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ABSTRACT 

Emergent behaviors in simulations require explanation, so 
that valid behaviors can be separated from design or cod-
ing errors.  Validation of emergent behavior requires ac-
cumulation of insight into the behavior and the conditions 
under which it arises.  Previously, we have introduced an 
approach, Explanation Exploration (EE), to gather insight 
into emergent behaviors using semi-automatic model adap-
tation. We improve our previous work by iteratively apply-
ing causal inference procedures to samples gathered from 
the semi-automatic model adaptation. Iterative application 
of causal inference procedures reveals the interactions of 
identified abstractions within the model that cause the 
emergent behavior.  Uncovering these interactions gives 
the subject matter expert new insight into the emergent be-
havior and facilitates the validation process. 

1 INTRODUCTION 

In the past half century quantitative methods of analysis 
have been developed to take advantage of computational 
resources.  Simulation is gaining prominence as the proper 
tool of scientific analysis under circumstances where it is 
infeasible or impractical to study a system directly. As 
models have become more complex, our capacity to under-
stand their behavior and determine their validity has suf-
fered. Poorly understood model behaviors which compro-
mise overall model validity are dangerous.   

Understanding emergent model behavior is challeng-
ing. Emergent behavior can arise from seemingly unrelated 
phenomena, or it can reflect an error in a model or its im-
plementation. Behavior is emergent if it is unexpected and 
stems from the interactions of the underlying components 
of the model (Johnson 2006).  

The challenge of establishing validity of emergent be-
havior is evident in the results of recent epidemiology stud-
ies.  Epidemiologists have explored government policy for 

controlling the spread of infectious diseases such as small-
pox and bird flu.  Should a comprehensive vaccination 
program be initiated? How, and for how long should in-
fected individuals be isolated? Answers to these questions 
are full of conflict.  Recently Elderd, (Elderd 2006) has 
shown analytically that just four of the potentially hun-
dreds of independent variables in these studies induce ex-
treme sensitivity in model predictions, leading to serious 
conflict regarding remedial approaches involving billions 
of dollars and millions of people. Subject matter experts 
must be given additional capabilities to understand the be-
havior of their models so that model results can be used ef-
fectively and with confidence. 

Our goal is to design and develop a novel approach to 
observed simulation behavior hypothesis testing that al-
lows users to validate or reject emergent model behaviors 
efficiently, and with confidence. Validating an emergent 
behavior, is different from validating a simulation, which is 
a demonstration that a simulation meets expected behav-
iors. Emergent behavior validation is a demonstration that 
an unexpected behavior is valid (or not) for a given set of 
conditions, or experimental frames (Zeigler 2000). Meth-
ods to validate simulations exist (Balaci 1997). Emergent 
behavior validation is an active area of research. We have 
introduced “Explanation Exploration” (EE) (Gore 2007) 
for demonstrating that a given emergent behavior is valid. 
EE allows a subject matter expert (SME) to test hypotheses 
about the emergent behavior as a simulated phenomenon is 
driven towards conditions of interest.  

In this paper, we take EE a significant step further by 
offering SMEs additional insight into the interactions of 
abstractions causing emergent behavior in a model. By ap-
plying causal inference procedures we can reveal the inter-
actions of  identified abstractions in the model which cause 
the emergent behavior. Uncovering these interactions gives 
the subject matter expert new insight into the emergent be-
havior and facilitates the validation process.  
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2 PREVIOUS WORK 

Software engineers have addressed exploration of unex-
pected behaviors. We review research in static and dy-
namic program analysis, Delta Debugging, and causal in-
ference, and its applications.  
 Program slicing is a decomposition that extracts the 
program statements that affect the value of a target variable 
(Tip 1995).  Static program slicing extracts these program 
statements for all possible runs of the program. Dynamic 
program slicing extracts them for one  run of the program.  
The program understanding community has successfully 
used dynamic and static analysis to help programmers 
gather insight into program behavior (Eisenbarth 2001).  
These techniques have limited their focus to gathering in-
sight into deterministic programs on the source code level. 

