

THE IMPROVED SWEEP METAHEURISTIC FOR SIMULATION OPTIMIZATION
AND APPLICATION TO JOB SHOP SCHEDULING

George Jiri Mejtsky

Simulation Research
314 Steeplechase Drive
Exton, PA 19341, USA

ABSTRACT

We present an improved sweep metaheuristic for discrete
event simulation optimization. The sweep algorithm is a
tree search similar to beam search. The basic idea is to run
a limited number of partial solutions in parallel and to
search for solutions by searching the partial solutions. Tra-
ditionally, simulation optimization is carried out by multi-
ple simulation runs executed sequentially. In contrast, the
sweep algorithm executes multiple simulation runs simul-
taneously. It uses branching and pruning simulation models
to carry out optimization. We describe new components of
the algorithm, such as backtracking and local search. Then,
we compare our approach with 13 metaheuristics in solv-
ing job shop scheduling benchmarks. Our approach ranks
in the middle of the comparison which we regard as a suc-
cess. The general nature of tree search offers a large array
of sequential decision applications for the sweep algorithm,
such as resource-constrained project scheduling, traveling
salesman, or (real-time) production scheduling.

1 INTRODUCTION

We present an improved sweep algorithm; then we test and
compare our algorithm with 13 metaheuristics. The sweep
algorithm, simulation-based metaheuristic, is a tree search
similar to beam search (Zhou and Hansen 2005). The basic
idea is to run a limited number of partial solutions in paral-
lel (population-based algorithm) and to search for solutions
by searching the partial solutions.

In simulation optimization, the goal is to find a set of
input parameters (decision variables) that minimizes an ob-
jective function. The objective function is not available di-
rectly, but it is estimated by simulation. We focus on de-
terministic discrete event simulation which runs on a single
processor computer.

Today, the most attractive simulation optimization me-
thods are metaheuristics, such as tabu search, simulated
annealing, or genetic algorithm. Metaheuristics are algo-

rithms which guide a series of simulation runs to produce
better solutions than simple heuristics can generate.

A metaheuristic algorithm, a separate module from a
simulation model, caries out (designs and evaluates) multi-
ple simulation runs executed sequentially. In this tradi-
tional simulation optimization, the simulation model is
used as a black box function evaluator. For recent review
of literature on simulation optimization, see Fu, Glover,
and April (2005) or Henderson and Nelson (2006).

In contrast, the sweep algorithm executes multiple si-
mulation runs simultaneously, and it uses the white box
approach. Apart from discrete events, called simulation
events, which describe dynamics of a simulated system, the
sweep algorithm introduces two new events, called optimi-
zation events. These events carry out the optimization part
of the simulation optimization (Mejtsky 1986a, Mejtsky
1986b, and Mejtsky1986c). The two optimization events
are branching and pruning events. During a simulation run,
when a model (experiment) encounters a decision point
with k options, a branching event is triggered. In the
branching event, the model (parent) spawns k new models
(children). Each child model (complete copy of the parent
model) picks a different option and continues in simulation
run. However, the parent model ends its run.

The search process of the basic sweep algorithm starts
by running a single simulation model – root model. As si-
mulation time advances, branching events are triggered;
therefore, more and more models run simultaneously.
When the population size (the number of models) reaches
an upper limit (CEILING), a pruning event is triggered to
reduce the overpopulation. In the pruning event, the entire
population is sorted by a heuristic pruning function, and
only several best individuals (lower limit, FLOOR) are al-
lowed to continue running. Remaining individuals are
eliminated from the population (a Darwinian process of
purging weaker ones). Notice the similarity between a
pruning event and the screening (subset selection) ap-
proach of ranking and selection procedures.

After the population size drops (from CEILING to
FLOOR) in a pruning event, the population grows again

731 978-1-4244-2708-6/08/$25.00 ©2008 IEEE

Proceedings of the 2008 Winter Simulation Conference
S. J. Mason, R. R. Hill, L. Mönch, O. Rose, T. Jefferson, J. W. Fowler eds.

Mejtsky

until the next pruning event or the end of simulation is
reached. This evolution of population, repeated application
of spawning (reproduction) and pruning (survival of the
fittest), we call a sweep. In the sweep, only one global
event calendar is shared by all models, which ensures syn-
chronization of the simulation time in each model. For a
detailed description of branching and pruning events, see
Mejtsky (2007). For another approach to simultaneous si-
mulation optimization, see Weinberger (1982).

During a sweep, the bias of search process towards di-
versification (global exploration of the search space) is
strongest at the beginning of the sweep; however, as the
simulation time progresses, the bias is gradually shifting
towards intensification (exploitation of promising regions
by local search). This shifting bias from diversification to
intensification is similar to the shifting bias in simulated
annealing during cooling temperature T.

We describe a search framework of the improved
sweep algorithm in Section 2. The two main enhancements
are (1) backtracking (Section 2.1) to increase diversifica-
tion and intensification, and (2) local search (Section 2.2)
to search in the neighborhood of a solution for an improved
solution. In order not to duplicate searches of already
searched regions of a solution space, we implemented a
nodeset savings procedure (Section 2.3). The purpose of
the sweep signature concept (Section 2.3) is to increase the
quality of the sweep population (relative to populations of
other sweeps) by eliminating weaker individuals, and pos-
sibly, eliminating the entire weak population.

