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ABSTRACT

Our focus is on efficient estimation of tail probabilities of
sums of correlated lognormals. This problem is motivated
by the tail analysis of portfolios of assets driven by cor-
related Black-Scholes models. We propose three different
procedures that can be rigorously shown to be asymptoti-
cally optimal as the tail probability of interest decreases to
zero. The first algorithm is based on importance sampling
and is as easy to implement as crude Monte Carlo. The
second algorithm is based on an elegant conditional Monte
Carlo strategy which involves polar coordinates and the
third one is an importance sampling algorithm that can be
shown to be strongly efficient.

1 INTRODUCTION

We are concerned with the problem of efficient estimation
of tail probabilities of sums of random variables that are
correlated and possess heavy tails. This situation might
arise, for instance, when computing the probability of large
losses or high returns on a portfolio of correlated asset
prices. A basic model in the financial literature is the so-
called Black-Scholes model, in which stock prices follow a
lognormal distribution. Although the Black-Scholes model
is mostly used as a benchmark for pricing, in risk manage-
ment, where model complexity can impact computational
burden enormously, the Black-Scholes model assumptions
are popular (cf. McNeil, Frey, and Embrechts 2005). Mo-
tivated by these types of problems, our focus is on efficient
tail estimation of sums of correlated lognormals. More
precisely, let Y = (Y1,Y2, ...,Yd)

T be a d-dimensional vector
distributed jointly Gaussian with mean µ = (µ1, ...,µd)

T

and covariance matrix Σ (we say that Y ∼ N (µ,Σ)). Fi-
nally, define Xi = exp(Yi) and Sd = X1 + ...+ Xd . We are
interested in the efficient estimation of α (b) = P(Sd > b)
as b ↗ ∞.

Recall that an unbiased estimator Zb for α (b) is
said to be weakly efficient or asymptotically optimal if

logE Z2
b/ logα (b)→ 2 as b ↗ ∞. Moreover, the estimator

is strongly efficient or is said to have bounded relative er-
ror if supb≥0 E Z2

b/α (b)2 < ∞. These notions are standard
in rare event simulation (cf. Asmussen and Glynn 2008,
Bucklew 2004, Juneja and Shahabuddin 2006).

Most of the literature on rare-event simulation for heavy-
tailed systems has focused on random walk-type models (cf.
Asmussen and Kroese 2006, Juneja and Shahabuddin 2002,
Dupuis, Leder, and Wang 2007, Blanchet and Glynn 2008,
Blanchet, Glynn, and Liu 2007). In contrast, we consider a
rare-event simulation problem that involves the sum of highly
dependent increment distributions. The dependence struc-
ture makes the available rare-event simulation algorithms
for tails of sums of iid heavy-tailed increments difficult to
apply in our current setting because they rely heavily on
the iid assumption.

As we mentioned before that our current setting relates
to applications in finance, in the context of tail probabilities
of assets driven by correlated Black-Scholes models. In
this context, a popular approach that is often suggested is
approximating the prices by a t-distributed model. Such
approximation is motivated by means of a Taylor expansion
which is often called a Delta approximation, if it involves
the first derivative only or Delta-Gamma approximation, if
the first and second derivatives are considered Glasserman
2000. The use of t-distributions is appealing in these set-
tings in order to capture the heavy-tailed behavior which
is present in the original lognormal model (which is ap-
proximated by means of the Delta-Gamma development).
Efficient rare-event simulation procedures are then designed
for the Delta-Gamma approximation with t-distributed fac-
tors or quadratic forms of Gaussian factors Glasserman
2000, Glasserman, Heidelberger, and Shahabuddin 1998.
The simulation estimators that we propose and analyze here
avoid the need for a Delta-Gamma approximation by work-
ing directly with the lognormal factors in an efficient way.
So, we do not incur in bias errors that are inherent to the
use of the Delta-Gamma approximation and, at the same
time, efficiency of the estimators is preserved.
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Our contributions are as follows. We analyze and
propose three estimators for α (b). The first estimator is
based on an importance sampling strategy that scales the
covariance matrix by a factor that grows at a suitable speed
as b↗∞. Since the sampler involves a simple scaling, the
estimator is straightforward to implement and it can be shown
to be asymptotically optimal as b↗∞. The second estimator
is based on a conditional Monte Carlo strategy which is
applied after parameterizing the underlying Gaussian factors
in polar coordinates. The strategy is to condition on the
angular component and integrate the radial contribution
in closed form. Finally, the third of our estimator takes
advantage of the fact that the largest of the increments
dominates the large deviations behavior of the sums of
correlated lognormals. The strategy is decompose the tail
event of interest in two contributions, a dominant piece
corresponding to the tail of the maximum and a remaining
contribution. The dominant contribution is analyzed by
means of a strongly efficient algorithm for the maximum
of multivariate Gaussians and the remaining contribution
is independently handled using the importance sampling
strategy utilized in the design of the first estimator. The
third estimator can be shown to be strongly efficient.

