for
this kind of conditions is therefore not possible and reac-
tive WIA has to be used instead. However, some types of
critical conditions can be forecasted. In this paper we will
describe a possible application in semiconductor manufac-
turing where the queue length, in combination with a certain
threshold, can be used for indicating a critical condition.
In this application, the length of a queue can be forecasted
and the application of preventive WIA is therefore possible.

It could be argued that preventive WIA performs always
better than reactive WIA because it uses forecasting and can
therefore react earlier. However, there is always a risk that
the forecast is wrong. In this paper we describe two types
of errors that have to be handled when using preventive
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WIA. The notion of a G-value will be introduced which can
be used to decide on the applicability of preventive WIA.
Furthermore, we consider the application of symbiotic sim-
ulation in the context of semiconductor manufacturing and
propose a simple error handling approach which combines
reactive and preventive WIA.

The remainder of this paper is structured as follows: in
Section 2 we discuss related work on symbiotic simulation
with focus on what-if analysis. In Section 3 we explain
reactive WIA and preventive WIA. In Section 4 we identify
issues with preventive WIA, discuss two types of errors,
and introduce the G-value metric. In Section 5 we describe
a potential application of symbiotic simulation in semicon-
ductor manufacturing and propose a simple error handling
approach. In Section 6 we evaluate the performance ad-
vantage of preventive WIA in our application context. In
Section 7 we present our conclusions.

2 RELATED WORK

Reactive WIA has been used to improve the performance of
a semiconductor backend assembly and test facility (Low
et al. 2005). A set of what-if scenarios is simulated in order
to find optimal values for upper and lower queue sizes for
a particular machine. These queue sizes are required to
decide on outsourcing of lots to external vendors. The
WIA process in this application is triggered if utilisation of
machines exceeds a certain limit.

In our previous work we already used symbiotic sim-
ulation in the context of semiconductor manufacturing to
automatically control a wet bench toolset (WBTS), using
reactive WIA (Aydt et al. 2008). The what-if scenarios
in that application represent alternative tool configurations
and the WIA process is triggered once the queue length of
pending lots has exceeded a certain threshold. We com-
pared the performance of the symbiotic simulation control
approach with the common practise control approach. Our
results have shown that the performance of the WBTS can
be significantly improved when using symbiotic simulation
control.

Another example for reactive WIA can be found in
(Low et al. 2007), where a symbiotic simulation system
is used to monitor real-world operations and optimise a
business workflow in the context of high-tech manufacturing
and service networks. An aerospace spare components
logistics show-case is described, where a WIA process is
triggered if the fillrate performance of the physical system
falls below an acceptable level. Each what-if scenario is
using a different business workflow and the purpose of the
symbiotic simulation system is to identify and implement
the most suitable one, i.e., the one which produces the best
fillrate performance among the evaluated scenarios.

Symbiotic simulation has also been used for UAV path
planning (Kamrani and Ayani 2007). A set of alternative

paths is created and evaluated by means of simulation. The
purpose of these what-if simulations is to identify the best
path for the UAV. Unlike other applications, the notion of
a critical condition does not exist and the WIA process
is triggered periodically. Therefore, the WIA process is
triggered in a pro-active fashion in order to continuously
improve the performance rather than reacting on a triggering
condition.

Reactive and pro-active on-line planning has been dis-
cussed in the context of scheduling in manufacturing (Davis
1998). In this system, various alternative control policies
are evaluated either at specific decision points (i.e., trigger-
ing in reactive fashion) or continuously (i.e., pro-actively)
without being explicitly triggered.

According to (Aloulou and Portmann 2005) many forms
of scheduling and rescheduling approaches have been pro-
posed in the literature. These include reactive, predictive,
pro-active, and pro-active/reactive scheduling approaches.
In comparison with symbiotic simulation, reactive schedul-
ing approaches can be compared with reactive WIA as both
approaches aim to react upon a disruption in the physical
system. However, the other approaches are difficult to com-
pare with what-if analysis as they are specifically used to
solve the scheduling problem.