We tested the algorithm on standard benchmark prob-
lems from job shop scheduling (JSS); the results are pre-
sented in Section 3. We describe a JSS problem by a set of
jobs with ordered operations to be processed on a set of
machines. Each machine can process only one operation at
a time, and each operation has fixed time duration. The ob-
jective is to minimize the duration of the longest job in the
schedule (minimizing makespan).

Our test results are compared with 13 metaheuristics
in Section 4. The improved sweep algorithm ranks in the
middle of the comparison. Notice that only the sweep algo-
rithm uses simulation for modeling, while other metaheu-
ristics use disjunctive graph. To the best of our knowledge,
we are not aware of any traditional simulation optimization
algorithm solving the JSS benchmarks with better results
than the sweep algorithm. We outline ideas for future re-
search, such as a marriage with dispatching rules, in Sec-
tion 5.

In conclusion, the research contribution of this paper is
in developing the sweep algorithm – the first competitive
simulation-based metaheuristic. The sweep algorithm
shows that when simulation is used with the white box ap-
proach (not as a black box function evaluator) then simula-
tion is as effective for optimization as disjunctive graph.
The sweep algorithm (1) is suitable for solving sequential
decision problems, (2) is quite competitive with other me-

taheuristics using disjunctive graph, (3) is suitable for real-
time production scheduling, and (4) can evaluate dispatch-
ing rules when the rules are options in branching events.

2 ALGORITHM

The search process of the improved sweep algorithm pro-
gresses through three steps, called search framework,
where an output of one step becomes an input of the next
step. In step 0, the search space is divided into disjoint
zones. In step 1, the zones are separately searched for good
solutions. In the last step, a local search is applied to im-
prove the solutions found in the most promising zones.

In step 0 (search space partitioning), the global parti-
tioning of search space is carried out by running a sweep
with the root model (input of this step, ancestor of all other
models) as a seed population. This sweep is special: no
pruning events are allowed. The purpose of the sweep is to
branch until the sweep population size reaches the required
number of zones, algorithm’s parameter. When the number
is reached, the sweep stops (step 0 is complete). The sweep
population, one model for each zone, represents zone seeds
(output of this step, zone root models) for zone searches.
All nodes expanded in this step form a set called zone-
creation nodeset. This special short sweep “divides” the
decision tree into disjoint subtrees, creating one subtree for
each zone.

In step 1 (zone search), one by one, the zone subtrees
are searched by a sweepset search (that is sweep with back-
tracking as described in Section 2.1). For each zone, the
sweepset search runs with a different model from the zone
seeds (input of this step). This model (zone root model) is
the seed population for launching the first sweep of the
sweepset. The algorithm maintains a list (output of this
step, zone elite) of the elite solutions found during the zone
sweepset searches.

It is tempting to continue with the iterative search
process of nested partitioning (Shi and Ólafsson 2000) as
started in step 0 and 1. In step 0, the whole search space is
partitioned into zones. In step 1, the zones are evaluated,
and the most promising zones are selected for partitioning
into subzones and subsequent evaluating the subzones in
the next iteration. However tempting it is to continue with
nested partitioning in the following steps, we are more in-
trigued by exploring the potential of the sweep’s local
search (Section 2.2).

In step 2 (local search), the zone elite (input of this
step) are selected for the local search by the best first rule.
For each zone elite (initial solution), its neighborhood is
searched for improvement. The local search works as an
iterative improvement process. In each iteration, the neigh-
borhood of an elite solution found in previous iterations is
searched for solution improvement by the sweepset search.
The algorithm keeps track of the best solution found thus
far (global best, alpha solution).

732

Mejtsky

The search framework utilizes four new components –

backtracking, local search, nodeset savings, and sweep sig-
nature – which are described next.

2.1 Backtracking

Backtracking is a traditional search approach. During a
search, if an alternative does not work, the search
backtracks to a decision choice point, a place with different
alternatives, and tries the next alternative. For a
backtracking example, see beam search with backtracking
in Zhou and Hansen (2005).

In the basic sweep algorithm, there is only one single
sweep producing a solution at the end. If the solution is not
optimal, then it means that the single sweep eliminated a
model (partial solution) leading to the optimal solution.
The elimination of a potential optimal solution (inadmissi-
ble pruning) could occur only in a pruning event, where
weaker models are eliminated from the search.

Therefore, to increase the chance of finding an im-
proved solution, we modified pruning events by saving the
weaker models. This allows the algorithm, after a sweep
ends and a solution is found, to go back (backtrack) to a
saved model (or models) and to run the next sweep with
the saved model(s) as the seed population. This idea of
backtracking is similar to the reheating idea of simulated
annealing.

In the new pruning event, the sweep population is
placed in a queue, called island, and sorted by a pruning
function. Only the FLOOR best performing individuals of
the sweep population are removed from the island and al-
lowed to continue in the sweep. The rest of the sweep pop-
ulation stays on the island.

During a sweep, a number of pruning events can arise,
and each pruning event creates an island with population –
islanders. Therefore, when the sweep ends, the sweep algo-
rithm backtracks to an island, picks up one or more indi-
viduals (seed population for the next sweep) from the is-
landers, and starts running the next sweep from the
simulation time of the pruning event which created the is-
land (island creation time, island time).