Delta Debugging is an automated approach to program 
debugging that isolates the causes of failing test cases sys-
tematically. Delta Debugging requires a program run that 
passes the test case, and one that fails it. The cause of a 
failure is isolated by assessing outcomes of altered execu-
tions to determine whether a change in the program state 
makes a difference in the test outcome (Zeller 2002). 
Delta debugging does not assume changes are or-

dered, but requires user choice of an instru-

mentation point and does not preserve validity 

of execution traces (Groce 2004).  
Causal inferencing finds cause-effect relationships 

among observed variables to explain a set of observations. 
Causal inference theory unites two pieces of mathematics 
and one piece of philosophy. The mathematical pieces are 
directed acyclic graphs (DAGs) and probability theory 
(with the focus on conditional independence), and the phi-
losophy involves causation among variables (Spirtes 2001, 
Pearl 2000). In causal inference theory, DAGs are given 
two distinct functions: to represent sets of probability dis-
tributions and to represent causal structures (Spirtes 2001).  

DAGs represent probability distributions through the 
graphical relation “d-separation” (Spirtes 2001), which is a 
relation among three disjoint sets of vertices in a directed 
graph. If a set of vertices Z, blocks all connections between 
a  set of vertices X and a set of vertices Y, in a graph G, 
then X and Y are d-separated by Z in G. In the DAG on the 
left side of Figure 1, 2X  blocks the only directed path 

connecting 1X and 3X , so 1X and 3X  are d-separated 

by 2X .  Applying d-separation to connect a DAG G to the 
probability distribution P means that if two sets of vertices 
X and Y are d-separated by a set of vertices Z in G, then X 
and Y are independent conditional on Z in the distribution 
P. In Figure 1 1X  and 3X  are d-separated by 2X . Note, 

in all distributions the DAG can represent, 1X  is inde-

pendent of 3X  conditional on 2X .       The notation for 
independence is:     
 

1{X }| 23 XX321 XXX →→
 

Figure 1: D-separation.  (Schienes 2003). 
 
 

1X  _||_ 32 | XX which means: 1X and 3X  are inde-

pendent conditional on 2X  (Dawid 1979). 
Often, distinct DAGs can represent the same set of in-

dependence relations, and thus the same set of distribu-
tions. Inference algorithms have been developed to com-
pute the DAGs that represent a given set of independence 
relations. The relationship between a set of independen-
cies, inference algorithms and DAGs is shown in Figure 2. 
We will be using these inference algorithms to compute 
DAGs for a given set of independence relations in our en-
hanced version of EE. 
  Causal inference procedures have been used to deter-
mine causal relationships among system events. These pro-
cedures are tailored to assist users faced with forensic 
questions. Users range from forensics experts needing to 
analyze the origins of a trojan horse program ("Who was 
responsible for the creation of this file?") to the system 
administrator needing to analyze intrusions ("How did the 
intruder break in?"). These techniques have been shown to 
assist security experts required to answer questions about 
the cause-effect relationships between various events that 
occur in a computer system (Jeyaraman 2006). 

Ranking and Selection procedures have been designed 
to select the best system from a number of alternatives, 
where the best system is defined by the given problem. 
Causal inference algorithms can be used to rank the factors 
or variables which affect a specified output. However, 
ranking and selection is a fundamentally different problem 
from revealing the interactions of identified abstractions 
within a model causing emergent behavior. Improvements 
in ranking and selection procedures will improve the abil-
ity of causal inference procedures to rank the influence of 
variables on a specified output. 
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DAGs Set of 
Independencies

1{X ╨ }| 23 XX

Inference 
Algorithm

321

321

321

XXX
XXX
XXX
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→→

Figure 2: The relationship between sets of independencies 
and inference algorithms.  (Schienes 2003). 
 

