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ABSTRACT

We consider a portfolio allocation problem where the ob-
jective function is a tail event such as probability of large
portfolio losses. The dependence between assets is captured
through multi-factor linear model. We address this opti-
mization problem using two broad approaches. We show
that a suitably scaled asymptotic of the probability of large
losses can be developed that is a simple convex function of
the allocated resources. Thus, asymptotically, portfolio al-
location problem is approximated by a convex programming
problem whose solution is easily computed and provides
significant managerial insight. We then solve the origi-
nal problem using sample average simulation optimization.
Since rare events are involved, naive simulation may perform
poorly. To remedy this, we introduce change-of-variable
based importance sampling technique and develop a single
change of measure that asymptotically optimally estimates
tail probabilities across the entire space of feasible alloca-
tions.

1 INTRODUCTION

Tail events that occur rarely but whose occurrence results in
catastrophic losses are increasingly important in managerial
decision making. Investors holding a portfolio of assets
closely monitor and control the value-at-risk (a specified
tail-percentile of the loss distribution) of their investment
portfolio. Insurance companies hold huge reserves to protect
against the possibility of rare but catastrophic losses. A
manager of a complex project is concerned about the overall
project time to avoid enormous penalty and other costs
associated with large delays. In communication networks
huge buffers are maintained and scheduling of information
packets is carefully managed to minimize the packet loss
probability.

These problems maybe difficult to analyze as closed
form expressions of tail probabilities or related measures
such as value-at-risk are typically unavailable, and often

are sufficiently complex functions of the controllable inputs
that managerial insights for optimal decision making are not
easily available. In this article we consider the optimization
problem of allocating resources that minimize the tail event
probabilities of large losses subject to minimal expected
return requirement and other constraints. This objective
function may be particularly important to risk managers
concerned with unexpected tail losses. The distribution
of losses from the underlying factors is critical to our
analysis and we address this issue for super-exponentially,
exponentially and polynomially decaying tail distribution of
underlying factors. As will be apparent, the methodology
that we develop is applicable in great generality, however
to maintain focus, we limit our discussion to the portfolio
optimization set-up.

We address this portfolio allocation problem using two
broad approaches. First we develop simple asymptotic ex-
pressions for the tail probabilities that are useful surrogates
to the probabilities in the associated resource allocation
problem. We note that the resulting approximate problem
is a convex programming problem that is easily solved ex-
actly. We also note that an asymptotic analysis of other
tail measures such as value-at-risk results in an identical
optimization problem. Markowitz in his classic work on
portfolio optimization considered the problem of selecting a
portfolio of n securities with minimum variance for a given
amount of expected return. We conduct a similar analysis
with an asymptotic of the probability of large losses replac-
ing variance as the risk measure. For simplicity, we do this
analysis when the dependence between different securities
has a multi-factor linear relationship. In particular, we note
that in the special case when all factors have exponentially
decaying tail distributions, the portfolio optimization prob-
lem reduces to a linear program. In other cases we get a
convex programming problem with linear constraints.

In our second approach we solve the exact problem
approximately via sample average simulation optimization.
Note that the probability of an event is simply the expec-
tation of indicator of that event. As is well known, the
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sample average method addresses problems where for each
feasible allocation, the objective function is an expectation
of a random variable that is difficult to compute. In the
associated optimization problem this expectation is replaced
by an unbiased sample average of independent samples of
the underlying random variable. In our setting there is an
added difficulty that the objective function corresponds to
a rare event probability, so enormous amount of samples
are needed to get reliable estimates of the objective func-
tion at each feasible allocation. To remedy this drawback,
we introduce a change-of-variable based importance sam-
pling technique and develop a single importance sampling
change of measure that asymptotically efficiently estimates
tail probabilities across the entire space of feasible allo-
cations. This idea was implemented for PERT networks
with independent component distributions in Chauhan et.
al. (2007). To the best of our knowledge these are the
first successful implementations of importance sampling in
simulation optimization problems. We note that the asymp-
totic solution obtained from our first approach may be a
useful input in setting an initial point for the simulation
optimization problem as well as for coming up with a good
importance sampling measure.