3 WHAT-IF ANALYSIS

3.1 Reactive What-If Analysis

A reactive WIA is carried out if a critical condition is ob-
served in the physical system. Once triggered, the WIA
process has to make a decision regarding the physical sys-
tem in order to recover from this condition as quickly as
possible. In addition to identifying a solution it is also
important to identify an appropriate action point, further
denoted with ta. With action point we refer to the point
of time when a particular decision is implemented. There
may be applications in which delayed implementation (i.e.,
ta > tnow) results in a shorter recovery time. However, this
case is not considered here as it probably represents a rare
exception. Instead, we assume that it is an objective in
reactive WIA to make a decision as quickly as possible.

Depending on how much time is required to make and
implement a decision, we can consider ta ≈ tnow. This is
based on the assumption that the WIA process can finish in
a reasonably short period of time. This assumption is highly
application-specific. If there is a significant delay until the
earliest possible action point (i.e., if min(ta) >> tnow), then
it is necessary to consider this delay in the WIA process.
In Section 5.2, we give an example from semiconductor
manufacturing and explain why this assumption is valid
in our application context. Reactive WIA is illustrated in
Figure 1.
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Figure 1: Conceptual illustration of reactive WIA.

3.2 Preventive What-If Analysis

A preventive WIA is carried out if a critical condition is
detected in a forecast. For this purpose it is necessary
to periodically perform forecasts of the physical system.
Once a critical condition is detected, the WIA process is
triggered. In addition, to finding an appropriate solution,
it is also necessary to evaluate various action points. For
example, consider the case in which a sudden performance
drop is detected in the forecast of a manufacturing system
in approximately eight hours from now. The control system
may evaluate any possible action point until the physical
system becomes critical at tc = tnow +8h. Appropriate pre-
ventive counter measures can take place at any time before
tc, i.e., tnow ≤ ta < tc.

Depending on the application context, the exact timing
might not be so important as long as appropriate counter
measures take place before tc. However, in many applica-
tions this is not the case but rather the exception. Counter
measures which take place too early or too late may not
adequately resolve the anticipated problem. In the worst
case, bad timing might not help to resolve the problem
at all or even make it worse. Since preventive WIA has
to consider different action points in addition to finding
an appropriate decision option, it is computationally more
expensive than reactive WIA. Preventive WIA, using three
action points, is illustrated in Figure 2.

Figure 2: Conceptual illustration of preventive WIA.

4 IMPORTANT ISSUES IN PREVENTIVE WIA

An important issue when using preventive WIA is the ability
to correctly forecast critical conditions. A forecast is never
perfectly accurate and there will always be some uncertainty
regarding whether or not the physical system will become
critical. Therefore, there is a risk that a critical condition

is not detected correctly. We consider the forecast as a
hypothesis test to see whether there is enough evidence
to support the hypothesis H0 that there will be a critical
condition in the physical system at some time tc in future.
The null hypothesis can either be true (i.e., the physical
system actually becomes critical) or false (i.e., the physical
system does not become critical). In addition, the forecast
either detects a critical condition (i.e., fails to reject H0)
or fails to detect a critical condition (i.e., rejects H0). This
leads to the four cases illustrated in Table 1.

Table 1: Four different cases in preventive WIA.

H0 is true H0 is false

Detect Case 1 Type II error
Fail to Detect Type I error Case 2

4.1 Different Types of Errors

In two of these four cases, the analysis of the forecast comes
to the correct conclusion: either a critical condition was
correctly detected (case 1) or nothing was detected because
there will be indeed no critical condition (case 2). The other
two cases represent errors which can lead to significantly
reduced performance. These two types of errors are referred
to as type I and type II error, respectively. In case of a
type I error, the WIA process process will not be triggered
and no counter measures will be taken in order to prevent
the critical condition from occurring. In case of a type II
error, the WIA process will be triggered based on wrong
assumptions. As result, inappropriate counter measures are
implemented in order to prevent the alleged critical condition
from occurring.

We consider two types of errors which can occur during
the process of detecting a critical condition. This implies
that there is only one cause of a critical condition and the
forecast can either detect it or not. Although this might be
the case in some systems, there are certainly systems in
which it is necessary to detect and handle differrent kinds
of critical conditions. Consider the case where the wrong
critical condition, say critical condition A, is detected while
critical condition B will actually occur. It may seem as if
this can be classified as a third type of error. However, this
error can be described as a combination of a type I and a
type II error. The system wrongly detected critical condition
A (type II error) and failed to detect critical condition B
(type I error).

