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ABSTRACT

We propose a framework for optimization problems based
on particle filtering (also called Sequential Monte Carlo
method). This framework unifies and provides new insight
into randomized optimization algorithms. The framework
also sheds light on developing new optimization algorithms
through the freedom in the framework and the various
improving techniques for particle filtering.

1 INTRODUCTION

Many randomized optimization methods, such as the esti-
mation of distribution algorithms (EDAs) (Muhlenbein and
Paaß 1996, Lozano et al. 2006), the cross-entropy (CE)
method (Rubinstein 1999, Rubinstein and Kroese 2004),
and model reference adaptive search (MRAS) (Hu et al.
2007), fall into the category of model-based methods as
classified in Zlochin et al. (2004). They share the similari-
ties of iteratively repeating two steps: (1) generate candidate
solutions from a distribution over the solution space, and
(2) update the distribution using the candidate solutions.
This distribution is often called a probabilistic model, as
it often imposes a model on the relationship between the
components that are needed to represent a solution. The
choice and updating of the probabilistic model play a key
role in determining the efficiency and accuracy of the al-
gorithm. EDAs, CE and MRAS are very different in the
updating procedure of the probabilistic model.

EDAs were first proposed by Muhlenbein and Paaß
(1996) in the field of evolutionary computation, with the
goal of eliminating the mutation and cross-over operations in
genetic algorithms (GAs) in order to avoid partial solutions.
EDAs generate offspring by sampling from a distribution
over the solution space that is estimated from the candidate
solutions of the previous iteration. The estimation of this
distribution is often based on a probabilistic model that
explicitly expresses the relationship between the underlying
variables (Larranaga et al. 1999).

The cross-entropy (CE) method was originally intro-
duced for estimating probabilities of rare events in com-
plex stochastic networks (Rubinstein 1997), and later was
modified slightly to be used for solving combinatorial and
continuous optimization problems (Rubinstein 1999). A key
idea of the CE method is to minimize the Kullback-Leibler
(KL) divergence between a desired density (the optimal
importance sampling density) and a family of parameter-
ized densities, in particular an exponential family, since an
analytical solution can be calculated in this case.

Hu et al. introduced the MRAS method in (Hu et al.
2007), which incorporates the key ideas of EDAs and the
CE method. MRAS implicitly constructs a sequence of
reference distributions and uses this sequence to facilitate
and guide the parameter updating associated with a family
of parameterized distributions. At each iteration, candidate
solutions are sampled from the distribution (in the prescribed
family) that has the minimum KL divergence with respect
to the reference distribution of the previous iteration.

The aforementioned various ways of updating the prob-
abilistic model motivate us to look for a unifying and system-
atic approach to the model-based methods for optimization.
In this paper, we introduce a unifying framework based on
particle filtering (also called sampling importance resam-
pling (Arulampalam et al. 2002), and sequential Monte
Carlo method (Doucet et al. 2001)). Particle filtering is a
class of Monte Carlo simulation-based methods for recur-
sively estimating the conditional density of the current state
based on the observation history in a dynamic system. It was
first introduced in Gordon et al. (1993), and soon gained
popularity and has had a significant impact in many areas
such as signal processing, computer vision, estimation and
control (Doucet et al. 2001, Cappé et al. 2007). However,
it has never been applied to the field of optimization, as far
as we know.

We consider the global optimization problem:

x∗ = argmax
x∈X

H(x),
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which satisfies certain technical conditions and has a unique
global optimal solution. Our main idea is to formulate the
optimization problem as a filtering problem, in which the
optimal solution is a static state to be estimated, and the
conditional density of the state approaches a delta function
concentrated on the optimal solution as the system evolves.
The task of searching for the optimal solutions is carried
out through the procedure of estimating the conditional
density sequentially, and hence it is natural to apply particle
filtering. We propose a plain particle filtering framework
and a general particle filtering framework for optimization,
where the former framework is a special case of the latter
one and more intuitive, while the latter framework is a
generalization and hence provides more opportunities for
developing new algorithms.