Specifically, the main contribution of this article include:

1. Using the results in Juneja, Karandikar and Sha-
habuddin (2007), we develop asymptotics for the
tail probabilities of portfolio of assets when the
underlying random variables have tails that are su-
perexponentially decaying, exponentially decaying
or polynomially decaying. We develop an itera-
tive methodology to solve the resultant asymptotic
optimization problem. This involves checking fea-
sibility of some linear constraints and solving a
convex programming problem.

2. We develop an importance sampling methodology
to efficiently conduct the simulation optimization
of the exact non-asymptotic problem. We prove
that it is asymptotically effective over the complete
space of allocations. It can also be shown that
as the number of samples generated increase, the
simulation optimization algorithm converges to the
solutions of the exact problem.

A word of caution is in order: The multi-factor linear
model for losses from individual assets or securities may be
reasonable to capture the central or near central portion of
the resulting portfolio loss distribution. However, it could
be significantly inaccurate in the far off tail distribution of
losses. Therefore practitioners need to be careful of the
potential modeling error. Having said that, the key ideas
that we propose may in many cases be easily extended to
other non-linear models that potentially better capture the
loss tail distribution.

In the conference we will demonstrate the effectiveness
of the proposed methodology through a few simple numerical
examples.

In Section 2 we develop the mathematical framework
useful to our analysis. In this section we also study the
asymptotic optimization problem in light and heavy tailed
settings. In Section 3, we consider the simulation optimiza-
tion algorithms to solve the proposed portfolio optimization
problem. Here we also develop provably efficient importance
sampling based algorithms for the simulation optimization
technique. Finally, we conclude with a brief conclusion and
description of ongoing work, in Section 4.

2 MATHEMATICAL FRAMEWORK AND
BACKGROUND

Let L = (Li : 1 ≤ i ≤ m) denote the vector of losses from
m assets or securities and θ = (θi : 1 ≤ i≤m) ∈ℜm where
θi denotes the investment in asset i. Then

L(θ) =
m

∑
i=1

θiLi

denotes the loss from the portfolio consisting of these assets.
Further, assume that there exist n mutually independent
factors X = (Xi : i = 1, . . . ,n) and a matrix A = {ai j : 1 ≤
i ≤ m,1 ≤ j ≤ n} such that each

Li =
n

∑
j=1

ai jX j.

In this paper we primarily consider the problem

min
θ∈C

P(L(θ) > u) (1)

for a specified compact set C and for large values of u.
Note that by selecting appropriate coefficients of A , we
can capture the popular settings where there are common
and idiosyncratic factors involved in modeling losses from
each asset.

We first formulate the asymptotic problem where
P(L(θ) > u) is replaced by its suitable asymptotic sur-
rogate that depends on the distribution of components of
random vector X and that is a simple convex function of θ .

We need notation to specify the distribution of compo-
nents of X.

For rv X j, let

• f j(·) and Fj(·), respectively denote its probability
density function and distribution function.

• λ̃ j(·) and Λ j(·), respectively, denote its hazard rate
and hazard function.
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• γ̃ j(·) and Γ j(·), respectively, denote the hazard rate
and hazard function of −X j.

Then, f j(x) = λ̃ j(x)exp[−Λ j(x)]. As is well known,
λ̃ j(x) = Λ′

j(x) = f j(x)/(1−Fj(x)), where for any function
h(·), h′(x) denotes its the derivative. Note that if Λi(x)

Λ j(x)
→∞

as x → ∞, then Xi has a lighter tail compared to X j, in the
sense that

P(Xi > x)
P(X j > x)

= exp(−Λi(x)+Λ j(x))→ 0.

Equivalently, then X j has a heavier tail compared to Xi.

2.1 Light Tailed Settings

The following assumption and result in Juneja et al (2007)
are needed to develop suitable asymptotic for P(L(θ) > u)
in the light tailed settings.