3 EXPLANATION EXPLORATION AND CAUSAL 
INFERENCE  

Previously, we have introduced “Explanation Exploration” 
(EE), for gathering insight into emergent behaviors using 
semi-automatic model adaptation (Gore 2007). EE can be 
improved by iteratively applying causal inference proce-
dures to samples gathered from semi-automatic model ad-
aptation, as we discuss here. 

3.1 Explanation Exploration 

EE is a method for increasing insight into unexpected –
emergent– behaviors, and providing a path to validation of 
valid behaviors. EE incorporates semi-automated explora-
tion of conditions in which a user can test hypotheses about 
emergent behaviors, and increase confidence about hy-
pothesized meaning of the emergent behaviors.  Model va-
lidation is a goal, but not necessarily an outcome of EE. 

When testing a hypothesis about an emergent behav-
ior, a SME may want to observe the emergent behavior 
under a specified set of target behaviors. However, when 
there are non-linearities in simulated behaviors, the SME 
may not know how to adapt the simulation to achieve the 
desired target behaviors directly.  

We advocate the application of semi-automated model 
adaptation for efficient exploration of emergent behavior. 
When constructing a model, abstractions inevitably must 
be selected in order to reduce complexity, improve per-
formance, or provide estimations for unknown information. 
We call those places where a SME can choose among ab-
stractions abstraction opportunities. We have developed a 
language and supporting tools for a SME to identify  ab-
straction opportunities and alternatives for model abstrac-
tions. The supporting tools allow alternatives for each 
model abstraction to be reflected in the simulation source 
code as possible alternate bindings (Carnahan 2006).  

With alternate bindings present in the source code,  a 
model adaptation strategy employing optimization be-
comes possible.  EE uses optimization-based adaptation to 
test user hypotheses about an emergent behavior by effi-
ciently creating user specified conditions of interest.  A us-
er gathers insight by observing an emergent behavior  un-

der the conditions of interest. If the observed behavior 
matches the user’s hypothesis it passes the hypothesis test, 
otherwise it fails (Gore 2007). 

As an example, we use the concept of apparent wind 
to elucidate differences between EE and its improved ver-
sion employing causal inference. It is a little known fact 
that some sailing craft can attain a forward velocity that 
exceeds true wind speed.  Such craft are capable of exploit-
ing apparent wind, which is a combination of true wind 
speed and the craft’s own forward velocity (Colgate 2001).  
Apparent wind creates emergent behavior.  

Given an emergent behavior E, a user must establish if 
expectations regarding simulation behaviors need to be 
modified to include the emergent behavior.  Alternatively 
the user may decide the emergent behavior E, is an error 
and not valid.  EE facilitates this decision process. The user 
generally needs to formulate a hypothesis, H,  about how 
emergent behavior E will be manifested under a condition 
of interest, C. The user must identify possible model ab-
straction alternatives to search to create C. The user can 
test hypothesis H by observing the emergent behavior E, 
under condition of interest C. 

In the sailing example, C may be the condition “the 
sail is full of wind” –wind flow is smooth over both sur-
faces of the sail.  As the boat accelerates the sail must be 
oriented increasingly towards the boat’s forward direction. 
If the user can identify model abstraction opportunities and 
possible alternative bindings that can be explored to 
achieve sail fullness for a given set of conditions, then s/he 
can form and test the hypothesis H: the boat speed will be 
maximized when the sail is full of wind. 
 

 
Figure 3: SME Hypothesis Hindirect 

 

 

sbV = velocity of the sailboat. 

twV = velocity of the true wind. 

RΘ = angle between true wind and the sailboat rudder. 

HΘ = angle between true wind and the sailboat hull. 
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SΘ = angle between true wind and the sailboat’s sail. 