There are a number of schemes (heuristics) for select-
ing the seed population of the next sweep. We imple-
mented two alternatives as an algorithm’s parameter:

• Find the earliest island (the island with the lowest

value of island time, FIRST ISLE) and select sev-
eral top performers from that island; or

• Find the latest island (the island with the highest
value of island time, LAST ISLE) and select sev-
eral top performers from that island.

For fast execution, all models are stored in the CPU

fast memory. This is in contrast to the implementation of
the basic sweep algorithm where only one model was in

the memory, and the rest was stored in a direct-access file.
Due to memory limitation, there are limits for the number
of islands and the number of models (sweep population
plus islanders on all islands plus others). Therefore, when
anyone of the two limits is being approached, the following
pruning events do not save weaker models on islands any-
more. The weaker models are eliminated forever from the
search. Some memory space for new models needs to be
always reserved so that branching can go on, and therefore,
the sweep can continue.

During a sweep, it encounters (except the first sweep)
a number of inhabited islands created by pruning events of
previous sweeps. The sweep is like a ship on her voyage
passing many islands. When the ship passes an island, it
has two alternatives (algorithm’s parameter): (1) do not
stop on the island and continue on its voyage; or (2) stop
on the island, pick the best individuals, and continue on its
voyage.

When the ship stops on the island, (1) everyone leaves
the ship and enters the island, (2) all individuals on the is-
land (ship population and islanders) are sorted by the prun-
ing function, and (3) the best performing individuals board
the ship and depart the island. On departure, the ship popu-
lation size is the same as on arrival, except in the case
when on arrival the size is smaller than FLOOR. In this
case, the size on departure is equal to FLOOR.

The sweep algorithm with backtracking executes a se-
quence of sweeps, called sweepset, until there is no more
seed population for the next sweep, or until a limit for the
number of sweeps (algorithm’s parameter) in the sweepset
is reached. The algorithm maintains a list (sweepset elite)
of the best solutions found during the sweepset search. At
the end of every sweepset search, all islands are emptied
(islanders are eliminated) and destroyed; therefore, mem-
ory is freed, and the next sweepset search can create new
islands to inhabit.

2.2 Local Search

The sweep algorithm is a tree search. The basic idea of tree
search is to conceptualize an optimization problem as a de-
cision tree. Each decision choice point – a node – corre-
sponds to a partial solution – a value of an input parameter.
From each node, several new branches emanate, one
branch for each decision choice (option). This branching
process continues until leaf nodes, which cannot branch
any further, are reached. These leaf nodes are solutions to
the optimization problem (values of all input parameters
are known). The starting node is called the root node, an-
cestor of all other nodes.

A solution is defined by a unique sequence of nodes (a
path through the tree) starting with the root node and end-
ing with a leaf node. In a node of the solution, an option is
selected (partial solution). All remaining non-selected op-
tions of the node form a neighborhood of the node. Our lo-

733

Mejtsky

cal search explores the neighborhoods of the nodes – the
neighborhood along the path (path neighborhood) of a so-
lution. The neighborhood of a solution is defined by all so-
lutions which can be generated by exploring the neighbor-
hood along the path of the solution.

The purpose of our local search is to search for an im-
proved solution in the neighborhood of a solution. Every
node in a tree can be seen as the root node of the subtree
rooted at that node. Likewise, at any point of simulation
time, a model represents the root model of the subtree
rooted at that model.

(Note: One can describe a sweep in terms of the nested
partitions method. The basic concept of nested partitioning
is to iteratively partition the most promising regions (trees)
selected at the previous iteration into disjoint subregions
(subtrees) which will be evaluated in the next iteration. In a
sweep, each pruning event evaluates subregions (the parti-
tioned regions, models) from the previous branching phase
and selects the most promising subregions for partitioning
in the next branching phase.)

Our local search explores subtrees of a path
neighborhood by the sweepset search. The root model of a
subtree is used as a seed population for the sweepset search
of the subtree.

To start the sweepset search, a seed population is
needed to launch the first sweep of the sweepset. The local
search supplies the seed population from the path neigh-
borhood of a solution by running a simulation model,
called lead model, according to the solution. The lead
model follows the path of the solution. When the lead
model encounters a decision point – a node – with k op-
tions, a branching event is triggered. In the branching
event, the lead model selects for itself the option according
to the solution and spawns (k – 1) new models. Each new
model picks a different option from the remaining (k – 1)
options – the node neighborhood. The new models are
spawned only if they are needed as the seed population. As
the seed population is being spawned (that is, the first
sweep of a sweepset search is being launched), the sweep
population and the lead model run in parallel. The lead
model only generates the seed population and does not par-
ticipate in pruning events of the first sweep.

There are a number of schemes, neighborhood struc-
tures, for selecting the seed population from the neighbor-
hood along the path of a solution. One scheme can select
one or more options from the neighborhood of a randomly
selected node. In such a case, the lead model would ad-
vance along the path, passing nodes without spawning
models, until the randomly-selected node is encountered.
At this branching event, one or more required models
would be spawned. Imagine a scheme selecting just one
option from every other node along the paths of two solu-
tions (in a local search of two solutions), then two lead
models are needed to run and generate the desired seed
population. Notice that the sweep population and the lead

model need not run in parallel. The generation of the seed
population can be run first, followed by the sweepset
search.