The particle filtering framework provides new insights
into the randomized optimization methods from another
viewpoint, and sheds light on developing new optimization
algorithms. For example, the CE method fits in the plain
particle filtering framework, and in particular, the CE method
corresponds to the projection particle filtering in Zhou et al.
(2008). The possibilities of new algorithms come from
the freedom in the particle filtering framework, as well as
the rich literature of particle filtering, which includes many
improving techniques that can be adapted to optimization.

The rest of the paper is organized as follows. In section
2, we give an overview of the particle filtering method. In
section 3, we develop a particle filtering framework for
randomized optimization algorithms. In section 4, we use
the particle filtering framework to interpret CE. We discuss
the directions for developing new algorithms and outline
some future research in section 5.

2 OVERVIEW OF PARTICLE FILTERING

In this paper, we abuse notations a little: we use lower case
letters to denote both random variables and realizations of
the random variables.

Consider the discrete-time state-space model

xk = f (xk−1,uk),k = 1,2, . . . ,

yk = h(xk,vk),k = 0,1, . . . , (1)

where for all k, xk ∈ Rnx is the state , yk ∈ Rny is the
observation, uk ∈ Rnx is the system noise, vk ∈ Rny is the
observation noise, and nx and ny are the dimensions of xk and
yk, respectively. We assume {uk} and {vk} are independent
and identically distributed (i.i.d.) sequences, independent
of each other, and also independent of the initial state x0,
which has the probability density function (p.d.f.) p0. Let
p(xk|xk−1) denote the transition density and p(yk|xk−1) the
likelihood function.

The filtering problem consists of estimating the condi-
tional densities

bk(xk) , p(xk|y0:k),k = 0,1, . . . , (2)

where y0:k denotes the observations from time 0 to k. The
conditional density bk(xk) can be derived recursively via the
Chapman-Kolmogorov equation and Bayes’ rule as follows:

bk(xk) =
p(yk|xk)p(xk|y0:k−1)

p(yk|y0:k−1)

=
p(yk|xk)

∫
p(xk|xk−1)bk−1(xk−1)dxk−1∫

p(yk|xk)p(xk|y0:k−1)dxk
, (3)

where the denominator
∫

p(yk|xk)pk(xk|y0:k−1)dxk is just a
normalizing constant.

It seems plausible that given b0(x0), we can calculate
bk(xk) for any k by carrying out (3) recursively k times.
However, the integrals in (3) are usually intractable. More-
over, the conditional density bk(xk) may be any (infinite-
dimensional) probability density, even if the prior bk−1(xk−1)
is some nice distribution such as Gaussian. Therefore, Monte
Carlo simulation is a very useful technique here, and in
particular, importance sampling is crucial because of the
difficulty in directly sampling from an arbitrary distribution.

Particle filtering is a class of filters that utilize Monte
Carlo simulation and importance sampling techniques to
estimate the conditional densities. It approximates the con-
ditional density using a finite number of particles/samples
and mimics the evolution of the conditional density through
the propagation of particles. More specifically, particle fil-
tering approximates bk(xk) by a probability mass function

b̂k(xk) =
N

∑
i=1

wi
kδ (xk− xi

k), (4)

where δ denotes the Kronecker delta function, {xi
k}N

i=1 are
the random support points, and {wi

k}N
i=1 are the associated

probabilities/weights.
We now show how to draw samples {xi

k}N
i=1 and cal-

culate their corresponding weights {wi
k}N

i=1. From (3), we
observe

bk(xk) ∝
∫

p(yk|xk)p(xk|xk−1)bk−1(xk−1)dxk−1. (5)

To carry out the integration on the right hand
side, we need samples of (xk−1,xk) drawn from
p(yk|xk)p(xk|xk−1)bk−1(xk−1). Instead of sampling directly
from it, we introduce importance densities qk(xk|xk−1,yk)
and gk−1(xk−1|y0:k−1), from which we draw i.i.d. samples
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(xk−1,xk)i , (xi
k−1,x

i
k) as follows:

xi
k−1 ∼ gk−1(xk−1|y0:k−1), i = 1, . . . ,N, (6)

xi
k ∼ qk(xk|xi

k−1,yk), i = 1, . . . ,N. (7)