Assumption 1 For each j ≤ n, there exists an α j ≥
1 and constants λ j, 0 < λ j < ∞:

lim
x→∞

λ̃ j(x)
λ jα jxα j−1 = 1. (2)

(Note that this implies that

lim
x→∞

Λ j(x)
λ jxα j

= 1, (3)

see Feller 1971, VIII.9, Theorem 1(b), pg 281). Furthermore,
there exist constants η j ≥ 1 and γ j, 0 < γ j < ∞:

lim
x→∞

γ̃ j(x)
γiη jxη j−1 = 1. (4)

Let α = min(α j : j ≤ n).
Let H contain all the indexes i such that αi = α .
Define

λ
∗ =

1

(∑ j∈H 1/λ

1
α−1
j )α−1

, (5)

for α > 1 and

λ
∗ = min

j∈H
λ j

for α = 1. Let L = ∑
n
j=1 X j.

Theorem 1 (Juneja et. al. 2007) Under Assump-
tion 1, when the components X are independent,

lim
u→∞

logP(L > u)
uα

=−λ
∗. (6)

2.1.1 Solving the Approximate Problem Exactly

It follows from Assumption 1 that for any constant bi > 0,

P(biXi > x) = exp[−λi(
x
bi

)αi(1+o(1))].

Set δ j(θ) = ∑
m
i=1 θiai j, and

β (θ) = min
j≤n

{α jI(δ j(θ) > 0),η jI(δ j(θ) < 0)},

where for any event A, I(A) denotes its indicator function.
Then L(θ) = ∑

n
j=1 δ j(θ)X j. Furthermore, for j ≤ n, define

λ
∗
j (θ) = λ j/δ j(θ)β (θ)I(δ j(θ) > 0,α j = β (θ))

+γ j/|δ j(θ)|β (θ)I(δ j(θ) < 0,η j = β (θ)),

and set λ ∗
j (θ) = ∞ on the complement of set

{δ j(θ) > 0,α j = β (θ)}∪{δ j(θ) < 0,η j = β (θ)}.

Then, from Theorem 1 it follows that

lim
u→∞

logP(L(θ) > u)
uβ (θ) =−λ

∗(θ), (7)

where for β (θ) > 1,

λ
∗(θ) =

1

(∑ j≤n 1/λ ∗
j (θ)

1
β (θ)−1 )β (θ)−1

,

and for β (θ) = 1,

λ
∗(θ) = min

j=1,...,n
λ
∗
j (θ).

Therefore, for large u, exp(−λ ∗(θ)uβ (θ)) becomes a
reasonable surrogate for P(L(θ) > u) and in (1) we may
replace the objective function by it. To solve the resultant
optimization problem, we first need to search for all θ that
maximize β (θ). This can be found iteratively as follows:

• First identify all rv X j or −X j with the smallest
‘rarity index’ α j and/or η j. That is, find rv with
rarity index

β = min
j≤n

(α j,η j).

These are the heaviest tailed rv in our portfolio.
• We then introduce constraints on θ so that we

only consider those portfolios where there is no
exposure to these tails. Thus, if α j equals β , we
introduce the constraint ∑

m
i=1 θiai j ≤ 0. If η j equals
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β , we introduce the constraint ∑
m
i=1 θiai j ≥ 0. Any

θ satisfying all these constraints has the property
that β (θ) > β . Let D denote the collection of
newly introduced constraints.

• We, then check if the set with constraints C and
D has a feasible solution.

• If the resultant set has a feasible solution, we repeat
the above steps after augmenting the constraint set
C to include constraints D so that the portfolios
satisfying these constraints are not exposed to the
relatively heavy tailed losses. In conducting the
repeat steps, in recomputing β , we do not consider
α j (resp. η j) for which we set ∑

m
i=1 θiai j ≤ 0 (resp.

∑
m
i=1 θiai j ≥ 0) in the earlier steps.

• Else, if the resultant set is infeasible, we stop.

It is easy to see that due to no-arbitrage considerations,
under reasonable constraint set C, this algorithm will even-
tually stop with the resultant set of constraints infeasible
(this is discussed later). (At that point, all θ ∈ C maxi-
mize the original β (θ) discussed earlier.) The asymptotic
approximation to the solution of (1) is achieved by solving

max
θ∈C

λ
∗(θ)

where now C is the set obtained after incorporating the
constraints introduced in the above algorithm.