We now describe our implementation of the local
search. The local search is an iterative improvement proc-
ess. It takes solutions one by one from the zone elite and
iteratively searches the neighborhood of the solution for an
improved solution.

In the first iteration, a solution from the zone elite is
selected as an initial solution. We need to decide which
lead model scheme will select the seed population from the
path neighborhood of the solution. All candidates for se-
lecting the seed population are in the path neighborhood
with the exception of the first several nodes of the path.
The excluded nodes were used in step 0 for search space
partitioning and helped with the creation of the zone root
model of the zone from which the solution comes. The ex-
cluded nodes belong to the zone-creation nodeset. There-
fore, the very next node after the excluded nodes is the first
branching node on the solution path with candidates for
the seed population. This first branching node (1) is the
first node which the zone root model encountered when it
started running in step 1 and (2) is inherited by all solu-
tions of the zone in step 1. The first branching node and
the rest of path nodes following the first branching node
are called the branching nodeset of the solution. So, all
candidates for selecting the seed population are in the
neighborhood of the branching nodeset.

In our scheme, the branching nodeset is divided in the
middle, called branching midpoint, thus creating two seg-
ments. For each segment, all candidates from the segment
are selected as the seed population, and the sweepset
search is applied.

In more detail, the lead model carries out its simula-
tion run according to the solution. For each node of the
first segment (starting with the first branching node), a
branching event is triggered. In the branching event, the
lead model (1) selects for itself the option according to the
solution, (2) spawns a new model for each option of the
node neighborhood, and (3) defines the first branching
node for each new model. The first branching node of a
new model is defined as the first node which the new mod-
el encounters, at a simulation time tF, after being spawned
by the lead model. The information about its first branch-
ing node is passed from each parent model to its child
model up to a solution. Therefore, each solution found by
the local search inherits this information defined by its lead
model.

The spawned models (the seed population of sweepset
search of the first segment) run with the lead model in par-
allel. After spawning the entire seed population of the first
segment, the lead model encounters the branching mid-
point at simulation time tM1. By now, the lead model has
done all required work for the first segment and takes a
short break at the midpoint (rest stop). While the lead

734

Mejtsky

model is resting, the sweepset search of the first segment is
busy searching sweep by sweep for elite solutions.

The local search maintains a candidate list (output of
every iteration and input of the following iteration) of elite
solutions found by the sweepset searches during the local
search. If an elite solution did not encounter a pruning
event during its sweep since it was spawned by its lead
model, then this elite solution is not included in the candi-
date list because it was already fully searched by the
sweep.

When the sweepset search of the first segment is com-
pleted, the lead model resumes running from the rest stop.
For the second segment, the lead model spawns all new
models and defines their first branching nodes in the same
way as it has done for the first segment. The new models,
running in parallel with the lead model, start the sweepset
search of the second segment. The end of this sweepset
search concludes the first iteration of the local search. No-
tice that the lead model runs only in the first sweep of the
sweepset searches of both segments. This ends the descrip-
tion of the first iteration of the local search.

Descriptions of all subsequent iterations are identical
and differ slightly from the description of the first iteration.
In a subsequent iteration, a solution from the candidate list
needs to be selected as an initial solution. To search solu-
tions with larger subtrees first, the algorithm selects the
best solution with a long branching nodeset. A long
branching nodeset has time tF of its first branching node
equal or smaller than time of the branching midpoint
which has been defined in the first iteration (that is, tF ≤
tM1). A short branching nodeset has tF > tM1. The selected
initial solution is “processed” in the same way as the initial
solution of the first iteration: its branching nodeset is di-
vided into two segments, its lead model generates seed
populations for the sweepset searches of both segments,
and so on.

However, when only solutions with short branching
nodesets are in the candidate list, the best solution is se-
lected and processed in the same way as a long branching
nodeset solution with only a small difference at the end of
both segment searches. From all solutions found by both
searches, only (1) the better solutions than the initial solu-
tion of the iteration or (2) the global best solutions are in-
serted into the candidate list. When the candidate list is
empty or there is no improvement over a certain number of
iterations, the local search of the current solution selected
from the zone elite is completed. The algorithm then se-
lects the next best solution from the zone elite for the next
local search. The sweep algorithm ends when all zone elite
are searched for improvement by the local search or the al-
gorithm reaches a time limit.

A tree graph on Figure 1 illustrates the local search
with 3 iterations. The first horizontal line represents a path
of the lead model of the first iteration. The lead model tra-
verses the tree according to an initial solution (S1) selected

from the zone elite with the objective function value of 15.
The goal is to minimize the function value. The lead model
starts its simulation run (point S) at time t0 and spawns
models (seed population of the first segment) from the first
branching node (A) up to its branching midpoint (M1). Af-
ter a rest stop at M1, it spawns models for the second seg-
ment up to the end of its simulation run (point S1). Notice
that at node B, it spawned a model leading to the best solu-
tion (S2) found in the first iteration with the improved ob-
jective function value of 14. In the second iteration, its lead
model follows the path of S2: starting at S, passing A and
B nodes, starting spawning models from its first branching
node (C), taking a rest at its branching midpoint (M2), and
so on. At node D, it spawned the best solution (S3) of the
iteration. In the third iteration, its lead model follows the
path of S3: starting at S, passing A, B, C, and D nodes,
starting spawning models from its first branching node (E),
taking a rest at its branching midpoint (M3), and so on. No
elite solution is found in this iteration, so the local search
of S1 ends with the improved objective function value of
12.