We call gk−1(xk−1|y0:k−1) the resampling importance
density, and the reason will be seen shortly. Since
{(xk−1,xk)i}N

k=1 are i.i.d. samples drawn from
qk(xk|xk−1,yk)gk−1(xk−1|y0:k−1), shorthanded as qkgk−1, the
integral in (5) can be approximated as

∫ p(yk|xk)p(xk|xk−1)bk−1(xk−1)
qkgk−1

qkgk−1dxk−1

≈
N

∑
i=1

p(yk|xi
k)p(xi

k|xi
k−1)bk−1(xi

k−1)
qk(xi

k|xi
k−1,yk)gk−1(xi

k−1|y0:k−1)
δ (xk− xi

k).

Let the normalized weights be

wi
k ∝

p(yk|xi
k)p(xi

k|xi
k−1)bk−1(xi

k−1)
qk(xi

k|xi
k−1,yk)gk−1(xi

k−1|y0:k−1)
, (8)

then bk(xk−1)≈ ∑N
i=1 wi

kδ (xk− xi
k).

In summary, the algorithm of a general particle filter
is as follows:

Algorithm 1 General Particle Filter

1. Initialization. Sample {xi
0}N

i=1 i.i.d. from an initial
p.d.f./p.m.f. p0. Set k = 1.

2. Importance Sampling. Sample xi
k from

qk(xk|xi
k−1,yk), i = 1, . . . ,N.

3. Bayes’ Updating. Receive new observation yk. The
conditional density is approximated by b̂k(xk) =
∑N

i=1 wi
kδ (xk− xi

k), where weights {wi
k}N

i=1 are cal-
culated and normalized according to (8).

4. Importance Resampling. Sample {xi
k}N

i=1 i.i.d.
from gk(xk|y0:k).

5. k ← k +1 and go to step 2.

There are a few remarks on the general particle filter.
Remark 1 Resamping is mainly to counter the

problem of sample degeneracy. Without resampling, after
a few iterations, many particles/samples will have weights
near zero and hence can be neglected in practice. A brute-
force method to counter sample degeneracy is to use a very
large number of samples, but a more efficient method is
to resample so that new samples all have reasonably large
weights. The optimal resampling should give all the new
samples equal weights, and hence the optimal resampling
importance density is

gopt
k (xk|y0:k) = bk(xk). (9)

Although bk(xk) is not available, we have an approximate
discrete distribution of it, i.e., b̂k(xk) = ∑N

i=1 wi
kδ (xk− xi

k).
Therefore, in practice, the resampling importance density
is often chosen to be

gk(xk|y0:k) = b̂k(xk). (10)

The drawback of this choice is a problem often called
sample impoverishment or loss of diversity, which means
that samples of large weights are likely to have many copies
while those with small weights are likely not to survive after
resampling (with replacement). A remedy is to sample from
a continuous approximation of bk(xk), denoted as b̃k(xk),
instead of the discrete approximation b̂k(xk).

Remark 2 The choice of the importance density
qk(xk|xi

k−1,yk) is also important in overcoming the sample
degeneracy problem. Given the optimal resampling impor-
tance density (9) and xi

k−1, the optimal importance density
has been shown in (Arulampalam et al. 2002) to be

qopt
k (xk|xi

k−1,yk) = p(xk|xi
k−1,yk), (11)

However, p(yk|xi
k−1) is often very hard to evaluate, and

hence many suboptimal importance densities are used in
practice. A common choice is the transition density, i.e.,

qk(xk|xi
k−1,yk) = p(xk|xi

k−1). (12)

This choice is intuitive and easy to implement, and also
leads to simple evaluation of the weights. Substituting (12)
into (8), and assuming that

b̂k−1(xi
k−1) = bk−1(xi

k−1). (13)

then the normalized weight becomes

wi
k ∝ p(yk|xi

k), (14)

which is just the likelihood function and hence is easy to
evaluate.

