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ABSTRACT

A major challenge in the field of Modeling & Simulation is
providing efficient parallel computation for a variety of algo-
rithms. Algorithms that are described easily and computed
efficiently for continuous simulation, may be complex to de-
scribe and/or efficiently execute in a discrete event context,
and vice-versa. Real-world models often employ multi-
ple algorithms that are optimally defined in one approach
or the other. Parallel combined simulation addresses this
problem by allowing models to define algorithmic compo-
nents across multiple paradigms. In this paper, we illustrate
the performance of parallel combined simulation, where the
continuous component is executed across multiple graphical
processing units (GPU) and the discrete event component
is executed across multiple central processing units (CPU).

1 INTRODUCTION

Combined simulation is described as a technique for the
simulation of a class of systems having properties suitable
to both continuous simulation and discrete event simulation,
two techniques well known to the simulation community.
This combined technique was first proposed by (Fahrland
1970) and the first truly combined simulation software,
GASP IV, was made available in 1974 by A. A. Pritsker
(Pritsker and Hurst 1973).

Three main approaches are common in combined sim-
ulation: support discrete event simulation within the context
of continuous simulation (Mitchell and Gauthier 1976, Zei-
gler, Kim, and Praehofer 2000, Brooks 2005), support con-
tinuous simulation from a discrete event simulation context
(Pritsker and Hurst 1973, Pegden, Sadowski, and Shannon
1995, Klingener 1996) and truly combined simulation soft-
ware (Cellier and Blitz 1976). More recent examples using

HLA and DEVS include (Borshchev et al. 2002, Nutaro
et al. 2007), respectively, and parallel combined simulations
have been studied in (Kettenis 1997).

Recently, there has been an increasing interest in the
use of graphics processors (GPUs) in simulation (Manocha
2005, Perumalla 2006, Lucas, Wagenbreth, andDavis 2007).
An open question is whether you can define an approach
that would allow exploitation of GPUs in the context of
general discrete event simulation. In this paper, we take
a step in that direction, suggesting an approach to exploit
GPUs in parallel combined simulation.

Our goal is to study the performance of a parallel discrete
event simulator executing on the central processors (CPUs),
with support for continuous simulation executing on the
graphics processors. Incorporating continuous simulation
on the GPU in the context of a discrete event simulation
model is accomplished by defining a GPU kernel that ex-
ecutes on the GPU, and invoking that kernel for execution
during event processing in Time Warp. The Time Warp
optimistic protocol was first proposed by Jefferson and our
simulator implementation relies on the technique of reverse
computation to support rollback (Jefferson 1985, Carothers,
Perumalla, and Fujimoto 1999).

In Section 2.1 we review related modeling efforts per-
formed on GPUs, as well as give a brief review of combined
simulation in Section 2.2 . In Section 3 we illustrate how
continuous models for the GPU are incorporated into our
Time Warp implementation. In Section 4 we indicate our
experiment framework, and in Section 5 we study the per-
formance impacts of moving a portion of a purely discrete
event model to the continuous simulation paradigm for ex-
ecuting on a GPU. Finally, in Section 6 we indicate our
conclusions and propose future work in this area.
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2 RELATED WORK

In this section we outline work related to modeling &
simulation on graphics processors, as well as prior work in
the area of parallel combined simulation.

2.1 GPU MODELING

Current modeling efforts that take advantage of graphical
processing units, or GPUs, has primarily been focused on
model codes that execute solely on the GPU. A multitude of
data-parallel model examples can be found in the literature
illustrating general concepts such as histograms, FFT and
image processing, to more specific models of heat diffusion,
parallel Mersienne Twister random number generation, N-
bodies and more. In each instance, the parallel performance
of the model executing on the GPU illustrated tremendous
performance improvements over CPU execution, primarily
because the models fit the paradigm of the GPU hardware.
GPU devices have a disproportionately small amount of
available memory in comparison to CPUs (e.g., 768MB
available on the nVidia 8800 GTX versus 32GB on a 4-core,
64-bit compute node), and some research has been conducted
on cluster computing using GPU-enhanced compute nodes
(Fan, Qiu, Kaufman, and Yoakum-Stover 2004, Müller,
Strengert, and Ertl 2006, Müller, Strengert, and Ertl 2007).