Figure 1: Tree graph of local search with 3 iterations.

Notice the purpose of the first branching node: the use
of the first branching nodes ensures that with each subse-
quent iteration, smaller and smaller subtrees (subregions)
are searched. In this way, the local search keeps zooming
in on the most promising subregion. Thus, this local search
is yet another example of nested partitioning used in the
sweep algorithm.

2.3 Nodeset Savings and Sweep Signature

Nodeset Savings: In the spirit of the front-end savings of
computational resources (Mejtsky 2007), we can find sav-
ings among candidate solutions, such as the zone elite, for
the local search. The idea is: if two or more solutions have
the same front part of their tree paths, then search the front
part only once. This is done by repositioning the first
branching node to the first node following the common
front part for each solution that we do not want to repeat
the search. In detail, the nodeset savings procedure com-

timet0

S1=15

S2=14

S3=12

S A B

C D

E

M1

M3

M2

735

Mejtsky

pares all pairs of the candidate solutions. For each pair, if
both solutions have their first branching nodes inside the
common front part, then redefine the first branching node
of one of the pair to the next node following the common
front part.

We reuse Figure 1 to illustrate the concept of the pro-
cedure. Suppose we have 3 solutions in the zone elite. The
tree paths of the solutions (S1, S2, and S3) are shown on
redefined Figure 1. Their first branching node is the same
node A (that is, the solutions are from the same zone).
When comparing S1 and S2, both have their first branch-
ing node (A) inside their common front part (from S to
node B). Therefore, the procedure redefines the first
branching node of S2 from node A to node C. The same is
true and done when we compare S1 and S3. When compar-
ing S2 and S3, both have their redefined first branching
node (C) inside their common front part (from S to node
D). Therefore, the procedure redefines the first branching
node of S3 from node C to node E. Notice that the branch-
ing nodeset of S3 shrank from the original nodeset (A to
S3) to a shorter nodeset (E to S3) resulting in nodeset sav-
ings for the local search of S3. Similarly, we have S2 no-
deset savings: from (A to S2) to just (C to S2).

Sweep Signature: This concept is a result of the fol-
lowing concern: During a sweep, a pruning function takes
care of purging weaker individuals from the sweep popula-
tion. However, this purging is relative only to the popula-
tion of the sweep. Imagine a sweep where the entire popu-
lation is of poor quality relative to the populations of
previous sweeps. In such a case, there is no need to con-
tinue with such a sweep. One solution to this problem is to
compare, during a sweep, each individual to the alpha so-
lution, called benchmark BEST in (Mejtsky 2007), and
eliminate all weak individuals.

We implemented a slightly different version where the
benchmark is the best sweep signature. In each pruning
event during every sweep, the sweep collects the value of
the pruning function of the sweep’s best individual at that
time. The sequence of the values, different for each sweep,
forms a curve – sweep signature. The algorithm keeps
track of the best sweep signature found thus far – alpha
signature. In pruning events during each sweep, the func-
tion value of each individual is compared with the value of
the alpha signature for that time. If the function value of an
individual deviates from the alpha value more than an al-
lowed percentage deviation (limit), then the individual is
eliminated forever. The algorithm collects percentage de-
viations for elite solutions so that we can set the limit (al-
gorithm’s parameter) not to eliminate the elite.

3 EXPERIMENTAL EVALUATION

To test the improved sweep algorithm, we considered 58
instances from four classes of job shop scheduling (JSS)
standard benchmark problems:

• Adams et al. (1988) ABZ 5 – ABZ 9;
• Applegate and Cook (1991) ORB 1 – ORB 10;
• Fischer and Thompson (1963) FT 6, FT 10, and

FT 20; and
• Lawrence (1984) LA 1 – LA 40.

To obtain the best solution for each instance, we fine-

tuned (optimization of optimization) the sweep algorithm
by selecting from the menu of the basic sweep algorithm
and from the menu of the algorithm’s parameters. For a de-
tail description of applying the basic sweep algorithm to
JSS, see Mejtsky (2007).

Tables 1 and 2 present the best solution found by our
algorithm for each instance. The tables list in the first two
columns the instance names and sizes (the number of jobs
× the number of machines). Column OPT shows the opti-
mum or the best known solutions. The next two columns
report the best solutions (Sweep) produced by the algo-
rithm and the corresponding percentage deviations (%) rel-
ative to OPT values. The last column (Time) reports the
run times in minutes for the best solutions. Time 0 means
the run time was smaller than one minute.

Table 1: Results for ABZ, ORB, and FT problems.