With the common choices of importance densities (12)
and (10), the importance sampling step is equivalent to
propagating the particles through the system dynamics, and
the weight evaluation reduces to the simple evaluation of
the likelihood function. We will refer to this type of particle
filtering as the “plain particle filter” throughout this paper
(it is actually the bootstrap filter in Gordon et al. (1993)),
as a special case of the general particle filter. In summary,
the algorithm of a plain particle filter is as follows:

Algorithm 2 Plain Particle Filter

1. Initialization. Sample {xi
0}N

i=1 i.i.d. from initial
p.d.f./p.m.f. p0. Set k = 1.
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2. Importance Sampling. Sample xi
k from p(xk|xi

k−1),
i = 1, . . . ,N.

3. Bayes’ Updating. Receive new observation yk. The
conditional density is approximated by b̂k(xk) =
∑N

i=1 wi
kδ (xk− xi

k), where normalized weights are
calculated as

wi
k ∝ p(yk|xi

k), i = 1,2, . . . ,N.

4. Resampling. Sample {xi
k}N

i=1 i.i.d. from b̂k(xk).
5. k ← k +1 and go to step 2.

3 PARTICLE FILTERING FRAMEWORK FOR
OPTIMIZATION

We consider the global optimization problem:

x∗ = argmax
x∈X

H(x), (15)

where the solution space X is a nonempty set in Rn, and
H(·) : X → Y is a real-valued function that is bounded,
i.e., ∃M1 > −∞, M2 < ∞ s.t. M1 ≤ H(x) ≤ M2, ∀x ∈X .
We assume that (15) has a unique global optimal solution,
i.e., ∃x∗ ∈X s.t. H(x) < H(x∗), ∀x 6= x∗, x ∈X .

The optimization problem (15) can be formulated as a
filtering problem by constructing an appropriate state-space
model. Let the state-space model be

xk = xk−1, k = 1,2, . . . ,

yk = H(xk)− vk, k = 0,1, . . . , (16)

where xk ∈ Rn is the unobserved state, yk ∈ R is the ob-
servation, vk ∈ R is the observation noise that is an i.i.d.
sequence, and the unobserved initial state is x0 = x∗. We
assume that vk has a p.d.f. ϕ(·). We further assume that we
only observe realizations of yk that are possible function
values, i.e., ∃x ∈ X s.t. yk = H(x), even though some
realizations of yk are not possible function values. This
is a justifiable assumption, since we will see later that the
observations are actually chosen out of the sampled function
values.

For the above state-space model, the transition density
is

p(xk|xk−1) = δ (xk− xk−1), (17)

where δ denotes the Dirac delta function. The likelihood
function is

p(yk|xk) = ϕ(H(xk)− yk)
= ϕ(H(xk−1)− yk). (18)

Substituting (17) and (18) into the recursive equation of
conditional density (3), we obtain

bk(xk) =
ϕ(H(xk)− yk)bk−1(xk)∫

ϕ(H(xk)− yk)bk−1(xk)dxk
. (19)

The intuition of model (16) is that the optimal solution
x∗ is an unobserved static state, while we can only observe
the optimal function values y∗ = H(x∗) with some noise.
Moreover, we can only observe function values yk ≤ y∗,
since yk = H(x), x ∈ X . Equation (19) implies that at
each iteration the conditional density (i.e., bk−1) is tuned
by the performance of solutions to yield a new conditional
density (i.e., bk) for drawing candidate solutions at next
iteration. It should be expected that if yk increases with k,
the conditional density bk will get closer to the density of
xk, i.e., a Dirac delta function concentrated on x∗. From
the viewpoint of filtering, bk is the posterior density of xk
that approaches the density of xk. From the optimization
viewpoint, bk is a density defined on the solution space
that becomes more and more concentrated on the optimal
solution as k increases.