Themodern GPU architecture is single instruction, mul-
tiple data, or SIMD, contains multiple stream processors
(currently as high as 128) with clock rates in the gigahertz
range, and parallel data caches (shared memory). Software
support for general purpose programming of GPU devices
has evolved and APIs now provide access to threading mod-
els, atomic operations and support double-precision (64-bit)
floating point operations (although our devices only support
single precision). The majority of codes implemented for
the GPU contain a high degree of data-parallelism and are
computed efficiently.

The SIMD GPU architecture has been optimized to
efficiently compute data-parallel codes, and it is still unclear
how these devices can be leveraged to support discrete event
simulation, though this was studied in (Perumalla 2006).
In order to take advantage of the full capabilities of a
GPU-enhanced cluster computer, it is our contention that
the hardware should be utilized as most appropriate to the
algorithms computed. We postulate the most advantageous
use of the available CPUs for the discrete portions of the
system being modeled, and the available GPUs for the
continuous portions.

2.2 Parallel Combined Simulation

Combined simulation as a technique for integrating discrete
event and continuous simulation models was introduced in
Fahrland’s thesis (Fahrland 1970) from 1970, and the first
truly combined simulation software, GASP IV, was made
available in 1974 by A. A. Pritsker (Pritsker and Hurst
1973).

Recent studies related to parallel combined simulation
have illustrated significant performance improvements, such
as, Perumalla’s µsik discrete event simulator combining the
conservative and optimistic simulation protocols (Perumalla
2005), Liljenstam’s et. al. mixed abstraction level network
models (Liljenstam, Yuan, Premore, and Nicol 2002), and
the synchronization mechanism for BGP networks in Syz-
manski’s Genesis simulator (Szymanski, Liu, and Gupta
2003).

Prior work indicates a straightforward speedup in the
execution time of a model ported wholly from CPU to GPU,
dependent primarily on the number of available processors
on the GPU. For example, a 16-fold improvement was
reported for a model of heat diffusion in a 2D plate, porting
the model from a single CPU to a GPU with 16 vertex
processors (Perumalla 2006).

For combined models, we expect similar performance
improvements for the continuous portion of the DES model
that can be shifted to the GPU for computation. In accor-
dance with Amdahl’s Law, for the overall combined model
we do not anticipate speedup to that degree, as only a
portion of the model runtime has been improved (Amdahl
1967). In this paper we report the overall runtime perfor-
mance improvement incorporating support for continuous
simulation on the GPU.

3 OUR APPROACH

Our approach for combining discrete event and continuous
models is to define a model that illustrates aspects of both
models. We measure the runtime performance using a
synthetic workload application that executes in the context
of a general-purpose, Time Warp simulation executive. The
synthetic application defines an event handler that contains
two sections: one related to modeling discretized system,
and the second related to modeling a continuous system.

The benchmark application, PHOLD, is a derivative
of the HOLD model (Vaucher and Duval 1975), extended
for parallel discrete event simulation in (Fujimoto 1990).
The PHOLD model generates a synthetic workload over
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Algorithm 1 The algorithm illustrates the computational
granularity for the PHOLD model. The continuous com-
ponent of the workload will be shifted to the GPU for
computation.
PHOLD Computation Grain

// Pseudo-code for synthetic workload

// Continuous component
for each element of an array

compute N instructions,
store the result in place

// Discrete component
while workload time not exceeded

;

a range of parameters that allow performance assessments
based on application characteristics, rather than an intuitive
understanding of a specific application.

The six model parameters are summarized:

1. number of logical processes
2. event population
3. timestamp increment function
4. movement function
5. computational granularity
6. initial event configuration

For most of the experiments conducted, we configure the ap-
plication to contain 200,000 logical processes, with 1 initial
event per logical process (LP) for a total event population
of 200,000 events. The timestamp increment function is an
exponential distribution with mean equal to 1.0 (parameters
1–3).