Name Size
(JxM) OPT Sweep % Time

(min.)
ABZ 5 10x10 1234 1242 0.7 5
ABZ 6 10x10 943 943 0 12
ABZ 7 20x15 656 704 7.3 14
ABZ 8 20x15 665 710 6.8 44
ABZ 9 20x15 679 724 6.6 31
ORB 1 10x10 1059 1060 0.1 0
ORB 2 10x10 888 902 1.6 0
ORB 3 10x10 1005 1032 2.7 0
ORB 4 10x10 1005 1032 2.7 1
ORB 5 10x10 887 908 2.4 5
ORB 6 10x10 1010 1013 0.3 2
ORB 7 10x10 397 405 2.0 0
ORB 8 10x10 899 921 2.5 16
ORB 9 10x10 934 948 1.5 0

ORB 10 10x10 944 967 2.4 0
FT 06 6x6 55 55 0 0
FT 10 10x10 930 941 1.2 26
FT 20 20x5 1165 1165 0 4

The algorithm was implemented in MS Visual C++,

and the tests were carried out on a HP Compaq Presario PC
with a 2.19 GHz AMD Athlon 64 Processor, with 448 MB
of RAM, on the MS Windows XP Home Edition 2002 SP
2 operating system.

736

Mejtsky

Table 2: Results for LA problems.

Name Size
(JxM) OPT Sweep % Time

(min.)
LA 1 10x5 666 666 0 0
LA 2 10x5 655 655 0 0
LA 3 10x5 597 604 1.2 1
LA 4 10x5 590 590 0 0
LA 5 10x5 593 593 0 0
LA 6 15x5 926 926 0 0
LA 7 15x5 890 890 0 0
LA 8 15x5 863 863 0 0
LA 9 15x5 951 951 0 0
LA 10 15x5 958 958 0 0
LA 11 20x5 1222 1222 0 0
LA 12 20x5 1039 1039 0 0
LA 13 20x5 1150 1150 0 0
LA 14 20x5 1292 1292 0 0
LA 15 20x5 1207 1207 0 0
LA 16 10x10 945 970 2.7 16
LA 17 10x10 784 786 0.3 12
LA 18 10x10 848 859 1.3 2
LA 19 10x10 842 850 1.0 25
LA 20 10x10 902 916 1.6 8
LA 21 15x10 1046 1090 4.2 5
LA 22 15x10 927 963 3.9 1
LA 23 15x10 1032 1032 0 0
LA 24 15x10 935 960 2.7 3
LA 25 15x10 977 1008 3.2 6
LA 26 20x10 1218 1218 0 240
LA 27 20x10 1235 1283 3.9 2
LA 28 20x10 1216 1226 0.8 36
LA 29 20x10 1157 1216 5.1 120
LA 30 20x10 1355 1355 0 2
LA 31 30x10 1784 1784 0 0
LA 32 30x10 1850 1850 0 0
LA 33 30x10 1719 1719 0 0
LA 34 30x10 1721 1721 0 3
LA 35 30x10 1888 1888 0 0
LA 36 15x15 1268 1294 2.1 10
LA 37 15x15 1397 1441 3.2 23
LA 38 15x15 1196 1245 4.1 14
LA 39 15x15 1233 1271 3.1 17
LA 40 15x15 1222 1244 1.8 3

We implemented due date (DD) control as described

in Mejtsky (2007). Even then due dates are not explicitly
stated in the JSS problem, the DD control is used to weed
out partial solutions (admissible pruning) which would
have led to solutions with makespan exceeding the im-
posed DD limit. An initial DD, the algorithm’s parameter,
is used in step 1 (zone search) for each sweep. In the local
search, each iteration has its DD equal to the makespan of
its initial solution.

We included an option for delay schedule search. The
delay option is implemented as suggested (“doing nothing”
choice) in Mejtsky (2007). The delay schedule is a sched-
ule in which a machine is kept idle when it could start
processing a job from its queue. The option inclusion re-
sulted in a significant enlargement of solution space con-
taining many solutions with large delay times, and there-
fore, poor quality in terms of makespan. In order to reduce
the solution space and to control the delay times, we de-
veloped the sweep signature concept. However, our results
still did not significantly improve and they underperformed
the results reached by not using the delay option.

4 COMPARISON WITH OTHER ALGORITHMS

We compare the improved sweep algorithm with the basic
sweep algorithm and with 13 metaheuristics from a com-
parative analysis study (Gonçalves et al. 2005). The com-
parison is done by average percentage relative deviation
(APRD) from the optimum. In the study, their hybrid ge-
netic algorithm and local search was compared by APRD
with 12 metaheuristics from the JSS literature; no compari-
son by run time was made. The metaheuristics compared
on the JSS benchmarks include tabu search, genetic algo-
rithms, hybrid of genetic algorithm and simulated anneal-
ing, and GRASP.

Table 3 compares the improved sweep algorithm with
other algorithms. The list of other algorithms is given in
the first column. Since other algorithms solved different
subsets of the JSS instances within FT and LA classes, the
second column shows the number of instances solved
(NIS). The average percentage relative deviations (APRD)
from the optimum (or the best known solution) for the oth-
er algorithms (OA) and for the improved sweep algorithm
(Sweep) are calculated in the last two columns.