Therefore, the idea to solve the maximization problem
(15) is to recursively estimate bk of the model (16) while
constructing an increasing sequence of observations {yk}.
We present the plain particle filter framework for optimiza-
tion (PPFO), and then the general particle filter framework
for optimization (GPFO). The former framework is a spe-
cial case of the latter and provides more intuition, while the
latter framework is more general and allows more variations
in the development of new algorithms.

Algorithm 3 Plain Particle Filter Framework for
Optimization (PPFO)

1. Initialization. Specify ρ ∈ (0,1], and an initial
p.d.f./p.m.f. b0 that is defined on X . Sample
{xi

1}N
i=1 i.i.d. from b0. Set k = 1.

2. Observation Construction. Let yk be the sample
(1−ρ)-quantile of {H(xi

k)}N
i=1. If k > 1 and yk ≤

yk−1, then set yk = yk−1.
3. Bayes’ Updating. b̂k(xk) = ∑N

i=1 wi
kδ (xk− xi

k),
where weights are calculated as

wi
k = ϕ(H(xi

k)− yk), i = 1,2, . . . ,N,

and normalized.
4. Resampling. Construct a continuous approxima-

tion b̃k(xk) from b̂k(xk). Sample {xi
k+1}N

i=1 i.i.d.
from b̃k(xk).

5. Stopping. If a stopping criterion is satisfied, then
stop; else, k ← k +1 and go to step 2.

At initialization, the PPFO algorithm draws samples
from an initial distribution b0 that is defined on X . A

650



Zhou, Fu and Marcus

parameter ρ is specified to determine the (1−ρ)-quantile
samples that will be used to construct a nondecreasing the
observation sequence {yk}. Since the transition probability
is 1, the importance sampling step is omitted with suitable
change of the indices. The Bayes’ updating step assigns
weights to the samples according to their performance.
Slightly different from the plain particle filter, the resampling
step here constructs a continuous density b̃k first, since the
discrete approximation b̂k does not provide any new samples.
The new samples drawn from b̃k are more concentrated in
the promising areas than the old samples. Similarly, the
general particle filtering framework for optimization is as
follows:

Algorithm 4 A General Particle Filtering Frame-
work for Optimization (GPFO)

1. Initialization. Specify ρ ∈ (0,1], and an initial
p.d.f./p.m.f. b0 that is defined on X . Sample
{xi

0}N
i=1 i.i.d. from b0. Set k = 1.

2. Importance Sampling. Sample xi
k from

qk(xk|xi
k−1,yk), i = 1, . . . ,N.

3. Observation Construction. Let yk be the sample
(1−ρ)-quantile of {H(xi

k)}N
i=1. If k > 1 and yk ≤

yk−1, then set yk = yk−1.
4. Bayes’ Updating. b̂k(xk) = ∑N

i=1 wi
kδ (xk− xi

k),
where weights are calculated as

wi
k =

ϕ(H(xi
k)− yk)bk−1(xi

k−1)
qk(xi

k|xi
k−1,yk)gk−1(xi

k−1|y0:k−1)
,

and normalized.
5. Importance Resampling. Sample {xi

k}N
i=1 i.i.d.

from gk(xk|y0:k).
6. Stopping. If a stopping criterion is satisfied, then

stop; else, k ← k +1 and go to step 2.

4 INTERPRETATION OF THE CROSS-ENTROPY
METHOD

In this section, we use the particle filtering framework to
interpret the cross entropy (CE) method. The CE method
can be viewed as projection particle filtering, which fits in
the plain particle filtering framework with a specific way
to construct a continuous approximation of the conditional
density, namely the density projection approach. The main
difficulty in the particle filtering framework is to estimate a
distribution from the samples, and this difficulty is solved
in the CE method by projecting the empirical distribution
of the samples to obtain an approximate continuous density.
However, the density projection introduces an error from a
filtering viewpoint.