These two types of errors have to be handled accord-
ingly. Depending on the application context, one type of
error may be more severe than the other. For example,
in some applications taking unnecessary counter measures
against a critical condition which does not occur might be
considered as a lesser evil than failing to detect a critical
condition which has devastating effects on the physical sys-
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tem. This is the case for all safety related applications,
for instance. In such an application, a critical condition
may refer to physical damage or even life-threatening con-
ditions. In other applications, a critical condition may refer
to suboptimal performance which may ultimately lead to
the interruption of a process flow. Therefore, the severeness
of each error type has to be assessed individually and an
appropriate error handling strategy has to be chosen for
each type of application.

4.2 Applicability of Preventive WIA

Preventive counter measures should only be applied if there is
enough evidence for the occurrence of the critical condition.
A preventive WIA process is therefore triggered if the
probability of a critical condition, further denoted with ε , is
reasonably high. In order to make a decision regarding the
application of preventive WIA, a critical propability level
εc is used. If ε ≥ εc then there is enough evidence to justify
the application of preventive WIA. If εc is too low or high
then the triggering of the WIA process is either hasty or
overly cautious, respectively. An appropriate choice of εc

is therefore crucial.
We propose a method which can be used to determine

the critical probability level based on a performance metric
which indicates how much better or worse preventive WIA
is in comparison with reactive WIA. This metric is further
referred to as G-value and represents a measure of the
relative performance gain of preventive WIA to reactive
WIA over a period of time. It is defined as

G =
preventive(ts,te)
reactive(ts,te)

(1)

where preventive() and reactive() are functions used to
determine how the corresponding triggering approach per-
formed over the period under consideration. The assessment
period is defined by starting time ts and end time te. The
application of preventive WIA is desirable for G > 1.

Specific G-values are used to represent the performance
gain or loss for each of the four different cases illustrated
in Table 1. In the two ideal cases, the presence or absence
of a critical condition was correctly detected (case 1 and 2,
respectively). The specific G-values associated with these
cases are further denoted with Gγ and Gδ , respectively. If the
absence of a critical condition was correctly forecasted, the
preventive WIA approach will not implement any counter
measures. The behaviour is therefore exactly the same as
compared to the reactive WIA approach. The specific G-
value for this case is therefore always Gδ = 1. The specific
G-values associated with type I and type II error cases are
further denoted with Gα and Gβ , respectively.

Whether or not to apply preventive WIA depends on the
probability ε of an alleged critical condition and possible

consequences in terms of performance gain/loss, expressed
by the corresponding specific G-values. If counter measures
are implemented the outcome is either a case 1 situation
(Gγ applies) or a type II error situation (Gβ applies). The
overall G-value for this scenario is therefore:

G1 = εGγ +(1− ε)Gβ (2)

If no counter measures are implemented the outcome
is either a case 2 situation (Gδ applies) or a type I error
situation (Gα applies). The overall G-value for this scenario
is therefore:

G0 = εGα +(1− ε)Gδ (3)

The objective is to decide whether to implement counter
measures or not, using 2 and 3. If G1 > G0, then the
implementation of counter measures is desirable. With
decreasing ε , the application of preventive WIA becomes
less attractive. At some point it becomes undesirable to use
preventive WIA. This point is the critical probability level
εc which is defined as the intersection of G1 and G0:

G1 = G0 ⇒ εc =
1−Gβ

Gγ −Gα −Gβ + 1
(4)

For example, consider the following example: let Gγ =
1.23, Gα = 0.9, and Gβ = 0.8. From (4) it follows that
εc = 0.38. Therefore, the application of preventive WIA
is reasonable if the probability of the critical condition is
≥ 38%. This is to ensure that using preventive WIA is
beneficial in the long run. The corresponding G-values for
G1 and G0 are illustrated in Figure 3 as functions over ε .
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Figure 3: Example of intersection of G1 and G0 at the
critical probability level εc = 0.38.