The EE Process is applied as follows :  
1. The SME identifies emergent behavior, E, which 

occurs when twsb VV > . 
2. The SME speculates E will exhibit behavior Eic 

when condition  C arises: “Boat speed will be 
maximized when the sail is full of wind.”  The 
SME speculates that RΘ , HΘ , and SΘ  are al-
ternatives that can be searched to adapt the model 
to meet C. This hypothesis is H, which is shown 
in Figure 3. RΘ , HΘ , and SΘ  are chosen based on 
the SME’s understanding of sailing and wind. If E 
is valid, it must possess the characteristics de-
scribed in Eic,  when condition C arises.  

3. The SME identifies model abstraction opportuni-
ties related to RΘ , HΘ , and SΘ . 

4. The SME identifies model abstraction alternatives 
for each model abstraction opportunity. 

5. The developer incorporates the model abstraction 
alternatives into the simulation source code. 

6. The SME believes Eic will be observed when C is 
true, and that C will be true for some combination 
of the model abstraction alternatives. 

7. The developer and SME use optimization and/or 
manual modification to discover when C is true.  

8. The SME observes the simulation instance pro-
duced through model adaptation. The SME con-
firms or refutes H. 

The SME gathers insight from the hypothesis test in 
Step 8. S/he repeats the EE process until s/he has gathered 
sufficient insight to validate or refute the emergent behav-
ior, E, in the simulation.   

The sailing example illustrates how EE is applied to 
emergent behavior occurring in a fictional model. Next we 
explore how EE is improved by adding causal inference. 

3.2 Improving EE with Causal Inference Procedures 

Causal inference procedures create an explanation for a 
given set of observations.  They require an unbiased set of 
observations of the variables of interest and they produce a 
causal theory explaining the relationship of the variables. 
A causal theory includes a causal model and parameters 
which specify how each variable is influenced in the causal 
model. A causal model is a directed acyclic graph, with a 
1-1 mapping between vertices in the graph and variables of 
interest. Variable X has a causal influence on variable Y if 
and only if a directed path exists from vertex X to vertex Y 
in the causal model. The model serves as the basis for the 
causal theory.  Each edge in the causal model is a 1-1 
mapping with a parameter associated with the causal the-
ory. Each parameter specifies the strength of the causal in-

fluence (the probability that X has a causal influence on Y) 
induced by the corresponding edge (Pearl 2000).   

We improve EE by iteratively applying causal infer-
ence procedures to samples gathered from semi-automatic 
model adaptation, Step 7 of the EE process. In this step the 
developer either chooses manual modification or optimiza-
tion to adapt the model to meet the SME’s specified condi-
tion of interest. Each time optimization is used multiple 
runs of the simulation with alternate abstraction bindings 
are performed.  Simulation results are collected and treated 
as sample runs from the model space. We improve EE by 
applying causal inference procedures to this set of samples 
to reveal the interactions of the identified abstractions in 
the model which cause an emergent behavior of interest.  
Each condition of interest the user creates  results in more 
samples of the model space. In general, a larger sample 
size is expected to create a more accurate causal theory. 

Samples collected from the optimization process can-
not be used immediately by causal inference procedures. 
Optimization samples regions in the model space with high 
probability of meeting the SME’s condition of interest 
more frequently. This bias is expected: densely sampling 
certain regions of a search space makes optimization effec-
tive. Consequently, the samples are not uniform randomly 
distributed as required by causal inference procedures.   

We use importance sampling to produce a uniform 
random sample from the biased optimization sample. Im-
portance sampling supports estimation of the properties of 
a particular distribution, while only having samples gener-
ated from a different distribution (Srinivasan 2002). In or-
der to create a sample with properties of a uniform random 
distribution we use the Uniform-Divide Algorithm and the 
Random Sampling Algorithm, which are described next. 

3.2.1 Uniform-Divide Algorithm 

The Uniform-Divide Algorithm (UDA) takes as input a bi-
ased set of samples B,  and a search space S.  It outputs a 
set R and an integer N. Each element of R is a bucket con-
taining arbitrarily many unordered samples. N represents 
the number of buckets in R.   UDA assumes the existence 
of the following functions: 

• divide(S, N) -  given a search space S, and an inte-
ger N, divide(S,N) outputs a set of buckets R. 
Each bucket in R represents a non-overlapping, 
1/N size area of search space S.  