We now solve this problem separately for β = 1 and
β > 1. We may take the initial set C to correspond to

C = {
k

∑
i=1

θi = 1,
k

∑
i=1

θiri ≥ r̄}

where (ri : 1≤ i≤ k) correspond to expected rates of returns
from each security and r̄ corresponds to the minimum desired
rate of return. This is more than the risk free rate of return.
For simplicity we assume that all α j and η j equal β . This
ensures that C is not augmented by additional constraints,
as the no arbitrage considerations imply that augmenting
the set C with constraints

m

∑
i=1

ai jθi = 0

for j = 1, . . . ,n leads to an infeasible solution. (A feasible
solution would give rate of return of at least r̄ without any
risk.)

Recall that δ j(θ) = ∑
m
i=1 ai jθi. In this case,

λ
∗
j (θ) = λ j/δ j(θ)β ,

if δ j(θ) > 0, it equals

η j/|δ j(θ)|β

if δ j(θ) < 0, and ∞ otherwise.

2.1.2 Exponential Decay Rate, β = 1

In this case, rather than maximizing λ ∗(θ), we may equiv-
alently minimize

max
j≤n

(
δ j(θ)

λ j
,−

δ j(θ)
γ j

)
subject to θ ∈C.

This problem is solved using the linear program:

min ζ

s. t. ∑
m
i=1 ai jθi ≤ ζ λ j j = 1, . . . ,n

−∑
m
i=1 ai jθi ≤ ζ γ j j = 1, . . . ,n

θ ∈C.

2.1.3 Super-exponential Decay Rate, β > 1

Again, rather than maximizing λ ∗(θ), we may equivalently
minimize

∑
j≤n

1/λ
∗
j (θ)

1
β−1

subject to θ ∈C. This may be re-formulated as a convex
programming problem with linear constraints as follows:

min ∑
n
j=1

(
(ξ+

j )β/(β−1)

λ
1/(β−1)
j

+
(ξ−j )β/(β−1)

γ
1/(β−1)
j

)
s. t. ξ

+
j −ξ

−
j = ∑

m
i=1 ai jθi j = 1, . . . ,n.

ξ
+
j ,ξ−j ≥ 0 j = 1, . . . ,n.

θ ∈C.

This is easily solved using standard numerical tech-
niques (see, e.g., Boyd and Vandenberghe 2004).

2.2 Heavy Tailed Settings

Recall that a rv W is said to be heavy or sub exponentially
tailed if

P(W1 +W2 > u)
2P(W1 > u)

→ 1

as u→∞, where W1 and W2 have the same distribution as W
(see, eg., Pakes 2004). We assume that there exists a heavy
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tailed random variable Y , and constants (λ j > 0 : j ≤ n),
(γ j > 0 : j ≤ n) and β > 0 such that

lim
u→∞

P(aX j > u)
P(Y > u)

= λ jaβ , (8)

and

lim
u→∞

P(−aX j > u)
P(Y > u)

= γ jaβ , (9)

for each a > 0. This would be true for instance if for each
j ≤ n,

P(X j > u)∼ λ j
L(u)
uβ

,

P(−X j > u)∼ γ j
L(u)
uβ

,

and P(Y > u)∼ L(u)
uβ

, where L(·) is a slowly varying function,
that is, limx→∞ L(tx)/L(x) = 1 for all t > 0.

In that case, under mild technical conditions,

P(L(θ) > u) = P(
n

∑
j=1

δ j(θ)X j > u)∼
n

∑
j=1

P(δ j(θ)X j > u),

and this in turn is asymptotically similar to P(Y > u) times(
n

∑
j=1

(δ j(θ)β
λ jI(δ j(θ) > 0)+ |δ j(θ)|β γ jI(δ j(θ) < 0))

)

Therefore, the asymptotic optimization problem reduces
to the simple convex programming problem

min ∑
n
j=1

(
(ξ +

j )β
λ j +(ξ−j )β

γ j

)
s. t. ξ

+
j −ξ

−
j = ∑

m
i=1 ai jθi j = 1, . . . ,n.