5 APPLICATION OF SYMBIOTIC SIMULATION

In this paper we consider the application of symbiotic sim-
ulation and preventive WIA for operational control of semi-
conductor manufacturing equipment. The semiconductor
manufacturing process is very complex and asset intensive
(Scholl and Domaschke 2000). Hence, it is important for
semiconductor manufacturing companies to use their assets
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more efficiently in order to reduce demand for additional
equipment. In addition, it is important for them to con-
tinuously improve the performance of the manufacturing
process in order to stay competitive. Current trends in the
semiconductor industry show that automation solutions be-
come increasingly important for improving efficiency and
performance (Gan, Chan, and Turner 2006).

Various performance metrics are considered in semi-
conductor manufacturing. One of the most important ones
(Pfund, Mason, and Fowler 2006) is the cycle time which
is the period of time when a wafer enters a semiconductor
manufacturing plant (fab) until it leaves the fab. There are
always some delays until a wafer can be processed by a
specific tool because the tool is busy, for instance. The cy-
cle time is therefore always longer than the raw processing
time. Another performance metric, which is often used,
is the cycle time factor which is the ratio of actual cycle
time and raw processing time. Here, we will always use
the cycle time factor because it allows us to compare the
performance for wafers with different process flows, i.e.,
wafers with different raw processing times.

5.1 Wet Bench Tool Set (WBTS)

A wet bench tool is used to clean a wafer after certain
fabrication steps in order to remove particles which would
otherwise compromise the quality of the wafer. Typically,
there are several wet benches available in a fab. A wet bench
contains a number of baths, each containing a particular
chemical liquid. Wafer lots are processed in these baths
strictly according to an associated recipe. A recipe defines
the exact sequence of baths and the period of time a wafer
lot needs to spend in a particular bath. Failing to comply
with these constraints will reduce the quality of the wafer
lot and possibly requiring it to be scrapped.

During the cleaning process, some recipes introduce
more particles into the chemical liquids than others. It is
therefore distinguished between ‘clean’ and ‘dirty’ recipes
(Gan et al. 2006). Depending on its configuration, a wet
bench is dedicated to wafers which are associated with either
‘clean‘ or ‘dirty’ recipes. Unless a wet bench is reconfigured,
it can only be used to process wafers associated with either
type of recipe.

Depending on the recipe mix, i.e., depending on the
distribution of recipes in arriving wafer lots, the configuration
of the WBTS has to be considered in order to maintain
or improve the performance. Switching the settings of a
particular wet bench from ‘clean’ to ‘dirty’ does not require
any particular activity. However, when switching from
‘dirty’ to ‘clean’, the chemicals of the wet bench have to
be changed. This process takes approximately three hours
and requires a wet bench to be empty first. In any case, it
is necessary to process all allocated wafer lots first, before
switching to another configuration.

Arriving wafer lots are not directly allocated to a par-
ticular wet bench. They have to wait in a pending queue
until a wet bench is available which can process the wafer
according to its recipe without interruption. If the WBTS is
properly configured, it is possible to process arriving wafer
lots without causing congestion. However, if the recipe mix
is changing, it is possible that the throughput of the WBTS
will drop below the current load, causing the number of
waiting lots in the pending queue to increase. The pending
queue represents a buffer and, even when using an optimal
WBTS configuration, there will be some fluctuation with
periods of increasing number of pending wafer lots. This
does not necessarily represent a problem.

If the number of pending wafer lots is steadily increasing
it becomes obvious that the current configuration cannot
handle the work load anymore. Increasing waiting times
is reflected by an increasing cycle time. Semiconductor
manufacturing companies are interested in keeping the cycle
time low in order to avoid penalties due to missed deadlines.
A steady increasing queue length is therefore considered as
a critical condition. In order to detect a critical condition,
we use a threshold for the queue length which is sufficiently
high in order to avoid false triggering.

5.2 Symbiotic Simulation System

In a fully automated environment, decisions regarding the
configuration of manufacturing equipment can be made by
a symbiotic simulation control system (SSCS). The SSCS is
responsible for performing the WIA process and to manip-
ulate the physical system by using corresponding actuators.
In the context of the WBTS the actuator is represented by the
wet bench tool controller. This controller is responsible for
draining and refilling the chemical liquids. Once the WIA
process is triggered, various what-if scenarios are evaluated
and a winner scenario is determined and its configuration
implemented.