In CE, the most common sample selection scheme is
the so-called truncated selection (Zhang and Muhlenbein

2004), which selects the elite samples whose performance
is above a threshold. In the following, we will focus on the
truncated selection scheme in our interpretation. We will
show that the truncated selection scheme is equivalent to
setting the observation noise as a uniform random variable
and the observation as the threshold in the particle filter-
ing framework. Other selection schemes can be achieved
by setting the observations and observation noise in other
manners.

Recall that in the optimization problem (15), the objec-
tive function H(x) is bounded by M1 ≤ H(x)≤M2. In the
state-space model (16), let the observation noise vk follow a
uniform distribution U(0,M2−M1). Hence, the likelihood
function is

p(yk|xk) =
{ 1

M2−M1
, if 0≤ H(xk)− yk ≤M2−M1;

0, otherwise.
(20)

Since yk = H(x),x ∈X , the inequality H(xk)− yk ≤M2−
M1 always holds. Hence, (20) can be written in a more
compact way as

p(yk|xk) =
1

M2−M1
I{H(xk)≥yk}, (21)

where I{·} denotes the indicator function.
Substituting (21) into the conditional density evolution

equation (19), we obtain

bk(xk) =
I{H(xk)≥yk}bk−1(xk)∫

I{H(xk)≥yk}bk−1(xk)dxk
. (22)

With i.i.d. samples {xi
k}N

i=1 drawn from bk−1, bk(xk) can
be approximated by

b̂k(xk) =
∑N

i=1 I{H(xi
k)≥yk}δ (xk− xi

k)

∑N
i=1 I{H(xi

k)≥yk}
. (23)

It is obvious to see that (22) is equivalent to selecting
the elite solutions to tune the sampling distribution at the
previous iteration, and (23) shows how it is implemented
using Monte Carlo simulation. These two equations are the
cornerstone of the rest of this section.

The standard CE method (we use the word “standard”
to distinguish it from the extended version of standard CE
(DeBoer et al. 2005)) for the optimization problem (15) is
as follows:

Algorithm 5 Standard CE Algorithm for Optimiza-
tion

1. Choose an initial p.d.f./p.m.f. f (·,θ0), θ0 ∈ Θ.
Specify the parameter ρ ∈ (0,1], and set k = 1.
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2. Generate samples {xi
k}N

i=1 from the density
f (·,θk−1) and compute the sample (1−ρ)-quantile
yk of the performances {H(xi

k)}N
i=1.

3. Compute the new parameter according to

θk = argmax
θ∈Θ

1
N

N

∑
i=1

I{H(xi
k)≥yk} log f (xi

k,θ). (24)

4. If a stopping criterion is satisfied, then terminate;
else, set k = k +1 and go to step 2.

Equation (24) comes from the density projection of the
optimal importance sampling density onto a parameterized
family of densities { f (·,θ),θ ∈Θ}. Projection particle fil-
tering (Zhou et al. 2008) also uses the density projection
technique, but for a very different reason. It projects the
discrete approximation b̂k onto the parameterized family
{ f (·,θ),θ ∈ Θ} in order to obtain a continuous approxi-
mation b̃k that is characterized by only a few parameters,
which is very useful in reducing the complexity of dynamic
programming in a decision making problem. Specifically,
projection particle filtering chooses a value of the parameter
θ such that the Kullback-Leibler (KL) divergence between
b̂k and f (·,θ) is minimized. The KL divergence between
b̂k and f (·,θ) is:

DKL(b̂k‖ f (·,θ)) =
∫

b̂k log
b̂k

f (·,θ)

=
∫

b̂k log b̂k−
∫

b̂k log f (·,θ).

Since the first term does not depend on f (·,θk), minimizing
the above equation is equivalent to solving the maximization
problem

max
θ∈Θ

Eb̂k
[log f (·,θ)].