 The clear winner in the comparison of these algo-
rithms is the tabu search approach of Nowicki and Smut-
nicki (1996). This tabu search solved all 43 instances of the
LA and FT classes of the JSS problems with an average
relative deviation of only 0.1% from the optimum. The im-
proved sweep algorithm solved the same 43 instances with
an average relative deviation of 1.1%. Our improved sweep
algorithm outperformed 7 of the 13 metaheuristics. There-
fore, our improved sweep algorithm ranks in the middle of
the relative performance comparison which we regard as a
success. (Note: Currently, we are testing a preemption ap-
proach to searching delay schedule space. The preliminary
results for the 43 instances have an average relative devia-
tion of only 0.6%.)

We are pleased to report on a significant improvement
of the sweep algorithm: The basic sweep algorithm solved
26 instances of the JSS problems with an average relative
deviation of 2.7%; however, the improved sweep algorithm
solved the same 26 instances with an average relative de-
viation of only 0.7%.

737

Mejtsky

Table 3: Comparison of algorithms by APRD.
APRD

Algorithm NIS
OA Sweep

Problem and Heuristic
Space

 Storer 11 2.4 1.9
Genetic Algorithms
 Aarts – GLS1 42 2.0 1.1
 Aarts – GLS2 42 1.7 1.1
 Croce 12 2.4 0.9
 Dorndorf – PGA 37 4.6 1.3
 Dorndorf – SBGA (40) 35 1.4 1.3
 Dorndorf – SBGA (60) 20 1.9 2.2
 Gonçalves (1999) 43 0.9 1.1
GRASP
 Binato 43 1.8 1.1
 Aiex 43 0.4 1.1
Hybrid GA/SA
 Wang and Zheng 11 0.3 0.9
Tabu Search
 Nowicki & Smutnicki 43 0.1 1.1
Hybrid GA/LS
 Gonçalves (2005) 43 0.4 1.1
Basic Sweep Algorithm
 Mejtsky (2007) 26 2.7 0.7

5 DISCUSSION

We sketch some ideas for future research.
Sequential Sweep: In a sweep, all encountered nodes

are fully expanded, and pruning events (PEs) are triggered
dynamically. In each branching event, one model is
spawned for each option. However, we can have a sweep
where the nodes are only partially expanded and PE times
are fixed. In such a sweep, the root model starts running
and encountering nodes. In each branching event, only one
option is selected for the model to continue. When the
model reaches the first PE time, the model pauses; the
sweep backtracks to a partially expanded node, picks an-
other option, and spawns a model.

The spawned model starts running and branching like
the root model until it pauses at the first PE time. The
sweep keeps backtracking for new models until there are
enough models assembled at the first PE time to trigger the
pruning event. After sorting by a pruning function, only the
elite models can continue running; the rest stays on this
first island. The elite run sequentially, one by one, from the
first PE time to the second PE time in the same way as they
were running to the first PE time. When the sweep needs to
assemble models at a PE time to trigger the pruning event,
it backtracks to an island or a partially expanded node, pre-
ferably to the node left over by some elite model (a local
search in the neighborhood of the elite partial solution), for

another model. In this way, the models move sequentially
and uninterrupted from one PE to the next PE, and the
number of partially expanded nodes (mini-islands) grows.
A mini-island is a parent model which has not finished
spawning models.

Eventually, some models finish their simulation runs
while others are still running. The sweep can use elite solu-
tions for the local search by backtracking to their leftover
partially expanded nodes and searching the neighborhoods
of the nodes. Since models run sequentially and not in par-
allel, there is no need for a single centralized global calen-
dar of events to synchronize their simulation times. There-
fore, in this sequential sweep, each model has its own
event calendar.

We need such sequential sweep, where a model runs
uninterrupted for a while (from a PE to the next PE), in
case, (1) we can have only one model in the CPU memory
(because of its large size) and the rest of models is in a di-
rect-access file, and (2) there is a large overhead cost for
frequent swapping models between the CPU memory and
the file. The sequential sweep reduces the swapping cost.

Pruning Function: In JSS, if the objective is minimiz-
ing total (weighted) tardiness, then use the pruning func-
tion: maximizing total (weighted) slack time (including
lateness as negative slack). Notice the similarity with a
(weighted) slack-based criticality measure of shifting bot-
tleneck heuristic.

Marriage with Dispatching Rules: In production
scheduling/dispatching, schedules need to be generated
within a time limit. During a sweep, the user (or the sweep
algorithm automatically) can control the execution speed
of the sweep: To every decision point in a simulation mod-
el, a dispatching rule or the branching event can be applied.
If only dispatching rules are applied and no branching is
used, then the schedule is generated fastest with only one
simulation run. However, the more the branching is ap-
plied, at the expense of fewer dispatching rules, the slower
the schedule is generated but with more search for a better
schedule. Notice that a variable CEILING and FLOOR can
be used for the sweep’s speed control as well.

Thanks to the sweep algorithm, new (generalized) dis-
patching rules can be devised, such as (1) a rule with more
than one selected options, (2) more than one rule applying
to a decision point, (3) a hybrid of rules and branching, (4)
if the algorithm’s speed is too fast/slow, use a
rule/branching; or (5) if a machine is a bottleneck, then use
branching, else use a rule.