The SSCS observes the physical system using real-
time sensor data. Depending on whether reactive WIA
or preventive WIA is used, the WIA process is triggered
differently. In case of reactive WIA, the WIA process
is triggered if the current queue length exceeds a certain
threshold (see Aydt et al. 2008). In case of preventive WIA,
triggering is based on a periodically created forecast. In the
context of our application, a forecast is created periodically
every 12 hours and covers the anticipated performance of
the physical system for the next 48 hours. If a critical
condition is detected, i.e., if the queue length exceeds a
certain threshold, the WIA process is triggered.

It is an objective to make decisions as quickly as possi-
ble. This is particularly true for reactive WIA. For perform-
ing experiments a cluster has been used which consists of
30 Dual core processors with 3.0 GHz and 4 GB of RAM.
A WIA process needs approximately 1–6 minutes to finish
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in this environment. This directly depends on the number
of candidate action points which have to be analysed. For
reactive WIA, only one action point is considered. It is
therefore considerably faster than preventive WIA. At a
typical wafer arrival rate of up to 1200 lots per day, the
number of arriving lots per minute is less than one. A period
of one minute is therefore considerably short and we can
assume ta ≈ tnow for reactive WIA. The forecast which is
used by preventive WIA needs approximately 20 seconds.

In our application we consider a WBTS with eight
wet benches of which each of them can be independently
configured. Since a wet bench can be dedicated to either
‘clean’ or ‘dirty’ recipes, there is a total number of 28 = 256
scenarios for each action point. We have chosen a simple
method to effectively limit the number of candidate action
points ta,0,ta,1, ...,ta,k:

ta,i = ta,i−1 −T ∗ 2i−1 (5)

for i > 0 and ta,0 = tc where T is a given time resolution.
In our application context a time resolution of T = 1 hour
has been used. The method is illustrated in Figure 4.

Figure 4: Selection of candidate action points ta,k.

Although this method does effectively limit the number
of candidate action points, it is not optimal. Development
of a more sophisticated method is certainly justified but not
further discussed here.

5.3 Error Handling Approach

We have chosen a simple error handling approach which
involves using preventive WIA in combination with reactive
WIA. The reactive triggering approach is only used as
fallback solution to handle type I and type II errors.

If a critical condition is not detected in the forecast (type
I error), no preventive WIA process is triggered. Although
no preventive WIA process was triggered, the reactive WIA
process is triggered immediately if the physical system
becomes critical. Therefore, in the worst case, if the forecast
always fails to detect a critical condition, there would be
no advantage of using preventive WIA in comparison with
reactive WIA. However, more importantly, there will be no
disadvantage either because the performance of the physical
system will never be worse as compared to the reactive
approach. In case of a type I error, the preventive WIA will
behave exactly like a purely reactively triggered symbiotic
simulation system, i.e., Gα = 1.

If a critical condition is detected even though this is not
the case in the physical system (type II error), a WIA process
is triggered and a solution for the alleged critical condition
is determined and implemented. In a sense, this can be
seen as a self-fulfilling prophecy because the symbiotic
simulation system, which is expecting a critical condition,
is actually causing it. Similarly to type I error handling, a
reactive WIA approach can be used as fallback and is used
to undo the changes caused by previous decision making,
based on the preventive WIA process. It is possible that a
wrong decision made by the preventive WIA can be undone
by the reactive WIA fallback without causing a significant
performance loss. However, in most cases it can be expected
that the performance is significantly lower as compared to
a system uses reactive WIA only, i.e., Gβ < 1.

6 EVALUATION

For the evaluation of the symbiotic simulation system we use
an emulator of the physical system rather than a real physical
system for practical reasons. The emulator is realised as
paced simulation and runs 7600 times faster than real-time.
This allows us to cover time periods of several weeks when
conducting experiments.