• map(B,R) - given a set of samples B, and a set of 
buckets R representing a search space, map(B,R) 
places each iB  into bucket jR such that bucket 

jR  covers the search area containing sample iB . 

• noEmptyBuckets(R) – given a set of buckets R 
noEmptyBuckets(R) outputs true if and only if 
each bucket in R contains at least one element. 
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Algorithm 1 (Uniform-Divide Algorithm): 
Input: B, S             Output: R, N 
Step 1:   N := 0; 
  Q := NULL; 
  R :=  NULL; 
Step 2:   while noEmptyBuckets(Q) OR Q = NULL 
   R := Q; 
   N := N+1; 
   Q := divide(S,N);    

   map(B,Q); 
         end; 

UDA discretizes the search space into the maximum 
number of buckets such that each bucket contains at least 
one sample, and each covers a uniform, non-overlapping 
area of the search space.  Each bucket contains all of the 
samples taken from the area of the search space the bucket 
covers.  R is organized so that each biased sample is 
weighted with the probability that the sample was pro-
duced from a uniform random distribution.  We use the 
Random Sampling Algorithm to sample R, producing N 
uniform random samples from the search space. 

3.2.2 The Random Sampling Algorithm 

The Random Sampling Algorithm (RSA) takes as input a 
set of buckets R where each bucket contains a set of sam-
ples, and an integer N which represents the number of 
buckets in R. RSA outputs a set O containing N random 
samples from the search space covered by the input set R. 
RSA assumes the existence of the following functions: 

• rand(I,N) - given two integers I and N, where I≤N, 
rand(I,N) outputs a random integer between I and 
N inclusive, with each integer between I and N in-
clusive being equally likely. 

• sample( kR ) – given a bucket kR , sample( kR ) 
returns one element from the bucket chosen ran-
domly with all elements in the bucket being 
equally likely.  

 
Algorithm 2 (Random Sampling Algorithm): 
Input: R, N                Output: O 
Step 1:   O := NULL; 
  I := 1;      
Step 2:   while I ≤ N 
   K := rand(1,N); 
   add sample( kR ) to O; 
   I = I+1; 
  end; 

  
 When used immediately after UDA, RSA outputs N 

uniform random samples from the search space which are 
suitable for use with causal inference procedures.  Use of 
these algorithms to produce a uniform random sample is 
straight forward, but an important capability of improved 

EE. Any optimization process can be used to adapt a model 
to meet new conditions of interest (Step 7 of the EE proc-
ess) and improved EE will produce causal theories without 
any change to UDA or RSA.    

3.2.3 The Sailing Example and Improved EE 

To elucidate how causal inference procedures are applied 
to and improve EE we revisit the sailing example. Recall 
user identified emergent behavior E: the sailboat is travel-
ing faster than the speed of wind, twsb VV > .  The user is 
interested in creating condition of interest C: the sail is full 
of wind.  The user wants to test the hypothesis H: boat 
speed, sbV , will be maximized when the sail is full of 
wind. The improved EE process is applied as follows: 

1-6 remain the same. 
7. The developer and SME use optimization to dis-

cover cases where C is true.  
8. If optimization is used the developer records the 

samples from the model space explored by the op-
timization process in set B. Each of these samples 
is a 5-tuple: ( RΘ , HΘ , SΘ , SailFullness,  sbV ). The 
developer also records the dimensions of the 
model space searched in data structure S.  

9. The developer applies UDA to B,S. UDA outputs 
R and N, the set of filled buckets covering the 
search space S and the number of buckets. 

10. The developer applies RSA to R, N. RSA outputs 
N uniform random samples in set O. 

11. The developer applies the causal inference proce-
dure P, to set O.  P outputs causal theory T. 

12. The SME views and queries causal theory T for 
insight into the interactions of abstraction oppor-
tunities within the model that cause E. The causal 
theory, T, for the sailing example is shown in Fig-
ure 4. T shows that changes in RΘ , HΘ , and SΘ  
cause the sail to be full of wind, which in turn 
causes the sailboat to change velocity. 