ξ
+
j ,ξ−j ≥ 0 j = 1, . . . ,n.

θ ∈C.

Note that it is easy to generalize this analysis to include
cases where the positive and negative tails of X j have different
decay rates and also where light as well as heavy tailed
random variables are involved.

2.3 Optimizing Asymptotic Value-at-Risk

Suppose that the following asymptotic holds:

lim
u→∞

1
uα

logP(L(θ) > u) =−λ
∗(θ).

Suppose that L(θ) has a continuous density so that the
value-at-risk at level p∈ (0,1), up(θ) is the unique solution
to

P(L(θ) > up(θ)) = p.

It follows that for ε > 0 and sufficiently small p lies between

exp(−λ
∗(θ)up(θ)α(1± ε))

so that

lim
p→0

up(θ)
(− log(p))1/α

= 1/λ
∗(θ)1/α .

So again, asymptotically, the θ that minimizes up(θ) cor-
responds to the θ that maximizes λ ∗(θ).

Similar results can be easily shown in the heavy-tailed
settings and for performance measures such as the expected
shortfall.

3 SAMPLE AVERAGE OPTIMIZATION: SOLVING
EXACT PROBLEM APPROXIMATELY

The basic idea behind the approach is fairly simple and
intuitive and is presented, for instance, in Kleywegt and
Shapiro (2001). Observe that the loss probability can be
re-expressed as

q(θ) = E[I(L(θ ,X) > u)]

where I(·) represents the indicator function, assumes value
1 if an event happens and 0 otherwise, and E[·] denotes
expectation under a measure P under which the vector X
has joint density function fX. Typically, q(θ) is not known
in closed form. However due to the law of large numbers,
it can be approximated by the sample average of i.i.d.
samples of I(L(θ ,X) > u). Concretely, suppose X1, . . . ,XN

denote N independent, identically distributed samples from
the distribution fX. Then an approximation q̂(·) to the
objective function may be obtained as

q̂(θ) =
1
N ∑

i≤N
I(L(θ ,Xi) > u).

q̂(·) can now be used as a surrogate objective to solve the
resultant deterministic optimization problem in Equation
1 and obtain an approximate solution. This sample aver-
age optimization methodology has certain drawbacks in our
setting. First note that q̂(θ) would typically not be a con-
tinuous or differentiable and hence gradient based methods
are difficult to implement. Second, there is a problem of
rare event simulation. If u is large, the probability q̂(θ)
requires enormous computational effort to estimate accu-
rately. Fortunately, both these problems can be rectified by
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using change of variables technique and then importance
sampling.

3.1 Change of Variable Technique

Note that

q(θ) =
∫

L(θ ,x)>u
fX(x1, . . . ,xn)dx1 · · ·dxn.

Recall that, L(θ ,x) = ∑
n
j=0 δ j(θ)xi. For notational conve-

nience, we denote δ j(θ) by δ j suppressing the dependence
on θ . Also, without essential loss of generality we assume
that each δ j > 0. If it is less than zero we can consider
the rv −X j instead of X j. If δ j = 0, then the term can be
ignored.

Change the variables of integration to y j = δ jx j for all
j ≤ n. of θ . Then,

q(θ) =
∫

∑
n
j=1 yi>u

fX
( y1

δ1
, . . . ,

yn

δn

)dy1

δ1
. . .

dyn

δn
.

Let g : ℜn → ℜ+ denote a joint pdf of n random vari-
ables. Then RHS may be re-expressed as

∫
∑

n
j=1 yi>u

fX
( y1

δ1
, . . . , yn

δn)

)
g
(
y1, . . . ,yn

) g
(
y1, . . . ,yn

)dy1

δ1
. . .

dyn

δn

with the caveat that g
(
y1, . . . ,yn

)
> 0 whenever

fX
( y1

δ1
, . . . , yn

δn

)
> 0.