Since b̂k(xk) satisfies (23), the above maximization problem
can be approximated by

max
θ∈Θ

∑N
i=1 I{H(xi

k)≥yk} log f (xi
k,θ)

∑N
i=1 I{H(xi

k)≥yk}
,

which is equivalent to

max
θ∈Θ

1
N

N

∑
i=1

I{H(xi
k)≥yk} log f (xi

k,θ). (25)

Therefore, the optimization algorithm adapted from projec-
tion particle filtering is as follows:

Algorithm 6 An Instantiation of Plain Particle Fil-
ter Framework for Optimization

1. Initialization. Specify ρ ∈ (0,1], and an initial
p.d.f./p.m.f. f (·,θ0) that is defined on X . Sample
{xi

1}N
i=1 i.i.d. from f (·,θ0). Set k = 1.

2. Observation Construction. Let yk be the sample
(1−ρ)-quantile of {H(xi

k)}N
i=1. If k > 1 and yk ≤

yk−1, then set yk = yk−1.
3. Bayes’ Updating. The discrete approximation is

b̂k(xk) =
∑N

i=1 I{H(xi
k)≥yk}δ (x− xi

k)

∑N
i=1 I{H(xi

k)≥yk}
.

4. Resampling. Construct a continuous approxima-
tion b̃k(xk) = f (xk,θk) by density projection, where

θk = argmax
θ∈Θ

1
N

N

∑
i=1

I{H(xi
k)≥yk} log f (xi

k,θ). (26)

Sample {xi
k+1}N

i=1 i.i.d. from b̃k(xk).
5. Stopping. If a stopping criterion is satisfied, then

stop; else, k ← k +1 and go to step 2.

It is easy to see that this algorithm is essentially the
same as the standard CE algorithm. The CE method avoids
complicated estimation of the density bk through the use
of density projection. However, from a filtering viewpoint,
the projection particle filtering introduces a projection error
that is accumulated over iterations. The reason can be seen
by scrutinizing the one-step evolution of the approximate
density. Since samples {xi

k}N
i=1 are sampled from b̃k−1 =

f (·,θk−1), the density that the algorithm actually tries to
approximate at iteration k is

bk(xk) =
I{H(xk)≥yk} f (xk,θk−1)∫

I{H(xk)≥yk} f (xk,θk−1))dxk
.

Compared with the original equation (22) for bk, bk−1 is
replaced by its approximation f (·,θk−1), which introduces
a projection error that is accumulated to the next iteration.
This projection error can be corrected by taking f (·,θk−1)
as an importance density and hence taken care of by the
weights of the samples. This is a direction to improve the
CE method that we will investigate further.

5 CONCLUSION AND FUTURE RESEARCH

We have introduced a particle filtering framework for ran-
domized optimization algorithms. The CE method can be
viewed as an instantiation of this framework, and interpreted
from a filtering viewpoint.

The framework holds the promise for developing new
optimization algorithms through the choice of observation
noise, sampling and resampling importance densities as well
as the various improving techniques for particle filtering. For
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example, the choice of the distribution of the observation
noise determines how the samples are weighted. Proper
sampling and resampling importance densities can be chosen
to adjust the trade-off between exploitation and exploration.
Construction of the resampling importance density using
the kernel method for density estimation (Musso et al.
2001), or approximation with Gaussian mixture (Kotecha
and Djuric 2003) is very easy to implement and the obtained
continuous distributions are easy to sample from. They
add more exploration on the solution space, compared to a
single Gaussian density that is often used in the CE method.
Markov chain Monte Carlo (MCMC) step can be added after
resampling (Gilks and Berzuini 2001) to further adjust the
trade-off between exploitation and exploration, or add some
local search.

There are three important lines of future research that we
will pursue. First, we will continue to study the implication
of the particle filtering framework on other randomized
optimization algorithms, such as EDAs and MRAS, and the
relationship between the various randomized optimization
algorithms. Secondly, we will further study how to develop
new algorithms using the particle filtering framework and the
performance of these new algorithms. Finally, we want to
investigate the convergence property of the particle filtering
framework for optimization. Although convergence has
been proved for EDAs (Zhang and Muhlenbein 2004), the
CE method (Rubinstein 1999), and MRAS (Hu et al. 2007)
individually, we are interested in a unifying convergence
results under the particle filtering framework.
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