When comparing preventive WIA with reactive WIA,
the specific G-values are important metrics to evaluate pre-
ventive WIA in the context of a particular application. These
values are directly influenced by the used error handling
approach. In our case, we have explained that Gα will
always be equal to 1. Therefore, we will further focus on
the empirical determination of the specific G-values for Gγ
and Gβ in this section.

6.1 Design of Experiments

Given that the load is sufficiently high, any recipe mix
can cause the WBTS to become unstable. If this happens,
the number of wafer lots in the pending queue is steadily
increasing regardless the configuration. We already showed
that a SSCS is capable of handling much higher loads than
the common practise control approach (Aydt et al. 2008).
Here, we consider only recipe mixes and loads for which
there is at least one configuration that results in a stable
system.

Before conducting the actual experiments, a number of
random recipe mixes are chosen and the highest possible load
is determined for which there is still at least one configuration
that leads to a stable behaviour. We further divide this set
of recipes mixes into two groups, consisting of recipe mixes
that lead to stable behaviour for a ‘major clean’ or ‘major
dirty’ configuration only, respectively. With a ‘major clean’
or ‘major dirty’ configuration we mean that the majority of
the wet benches in a configuration are dedicated to wafer lots
associated with either ‘clean’ or ‘dirty’ recipes, respectively
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Pairs of recipe mixes are created by drawing randomly
two recipe mixes, one from each group. These pairs are
used to conduct experiment runs. For each run, the WBTS
is initially configured with a stable configuration for the first
recipe mix of the pair. After one week of simulation time,
the recipe mix is changed to the second one of the pair. Since
both recipe mixes have no configuration in common which
would result in a stable behaviour, the control system is
eventually forced to change the configuration of the WBTS.

A wafer lot generator is part of the simulation model
which is used for both, the emulator and the what-if simula-
tions. Change of recipe mixes are performed by instructing
the lot generator accordingly. In order to analyse the be-
haviour for type II error situations, the error is artificially
induced by preventing the lot generator of the emulator to
change the recipe mix. However, the lot generators used for
the what-if simulations and the forecasting simulation still
performs the change. This results in a wrongly detected
critical condition, i.e., a type II error.

Equation (1) can be used to calculate the G-values. For
this purpose an assessment period has to be specified. In
our experiments, we cause a change of recipe mix after 7
days. Therefore, we consider an assessment period starting
at ts = 7 days and ending when the experiment is over
at te = 14 days. The cycle time factor, which is used
as performance metric, is inversely proportional, i.e., the
smaller the cycle time factor the better the performance.
Therefore, it is necessary to transform the cycle time factor
before calculating the G-value.

The functions preventive(ts,te) and reactive(ts,te) re-
turn the inverse of the average cycle time factor (denoted
with fp(ts,te) and fr(ts,te)) over the specified assessment
period for preventive WIA and reactive WIA, respectively:

preventive(ts,te) =
1

fp(ts,te)
(6)

reactive(ts,te) =
1

fr(ts,te)
(7)

For example, let the mean cycle time factor for pre-
ventive WIA and reactive WIA over the assessment period
be fp = 2.5 and fr = 3.5, respectively. This results in
preventive = 1

fp
= 0.4 and reactive = 1

fr
= 0.29. The cor-

responding G-value is therefore G = 1.38.

6.2 Preventive WIA – Ideal Case

An example of the performance, using reactive and pre-
ventive WIA, for a major ‘clean’ to ‘dirty’ switch and vice
versa is illustrated in Figure 5.

We performed various experiments, using a total of 10
different random pairs. In 9 and 8 out of these 10 cases,
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Figure 5: Cycle time factor of the WBTS when switching
from a major ‘clean’ configuration to a major ‘dirty’ one (left)
and vice versa (right) using preventive WIA and reactive
WIA.
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Figure 6: Cycle time factor of the WBTS when erroneously
switching from a major ‘clean’ configuration to a major
‘dirty’ one (left) and vice versa (right) using preventive
WIA in combination with reactive WIA.

the preventive WIA approach performed significantly better
(with confidence level of 95%) when performing a major
switch from ‘clean’ to ‘dirty’ and vice versa, respectively.
The Gγ -values for the ideal preventive WIA case are illus-
trated in Table 2.

Table 2: Values for Gγ .