Hence,

q(θ) =
1

∏
n
j=1 δ j

Eg

[
fX
(Y1

δ1
, . . . , Yn

δn

)
g
(
Y1, . . . ,Yn

) I(
n

∑
j=1

Yj > u)

]
, (10)

where Eg is the expectation operator associated with joint
density g. Therefore, the sample average of samples of

1
∏

n
j=1 δ j

fX
(Y1

δ1
, . . . , Yn

δn

)
g
(
Y1, . . . ,Yn

) I(
n

∑
j=1

Yj > u)

genrated using g provides a surrogate for the objective
function q(θ).

Also note that due to independence of random com-
ponents: fX(X) = ∏

n
j=1 f j(X j). Suppose that the rv remain

independent under joint density g, i.e.,

g
(
y1, . . . ,yn

)
=

n

∏
j=1

g j(y j).

Let

Z(θ) =
1

∏
n
j=1 δ j

∏
n
j=1 f j

(Y j
δ j

)
∏

n
j=1 g j

(
Yj
) I(

n

∑
j=1

Yj > u).

Let Z̄n(θ) denote the sample average of n i.i.d. samples
of Z(θ). Deterministic optimization can be conducted using
this Z̄n(·) as the objective function. The advantage is that
now the resultant approximation to the objective function
is continuous in each δ j and hence in each θi. Further,
we can similarly obtain an approximation to each partial
derivative ∂q(θ)

∂θi
. To see this, note first that for i = 1, . . . ,m,

∂

∂θi
δ j = ai j, and that under mild regularity conditions that

allow interchange of derivative with the expectation that
∂

∂θi
q(θ) equals

−Eg

 n

∑
j=1

ai j

δ j
+

ai j f j
′(Y j

δ j

)
Yj

δ 2
j f j
(Y j

δ j

)
Z(θ)

 . (11)

Therefore, the average of samples of

−

 n

∑
j=1

ai j

δ j
+

ai j f j
′(Y j

δ j

)
Yj

δ 2
j f j
(Y j

δ j

)
Z(θ)


for each i provide a surrogate for the gradient of q(θ). Note
that the gradient estimate from n samples equals ∂

∂θi
Z̄n(θ).

Also note that again changing variables by setting each
X j = Y j

θ j
in (12) we get

−E f

[
n

∑
j=1

(
ai j

δ j
+

ai j f j
′(X j)X j

δ j f j(X j)

)
I(L(θ ,X) > u).

]
(12)

This then provides an alternative way to estimate the gradient
of q(θ).

3.2 Importance Sampling

The analysis in the last section allowed us to get a continuous
approximation for the objective function and its gradient.
The problem of rarity due to large value of u remains. This
can be addressed by selecting an appropriate importance
sampling distribution g. We now discuss an asymptotically
optimal choice of g that efficiently estimates q(θ) for all
feasible θ for large values of u.

Again consider

q(δ ) = P(
n

∑
j=1

δ jX j > u)
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where again we suppress the dependence on θ , and without
loss of generality, consider all δ j > 0. Further consider a
light tailed regime so that for j = 1, . . . ,n

f j(x) = e−λ jxα (1+o(1)).

As we discussed earlier, it then follows that

lim
u→∞

1
uα

logq(δ ) =−λ
∗(δ )

where

λ
∗(δ ) =

(
n

∑
j=1

(λ jδ
−α

j )−(α−1)−1

)−(α−1)

if α > 1 and λ ∗(δ ) = min j≤n λ jδ j
−1 if α = 1.

Then for any δ , if we generate (Y1, . . . ,Yn) independently
using densities (g j : j≤ n), respectively, and our importance
sampling estimator for q(δ ) is

q̂g(δ ) =
1

∏
n
j=1 δ j

∏
n
j=1 f j(Yj/δ j)

∏
n
j=1 g j(Yj)

I(
n

∑
j=1

Yj > u).

Since Eg[q̂g(δ )2]≥ q(δ )2, it follows that

liminf
u→∞

1
uα

logEg[q̂g(δ )2]≥−2λ
∗(δ ).