The movement function determines the destination LP
for an event. Our function constrains the remote event
rate over the network to 10% by first drawing a uniformly
random number in the range 0..100. If the number drawn
is less than the desired remote event rate, then we draw
a second uniformly random number in the range 0..N−1
where N is the number of logical processes, otherwise,
we randomly select an LP within our neighborhood as the
destination. In our model, the neighborhood is defined by
the LPs mapped to a single CPU.

To measure the performance improvement between
CPU–GPU, the computational granularity for the combined
model is defined by the two components shown in Algo-
rithm 1. The first component models the discrete event
computational granularity and is the usual busy wait loop,
in microseconds of wallclock time. The second component
models a data parallel algorithm that incorporates memory

access times and available floating point hardware for given
hardware execution environment.

The model introduces parameters related to varying the
workload of the continuous component. First, the size of
the data array may be varied. The second model parameters
indicates the number of operations to be performed per data
element.

The third model parameter relates to the threading
model of the GPU. The GPU allows the programmer to
define the number of threading blocks, and the number
of threads per block to allocate. Using multiple threads
per stream processor improves performance by masking the
latency of the GPU DRAM controller. The GPU is capable
of overlapping thread execution on the stream processors
when a call to the GPU DRAM is made by a thread.

4 PERFORMANCE STUDY

In this section we benchmark the performance of the parallel
combined simulation using the PHOLD model executing
in the context of a Time Warp simulation executive. We
investigate the performance of the model using both syn-
chronous and asynchronous GPU API functions across a
GPU-enhanced cluster of 20 compute nodes. In addition,
we report the effects of the parallel combined simulation
on the scalability of the Time Warp executive.

4.1 Computing Testbed and Experiment Setup

The Hive GPU-enhanced cluster at MITRE is a Red Hat
Enterprise Linux 9.0 cluster consisting of 20 dual-processor,
dual-core machines, for a total of 80 cores. The nodes
are inter-connected via a dedicated gigabit ethernet switch.
Each node’s hardware configuration consists of a dual-
processor, dual-core AMD Opteron 2200 and 8GBs of main
memory. The AMDOpteron 2000-series is a 64-bit chip and
provides up to 24GB/s peak bandwidth per processor using
HyperTransport technology. The DDR DRAM memory
controller is 128-bits wide and provides up to 6.4GB/s of
bandwidth per processor. Our RAM configuration consisted
of 4 2GB sticks of 400MHz DDR ECC RAM in 8 banks.

Each compute node in the cluster contains a single
nVidia 8800 GTX graphics card positioned over two PCI-
Express slots which provides 8x2 lanes for a maximum
throughput of 4.0 GB/s (at 250MB/s per lane). The GTX
is equipped with 768MB of GDDR3 RAM and has a mem-
ory bandwidth of 86.4 GB/s. The GTX also contains 128
physical stream processing elements with a clock rate of
1.35GHz.
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The main advantage of the nVidia 8800 GTX is that it
is one of the first high performance GPU devices to embrace
general purpose programming, provide a unified, massively
parallel shader design consisting of 128 stream processors
with a clock rate of 1.35 GHz. Each processor is capa-
ble of processing operations related to vertices, pixelation,
geometry or physics and supports IEEE 754 floating-point
precision (nVidia 2006). The performance for the nVidia
8800 GTX is 345 GFLOP/s.

4.2 Optimistic Simulation with Reverse Computation

Based on the successful application of reverse computa-
tion (RC) concepts in other software domains, Carothers,
Perumalla and Fujimoto proposed the application of RC
to reduce state saving overheads in PDES. They define an
approach based on reverse event codes, and demonstrate
performance advantages of this approach over traditional
state saving for fine-grained applications. For a more com-
prehensive review of reverse computation, we point the
reader to (Carothers, Perumalla, and Fujimoto 1999), and
for a performance study of the technique (Carothers, Bauer,
and Pearce 2002).