13. The SME observes the simulation instance pro-
duced through model adaptation. The SME con-
firms or refutes H. 

The SME gathers insight from the causal theory in 
Step 12 and the hypothesis test in Step 13. S/he repeats the 
improved EE process until she has gathered sufficient in-
sight to validate or refute the emergent behavior, E, in the 
simulation. Each time the SME repeats the EE process 
more samples from the model space are recorded and the 
causal theory is expected to become more accurate. 
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HΘ

RΘ

SΘ

sbVSail-
Fullness

 
Figure 4: Causal Theory T for the sailing example. 

sbV
sbV

 
Figure 5: Intervening on SailFullness. The double circle 
denotes where the user specified change occurs. 

3.3 New Capabilities of Improved EE 

Improved EE creates new opportunities. Through its use of 
causal inference procedures it produces a causal theory that 
reveals the interactions of abstraction opportunities that 
cause emergent behavior. The causal theory supports or-
dering of abstraction opportunities based on their effect on 
emergent behavior. The theory can be queried as well to 
predict user specified interventions to the model. Each 
causal theory provides explicit formulas for estimating 
how abstraction bindings will be affected by changes in 
others (Spirtes 2001).  For example, consider setting Sail-
Fullness in Figure 4 to “low”. The result is shown in Fig-
ure 5. By setting SailFullness “low” the effects of RΘ , HΘ , 

and SΘ  are screened off. The remaining cause, SailFull-

ness = LOW causes sailboat velocity, sbV , to also be low. 
The ability to predict the results of interventions with-

in given confidence intervals provides a complimentary 
exploration capability to model adaptation. Predicting in-
terventions offers users a lightweight, probabilistic method 
to explore how changes to one abstraction opportunity af-
fect others in the model. However, predicting intervention 
effects is not as powerful as model adaptation because pre-
dicting interventions cannot be used to test user hypotheses 
for conditions of interest.  

4 IMPROVED EE AND EPIDEMIOLOGY 

To evaluate improved EE we conducted a study using an 
agent based epidemic model (Dunham 2005). We compare 
our results with results from an established differential eq-
uation model used to model SEIR diseases (Li 1995). 

4.1 Epidemic Model Overview 

Epidemics have been modeled mathematically for over a 
century. The well established SEIR model of infectious 
disease spread is described by the following system of dif-
ferential equations where p, q, γ, ε, λ  and u are positive pa-
rameters and S, E, I, and R denote the fractions of the pop-
ulation that are susceptible, exposed, infectious, and  
removed, respectively. Individuals are susceptible, then 
exposed (in the latent period), then infectious, then re-
moved from the studied population (Li 1995). 

 

 uRIR
IuEI

EuSIE
uSuSIS

qp

qp

−=

+−=

+−=

−+−=

γ

γε
ελ

λ

'

'

'

'

)(
)(

 
                                             

We compare the results of the established differential 
equation model with Dunham’s (Dunham 2005) agent 
based SEIR epidemic model (ABM). The Dunham model 
predicts disease spread by modeling interactions on a 2-D 
torus. Infectious individuals search for susceptible indi-
viduals within a specified radius and spread their infection 
with a given probability. Dunham claims, “the curves (sus-
ceptible, exposed, infected, removed) created are a qualita-
tive match to real-world epidemic data. With proper para-
meterization, this model could be used for realistic 
simulations” (Dunham 2005).  Figures 6 and 7 show re-
sults for Dunham’s ABM and the differential equation 
model for an SEIR epidemic for 100 days for a population 
of 100. Results match closely: standard deviations of cor-
responding curves differ by less than 2% of the population 
size. 

 
Figure 6: Dunham’s ABM with the author’s suggested pa-
rameterization for a population of 100 over 100 days. 
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Figure 7: Differential equation model with new infection 
rate = 8.0 for a population of 100 over 100 days. 