An importance sampling measure associated with g is
said to be asymptotically optimal if the above inequality
holds as an equality and liminf can be replaced by a lim.
That is, if

limsup
u→∞

1
uα

logEg[q̂g(δ )2]≤−2λ
∗(δ ).

We now identify an importance sampling distribution
that achieves this for δ > 0. Select

g j(y) =
c j

u
e−

c j
u y

for j = 1, . . . ,n where each c j is a constant independent of
δ . This implies that EgYj = u/c j.

We now show that with this choice of density functions
we achieve asymptotic optimality for any δ > 0. To see
this note that Eg[q̂g(δ )2] equals 1

(∏n
j=1 δ j)2 times

∫
∑

n
j=1 y j>u

(
∏

n
j=1 f j(y j/δ j)

∏
n
j=1 g j(y j)

)2 n

∏
j=1

g j(y j)dy1 . . .dyn.

Plugging in the expressions for various density func-
tions, the RHS equals un

(∏n
j=1 δ j)2 times

∫
∑

n
j=1 y j>u

 e−∑
n
j=1 λ jδ

−α

j yα
j

∏
n
j=1 c je

−∑
n
j=1

c j
u y j

2
n

∏
j=1

g j(y j)dy1 . . .dyn,

where to keep the discussion simple we have assumed that
the o(1) terms in the original density functions equal zero
and the terms y j are restricted to be non-negative. Since

lim
u→∞

1
uα

log
un

∏
n
j=1 δ 2

j c j
= 0,

we ignore these from further analysis. To prove the result,
it suffices to bound from above(

e−∑
n
j=1 λ jδ

−α

j yα
j

e−∑
n
j=1

c j
u y j

)2

I(
n

∑
j=1

y j > u) (13)

by e−2λ ∗(δ )uα (1+o(1)). To this end, note that

n

∑
j=1

λ jδ
−α

j yα
j ≥ λ

∗(δ )(
n

∑
j=1

y j)α (14)

when (y j : j = 1, . . . ,n) are non-negative. This is obvious
for α = 1. To see this for α > 1, consider a rv that takes
value (λ jδ

−α

j )1/(α−1)y j for j = 1, . . . ,n with probability

(λ jδ
−α

j )−1/(α−1)

∑
n
i=1(λiδ

−α

i )−1/(α−1)

and use the fact that α moment of a non-negative rv is
greater than or equal to the first moment raised to power
α for α > 1. Using (14), we bound (13) from above by

e−2λ ∗(δ )(∑n
j=1 y j)α +2

max j=1,...,n c j
u (∑n

j=1 y j)I(
n

∑
j=1

y j > u)

and the result follows.
The proposed algorithm works for any choice of the

positive constants (c j : j = 1, . . . ,n). In practice these may
be chosen so that the importance sampling distribution puts
significant mass around points where the asymptotically
optimal θ (determined in previous section) concentrates
mass. Under mild conditions it can be shown that the
proposed importance sampling technique also efficiently
estimates each of the gradient associated with q(δ ).

Importance sampling can similarly seen to be uniformly
effective when the rv (X j : j ≤ n) are heavy tailed. In that
case, ideas from Juneja et al. (2007), Asmussen and Kroese
(2006) and Juneja (2007) may be used to get estimators that
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are logarithmically efficient, have bounded relative error or
have vanishing relative error, respectively.

4 CONCLUSIONS AND ONGOING WORK

In this article we considered the portfolio optimization prob-
lem extending the classic Markowitz framework to the case
where the objective function corresponds to a tail mea-
sure such as the probability of large losses. We developed
asymptotics for the probability of large losses as a func-
tion of the allocated resources and formulated the resultant
non-linear programming problem. We also developed im-
portance sampling based efficient simulation optimization
procedures to solve the portfolio optimization problem. Our
ongoing effort involves conducting experiments to validate
the proposed algorithms. In a more elaborate version of
this article we analyze in greater detail some of the issues
alluded to in this article. We also study the efficient frontier
associated with this tail risk problem.
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