In reverse computation, destructive operations are those
operations that result in a loss of data. Floating point
operations are considered to be destructive, in that operations
on these variables result in a loss of precision, and can lead
to an incorrect result.

One solution for reverse computing destructive state-
ments is to reverse the computation as a whole, rather than
rely on a straightforward application of reverse computing
individual statements. For example, this approach was used
to avoid state-saving in L’Ecuyers Combined Linear Con-
gruential random number generator (L’Ecuyer and Andres
1997). At a high level, the sequence of seeds generated is
based on the following mathematical recurrence:

xi,n = aixi,n−1mod mi (1)

where xi,n|1≤ i≤ 4 is nth set of four seed values computed
from the n−1 set of of four seed values,mi are primenumbers
and ai are primitive roots ofmi. Using the numerical method
for computing large powers (Eynden 2001), the inverse of
ai mod mi is defined by:

bi = ami−2i mod mi (2)

and the reverse seed series is given by:

xi,n−1 = bixi,nmod mi. (3)

On a GPU, this approach is greatly simplified for con-
tinuous simulation models and is equivalent to hitting the
rewind button for a video stream. The programming model
for the GPU is data parallel, and so the same instructions
for the forward computation can be utilized to generate the
reverse computation. The data must be reversed, and not
the computation. For example, for the model of N-bodies
in space, the trajectory computation for a given body is the
same in the forward and reverse, though the velocity and
acceleration parameters are negated. What is different is
that the computation must be run from the present simu-
lation time t backwards to time t−1, multiple times until
the correct state is achieved.

5 PERFORMANCE RESULTS

In this section we benchmark the performance of the com-
bined PHOLD model varying parameters across the dis-
crete event and continuous models. We start by studying
the GPU-specific parameters related to the GPU threading
model, using a single compute node. Moving to ten com-
pute nodes, we now study the effects varying the number of
floating point operations and size of the data section in the
continuous model. Then we study the GPU asynchronous
communication API and complete the analysis with a look
at the performance impact on the Time Warp simulation
executive.

5.1 GPU Threading Model

The GPU device threading model is broken down into
blocks of threads that execute per GPU multiprocessor.
A total of 4096 blocks are possible for the nVidia 8800
GTX, with a maximum of 512 threads per block. The
nVidia documentation indicates that multiple threads are
required to mask the memory latencies that occur between
the GPU DRAM and stream processor L1 caches. The
cost of fetching a value from the GPU DRAM is an order
of magnitude more expensive than performing a floating
point operation. Figure 5.1 illustrates the performance of
the combined PHOLD model using a variable number of
thread blocks and threads per block.

The per LP continuous data segment sent to the GPU
defines the maximum number of usable threads. For this
experiment, the data segment was fixed at 128KB. The data
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Figure 1: The GPU threading model is allocated as blocks
of threads. A maximum of 512 threads per block and 4096
blocks are allowed.

segment is first partitioned by the number of blocks, then
by the number of threads per block. Figure 5.1 shows that
using more blocks, regardless of the number of threads
per block yields the best performance. As indicated by the
nVidia documentation, more blocks allows more concurrent
execution on the stream processors, and so the 32 T/B
(threads per block) case with 512 blocks outperforms the
512 T/B case using only 32 blocks.

5.2 GPU Floating Point Instructions

Next we vary the number of floating point instructions
performed per LP data segment variable. We keep the data
segment fixed at 128KB, and fix the threading model at 32
T/B for 1024 blocks. We vary the number of instructions
per data element to determine the impact of the delay of the
continuous model on the overall simulation runtime. For
these experiments we utilized 10 compute nodes, and one
CPU per node, for a total of 200,000 LPs.

Figure 5.2 shows that unless the number of floating
point operations per data variable is very high (e.g., greater
than 100,000), then the impact of the GPU performance is
minimal. Our hypothesis is that the additional instructions
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Figure 2: Varying the number of floating point operations
performed per data element.

are masked by communication latencies occurring between
the CPU–GPU.