 
Figure 8: Dunham’s ABM with the author’s suggested pa-
rameterization for a population of 1,000 over 100 days. 
 

Dunham’s ABM appears to produce valid predictions. 
Differences between it and accepted data or models should 
be investigated to determine the ABM’s general validity.  

4.2 Emergent Behavior within the Epidemic Model 

We have observed an unexpected –emergent– behavior in 
Dunham’s ABM for a population size of 1,000.  By only 
changing the population parameter from size 100 in Figure 
6 and Figure 7 to size 1,000 significantly different predic-
tions for disease spread emerge. As shown in Figure 8 
Dunham’s ABM predicts a shorter, heightened infectious 
period where no infected individuals remain after day 35. 
In contrast, the differential equation model shown in Fig-
ure 9 predicts a longer infectious period with infectious in-
dividuals still present at day 80. The standard deviation of 
the ABM’s curves from the accepted differential equation 
model’s curves are (S) 173.2 individuals or 17.32% of the 
population, (E) 132.6 individuals, 13.26%, (I) 181.6 indi-
viduals, 18.16%, and  (R) 110.6 individuals, 11.06%. Stan-
dard deviations, compared to those of the population of 
size 100 are an order of magnitude greater. Based on ex-
amples in (Dunham 2005) and Figures 6 and 7 we expected 
the ABM to predict results similar to the differential equa-

tion based model. The differences represent an emergent 
behavior.  

4.3 Improved EE and New Infection Rate  

To understand why Dunham’s ABM predictions differ so 
significantly for a population of size 1,000, and to deter-
mine if the model is valid we applied improved EE. Epi-
demic models often include parameter(s) which represent 
the rate of new infections. In Equation 1 this rate is gov-
erned by the term qp SIλ .  New infections occur in 
Dunham’s ABM over time but there is no input parameter 
for infection rate, and we found none published. 
 

 
Figure 9: Differential equation based model with new in-
fection rate = 8.0 for a population of 1,000 over 100 days. 
 

We instrumented Dunham’s ABM to capture the rate 
of new infections and used improved EE to create the con-
dition of interest C: the rate of new infections is 8.0 per in-
fected individual.  Using C as a target behavior, we tested 
our hypothesis H: when the rate of new infections is 8.0 in 
both models, their predictions will be similar. Also, we 
used improved EE to produce a causal theory describing 
the abstraction opportunities that causally influence the 
rate of new infections in Dunham’s ABM.  The insight 
gained from observing Dunham’s ABM under the condi-
tion of interest C, and the insight provided by the causal 
theory helped us determine if Dunham’s ABM is valid for 
a population of size 1,000. 

We adapted Dunham’s ABM by searching alternative 
bindings for six different abstraction opportunities to create 
the condition of interest C: infection rate = 8.0. For each 
model run searched using improved EE we recorded: 

• the explored alternative bindings for the six model 
abstraction opportunities:  
- the width, W, of the 2D torus 
- the height, H, of the 2D torus 
- the probability, B, an infected individual 

stays at home and does not travel to work. 
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- the probability, X, an infected individual 
pushes the infection onto a susceptible indi-
vidual within the specified radius. 

- the mean number of days, EI , an individual 
remains in the exposed state (E) before transi-
tioning to the infected state (I). 

- the mean number of days, IR , an individual 
remains in the infected state (I) before transi-
tioning to the removed state (R) 

• the rate of new infection, ρ 
• the number of individuals susceptible at day 25, S 
• the number of individuals exposed at day 25, E 
• the number of individuals infected at day 25, I 
• the number of individuals removed at day 25, R 
• the median standard deviation of the four agents 

based curves, σ 

 
Figure 10: Dunham’s ABM for condition C: new infection 
rate = 8.0 for a population of 1,000 over 100 days. 
 