Min Gγ Max Gγ Average Gγ

Clean to Dirty 1.03 1.51 1.21
Dirty to Clean 1.04 1.42 1.18

6.3 Preventive WIA – Type II Error

An example of the performance, using reactive and preven-
tive WIA, under type II error conditions is illustrated in
Figure 6.

Various experiments with a total of 19 different random
pairs were conducted. When performing a major switch from
‘clean’ to ‘dirty’, the preventive WIA approach performed
significantly worse in 18 out of these 19 cases. However,
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when performing a major switch from ‘dirty’ to ‘clean’, the
preventive WIA approach performed significantly worse in
16 and significantly better in 2 out of 19 cases. Analysis of
these two cases has shown that even though the configuration
has been changed erroneously (type II error), the final
configuration, determined by the reactive WIA in order to
handle the error, performed much better than the initial
configuration used at the beginning of the experiment. This
has caused the unexpected performance gain even under
type II error conditions. In any case, a confidence level
of 95% was used. The Gβ -values for the type II error
preventive WIA case are illustrated in Table 3.

Table 3: Values for Gβ .

Min Gβ Max Gβ Average Gβ

Clean to Dirty 0.59 0.98 0.77
Dirty to Clean 0.59 1.25 0.85

6.4 Discussion of Results

Preventive WIA is capable of detecting a critical condition
and can therefore reconfigure the physical system before
the critical condition occurs. This is the major advantage of
preventive WIA in comparison with reactive WIA where the
symbiotic simulation systems reacts later, causing a more
drastic performance drop (see Figure 5). In addition, since
the performance drop is partly caused by the downtime of
various wet benches, the performance gain of preventive
WIA over reactive WIA is relatively low as compared to
switching from a major ‘clean’ to a major ‘dirty’ configu-
ration. An example is illustrated in Figure 7. It shows the
performance gain of preventive WIA compared to reactive
WIA.
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Figure 7: Relative performance gain of preventive WIA
compared with reactive WIA when switching from a major
‘clean’ configuration to a major ‘dirty’ one (left) and vice
versa (right).

In the ideal case, the WIA process makes the correct
decision which results in G-values of Gγ,cd = 1.21 and
Gγ,dc = 1.18 in average for a major switch from ‘clean’
to ‘dirty’ and vice versa, respectively. However, there is

always the risk of an error. In any case, preventive WIA will
be equally good as reactive WIA when dealing with type
I errors, i.e., Gα = 1. When dealing with type II errors,
the average G-values are Gβ ,cd = 0.77 and Gβ ,dc = 0.85
for a major switch from ‘clean’ to ‘dirty’ and vice versa,
respectively. The corresponding critical probability levels
of εc,cd = 0.52 and εc,dc = 0.45 can be obtained by using
(4). The G-values for the WBTS are illustrated in Figure
8.
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Figure 8: G-values for WBTS.

7 CONCLUSIONS

When applying preventive WIA, it is necessary to handle
two different types of errors, which makes it less robust
than reactive WIA. An appropriate error handling approach
is required. In this paper we have proposed a simple error
handling approach which uses reactive WIA as fallback
solution. This approach is optimal for handling type I
errors. However, a performance loss has to be taken into
account when facing type II error situations. Although this
approach is appropriate for the WBTS application, more
sophisticated error handling approaches might be required
in a different application context. For example, it might be
possible to confirm previously detected critical conditions
at a later time, before implementing preventive counter
measures. This can be expected to reduce the number of
unnecessary counter measures.

In practise it is necessary to make a decision, whether to
use preventive WIA or not. We have introduced the notion of
a G-value as metric which can be used for decision making
if the error probability is known. In order for this method to
be applicable, three specific G-values have to be determined
(the fourth, Gδ , is always 1). We have described an example
in the context of semiconductor manufacturing and explained
how the G-values can be calculated. In our experiments,
the preventive WIA illustrated superior performance for a
majority of cases. The corresponding specific G-values
Gγ and Gβ have been determined empirically. By using
these values we have determined the critical probability
levels εc,cd = 0.52 and εc,dc = 0.45 which can be used for
deciding whether to use preventive WIA or not in the context
of the WBTS.
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