The sweep algorithm with speed control can be util-
ized for real-time manufacturing operation scheduling.
Imagine a production where the algorithm generates a two-
hour schedule every one hour (or anytime). In this cruising
phase, the algorithm is running only one sweep, and its si-
mulation time maintains a constant two-hour lead ahead of
real time. With this slow advancing of simulation time, the
algorithm can afford to apply more branching and fewer

738

Mejtsky

dispatching rules. When an unexpected event hits, such as
a machine breakdown, a recovery phase starts. In this
phase, the algorithm must quickly generate a new one-hour
schedule for the affected area, so it applies only dispatch-
ing rules. After rescheduling the area, the algorithm returns
to the cruising phase in its never-ending run.

Backward Simulation: In backward simulation, see
(Mejtsky 2007), if branching is used instead of dispatching
rules, then problems with reversing the rules are elimi-
nated.

Evaluating Dispatching Rules: When the rules are
options in branching events, the sweep algorithm can be
used for evaluating dispatching rules.

6 CONCLUSION

We discussed new additions, such as backtracking and lo-
cal search, to the basic sweep algorithm. The additions,
along with the new search framework, increased diversifi-
cation and intensification of our hierarchical search proc-
ess. The improved search process led to improved per-
formance as documented in the comparison between the
basic and improved sweep algorithm. Also, we compared
the improved sweep algorithm with 13 metaheuristics on
the JSS standard benchmark problems. Our algorithm
ranks in the middle of the comparison. Because of the re-
search contribution of this paper, simulation now has its
own optimization tool which is quite competitive with me-
taheuristics using disjunctive graph.

The high modeling capability of simulation and the
general nature of tree search offer a large array of applica-
tions for the sweep algorithm. For example, this algorithm
– simulation-based metaheuristic – can be applied to solv-
ing sequential decision problems, such as resource-
constrained project scheduling, traveling salesman, pack-
ing, or (real-time) production scheduling.

REFERENCES

Adams, J., E. Balas, and D. Zawack. 1988. The shifting
bottleneck procedure for job shop scheduling. Man-
agement Science 34(3):391-401.

Applegate, D., and W. Cook. 1991. A computational study
of the job shop scheduling problem. ORSA Journal on
Computing 3(2):149-156.

Fisher, H., and G. L. Thompson. 1963. Probabilistic learn-
ing combination of local job shop scheduling rules. In
Industrial Scheduling, ed. J. F. Muth and G. L.
Thompson, 225-251. Englewood Clifs, New Jersey:
Prentice Hall.

Fu, M. C., F. Glover, and J. April. 2005. Simulation opti-
mization: A review, new developments and applica-
tions. In Proceedings of the 2005 Winter Simulation
Conference, ed. M. E. Kuhl, N. M. Steiger, F. B. Arm-
strong, and J. A. Joines, 83–95. Piscataway, New Jer-

sey: Institute of Electrical and Electronics Engineers,
Inc. .

Gonçalves, J. F., J. J. M. Mendes, and M. G. C. Resende.
2005. A hybrid genetic algorithm for the job shop
scheduling problem. European Journal of Operational
Research 167(1):77–95.

Henderson, S. G., and B. L. Nelson. (Eds.) 2006. Hand-
book of simulation. Elsevier. Forthcoming.

Lawrence, S. 1984. Resource constrained project schedul-
ing: an experimental investigation of heuristic sched-
uling techniques (supplement). Graduate School of In-
dustrial Administration, Carnegie Mellon University,
Pittsburgh, Pennsylvania.

Mejtsky, G. J. 1986a. Toward expert simulation systems in
job shop scheduling. In Proceedings of the 1986 Na-
tional Computer Conference, 143-147.

Mejtsky, G. J. 1986b. A new combinatorial method: paral-
lel modeling. International Congress of Mathemati-
cians, University of California, Berkeley, CA.

Mejtsky, G. J. 1986c. Application of expert simulation sys-
tem to job shop scheduling. In Proceedings of the
1986 APICS Spring Seminar, American Production
and Inventory Control Society, 248-257.

Mejtsky, G. J. 2007. A metaheuristic algorithm for simul-
taneous simulation optimization and applications to
traveling salesman and job shop scheduling with due
dates. In Proceedings of the 2007 Winter Simulation
Conference, ed. S. G. Henderson, B. Biller, M.-H.
Hsieh, J. Shortle, J. D. Tew, and R. R. Barton, 1835-
1843. Piscataway, New Jersey: Institute of Electrical
and Electronics Engineers, Inc. .

Nowicki, E., and C. Smutnicki. 1996. A fast taboo search
algorithm for the job-shop problem. Management Sci-
ence 42(6):797-813.

Shi, L., and S. Ólafsson. 2000. Nested Partitions Method
for Global Optimization. Operations Research 48(3):
390-407.

Weinberger, J. 1982. An optimization strategy based on
quasiparallel handling. Simula Newsletter 10(2):8-9.

Zhou, R., and E. Hansen. 2005. Beam-stack search: inte-
grating backtracking with beam search. In Proceed-
ings of the 15th International Conference on Auto-
mated Planning and Scheduling, 90–98.

AUTHOR BIOGRAPHY

GEORGE JIRI MEJTSKY has over twenty years of ex-
perience in simulation. He holds an M.S. Degree in Opera-
tions Research from University of Economics, Prague,
Czech Republic. His research interests include discrete-
event simulation optimization, production scheduling, and
stock market optimization. He is a member of the
INFORMS Simulation Society. His email address is
<george.mejtsky@yahoo.com>

739

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