Note that it is well accepted that the GPUs 128 stream
processors will outperform any CPU given a large enough
sequence of instructions, so no comparison is performed.

5.3 GPU Memory I/O

The default GPU communication API is fully synchronized
and the input-output (I/O) channel between CPUs and GPUs
is serialized for all GPU API calls. Calls to the GPU API
that block the CPU from performing other work. Commu-
nications to the GPU device arrive and are processed in a
first in, first out (FIFO) order.

We vary the amount of memory communicated between
the CPU LPs and the GPU device. We vary the size of
the per LP data segment from 32KB to 128KB. We choose
32 threads per block across 512 blocks for the threading
model.

Figure 5.3 indicates that the amount of data commu-
nicated between CPU–GPU has a major impact on per-
formance. Intuitively, as the data segment size grows, the
communication latencies have less of an impact on the
overall runtime.
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Figure 3: Varying the size of the per LP data segment.

5.4 Asynchronous CPU-GPU Utilization

In this sectionwe benchmark the performance of the PHOLD
model using the asynchronous GPU communication API.
Now as calls are made for memory copies and processing
on the GPU, the API immediately returns control to the
CPU. This allows for concurrent execution of the combined
models, where the computational granularity is defined by
the maximum running time between the CPU and GPU
codes.

To use the asynchronous API, the nVidia CUDA drivers
require any memory communicated to the GPU to be page
locked. Turning page locking on improves the performance
of the model, but limits the total amount of memory that
can be allocated. While this did not cause us to change the
size of the model computed, we did not have page locking
turned on for the previous results.

For these results, we varied the number of CPUs, using
1, 2 and 4 processors per compute node. Also, we used a per
LP data segment size of 128KB, and 100 instructions per
array element. Figure 5.4 illustrates significantly improved
performance as the I/O channels between the CPU–GPU
are more fully utilized by the additional processors calling
the device asynchronously.

The speedup results shown in Figure 5.4 indicate that
the scalability of the GPUs is limited in comparison to
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Figure 4: Comparing CPU–GPU runtime performance using
the asynchronous GPU API.
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Figure 5: CPU–GPU Speedup Comparison.

CPUs. However, this model has simply become too small
for the amount of hardware available and so it is difficult
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Figure 6: Efficiency of Time Warp simulator with and
without GPU support.

for the GPUs to continue to scale. Speedup for the model
without CPU was computed using the sequential runtime
using a single CPU only, while the GPU-based speedups
are based on the runtime for a single CPU–GPU pair. When
we compute the speedup for the GPU results based on a
single processor and no GPU, then we obtain a 539-fold
improvement.

5.5 Time Warp Efficiency

In this section we indicate the impact of the combined
simulation of continuous and discrete event models on the
efficiency of the TimeWarp simulation executive. Efficiency
is defined as the ratio of events processed in the sequential
versus parallel execution of the model. Recall that in the
parallel execution of themodel, some eventsmay be executed
that violate the causality constraint and require rollback to
ensure the correct execution of the model.

Figure 5.5 shows that more events are rolled back when
the GPUs are invoked. Even though the efficiency of Time
Warp with GPUs is 10% less efficient, the overall runtime
is reduced when the continuous model is sufficiently large.
Runtimes for these experiments are from Section 5.3.

6 CONCLUSIONS & FUTURE WORK

In conclusion we report that the new generation of multi-
core, general purpose GPU devices and associated libraries
are relatively straightforward to program. However, getting
the full performance from the device remains a challenge,
specifically, keeping the I/O pipeline full. For parallel
combined simulation we believe that GPUs can be utilized
effectively for those models with either a large number of
continuous variables, or a large amount of floating point
operations per continuous variable.

In the future we would like to investigate computing
continuous models of physical systems on GPUs, combined
with discrete eventmodels executing on theCPUs. Wewould
also like to study additional memory models for the GPU
with the goal of improving concurrency between CPUs and
GPUs.
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