When the condition of interest, C, was achieved where 
the two models’ infection rates where 8.0, Dunham’s ABM 
predictions closely match those of the differential equation 
based model. This is shown in Figure 10.  The standard 
deviation of Dunham’s ABM curves from the accepted dif-
ferential equation model’s curves are (S) 18.9 individuals 
or 1.89% of the population, (E) 11.6 individuals, 1.16%, (I) 
12.4 individuals, 1.24%, and  (R) 12.7 individuals, 1.27%. 
Our hypothesis is correct: when the rate of new infections 
is 8.0 in both models their predictions are similar. Thus we 
gain confidence that Dunham’s ABM can be used to cor-
rectly predict the spread of epidemic SEIR diseases. How-
ever, we still do not understand how the rate of new infec-
tions is controlled in the agent based model. Without fully 
understanding how the interactions of abstraction opportu-
nities cause the rate of new infections to change, we cannot 
explain the emergent behavior of Dunham’s ABM. 

The causal theory produced by improved EE enables 
us to understand how the rate of new infections is con-
trolled in Dunham’s ABM. The causal theory for the model 
adaptation performed to create the condition of interest C 
is shown in Figure 11. W and H represent the width and 
height respectively of the 2D torus on which individuals 

interact. X represents the probability an infected individual 
infects another individual within the specified radius. S, E, 
I, and R represent the number of susceptible, exposed, in-
fected, and removed individuals at day 25. ρ is the rate of 
new infections per infected individual and σ is the median 
standard deviation of the four curves of Dunham’s ABM 
from the curves of the differential equation based model.  
 The causal theory reveals that the width and height of 
the 2D torus, along with the probability of infection have a 
causal influence on the infection rate. Also, the infection 
rate has a causal influence on the median standard devia-
tion of the four curves in Dunham’s ABM. These insights 
help us understand how the rate of new infections is con-
trolled in the agent based model.  

 
 

Figure 11: The causal theory output by Improved EE for 
the agent based SEIR epidemic simulation (Dunham 2005). 

 
Increasing the width and height of the 2D torus causes 

the population to become less dense, ultimately causing the 
rate of new infections to decrease. A decrease in the prob-
ability that an infected individual infects a susceptible in-
dividual within the specified radius also causes a decrease 
in the rate of new infection. These interactions make sense. 
The significantly different prediction of Dunham’s ABM 
in Figure 8 is due to a too-high rate of new infections per 
individual.  If the size of the torus is increased  to maintain 
a constant population density as population is increased 
then Dunham’s ABM does track the predictions of the dif-
ferential equation model. A more dense torus increased the 
number of exposed and infected individuals causing an in-
crease in the rate of new infections per individual. This ex-
planation is a product of applying the causal theory portion 
of improved EE, revealing how abstraction opportunities 
cause the emergent behavior in the model. 

5 CONCLUSIONS AND FUTURE WORK 

Computational power has reached a state where we can 
model and explore research topics as complex as the 
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spread of epidemic diseases individual by individual. 
However, methods for analyzing and testing hypotheses 
about emergent behaviors that result when developing such 
complex models are lacking. The disparity between our 
ability to build complex models and our ability to under-
stand emergent behaviors exhibited by these models ad-
versely affects the advancement of scientific understand-
ing.  

Our goal is to design and develop an effective ap-
proach to support user validation or rejection of unex-
pected model behaviors efficiently, and with confidence. 
We have improved the capabilities of our previously pub-
lished approach, EE, by offering SMEs additional insight 
into the interactions of identified abstractions causing  
emergent behavior in a model. This insight is achieved by 
iteratively applying causal inference procedures to samples 
from different runs of the model. In our future work we 
expect to improve our causal insight by correctly combin-
ing causal analysis data (probabilistic)  with static analysis 
data (conservative). Furthermore, using uncertainty repre-
sentation we plan to extend EE to allow users to observe 
two new characteristics of the emergent behavior at condi-
tions of interest: 1) the likelihood of the given output for 
the model and 2) the range of possible outputs. 
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