The rest of the paper is organized as follows. Basic
large deviations results for sums of correlated lognormals
are briefly discussed in Section 2. The description of our
first estimator is given in Section 3, whereas our conditional
Monte Carlo estimator is analyzed in Section 4. Our third
estimator is discussed in Section 5. Finally, numerical
examples are given in our last section, namely, Section 6.

2 LARGE DEVIATIONS FOR SUMS OF
CORRELATED LOGNORMALS

It is well known Embrechts, Klüppelberg, and Mikosch
1997 that the lognormal distribution belongs to the class of
subexponential distributions and therefore, if the Xi’s are
iid, then

α (b)∼ P
(

max
1≤ j≤d

X j > b
)
∼ dP(X j > b) (1)

as b↗∞. The previous approximation in particular implies
that, asymptotically as b ↗ ∞, the event {Sd > b} occurs
due to the contribution of a large increment (the maximum)
which must exceed b.

Our focus, however, is on general correlation structure
among the underlying Gaussian factors. Assuming only that
all pairwise correlations between the Yi’s are strictly less
than 1, we obtain Asmussen and Rojas-Nandayapa 2008
that basically the same intuition behind (1) holds true. More

precisely, we have that

α (b)∼ P
(

max
1≤ j≤d

X j > b
)
∼

d

∑
j=1

P(X j > b) (2)

as b↗∞. The previous asymptotic result is a consequence
of a basic feature about multivariate Gaussians, namely, the
asymptotic independence at the tails. That is, if Z1 and
Z2 are correlated standard Gaussians with cov(Z1,Z2) < 1,
then P(Z1 > b|Z2 > b)→ 0 as b ↗ ∞.

Another elementary, yet important, piece of information
that we must recall in order to proceed with the description
and the motivation of our algorithms is the following el-
ementary asymptotic result for Gaussian random variables
known as Mill’s ratio Resnick . If Yi ∼ N

(
µi,σ

2
i
)

then as
y ↗ ∞

P(Yi > y)∼ σi

(2π)1/2 (y−µi)
exp

(
− (y−µi)

2σ2
i

2
)

. (3)

Note that, in particular, approximation (3) indicates that the
tail of the a Gaussian (or equivalently the tail of a lognormal)
is heavier for larger values of the variance parameter σ2

i .
In addition to the asymptotic approximations (3) and (2)

the discussion above tells us useful information that we shall
leverage off in the design of efficient simulation estimators.
First, the tail of the maximum drives the tail of the sum,
even in the case of correlated lognormals (we will use this
piece in Section 5) and, second, the tail of the sum is driven
(at least in logarithmic scale) by those Gaussian components
that have the largest variance parameter, regardless of the
correlation structure as long as no redundant components
are present (the estimators in Sections 3 and 4 are based
on this observation).

3 ASYMPTOTICALLY OPTIMAL IMPORTANCE
SAMPLING VIA VARIANCE SCALING

A principle that is popular in financial risk analysis is that
high variance or volatility is associated to high risk. Of
course, one has to be careful when applying this principle
in light of what is meant by risk. Typically, the notion of
risk is associated to tail behavior and, in general, variance
has little to do with tail behavior. However, as we saw in
Section 2, in the case of Gaussian random variables, the
variance controls the tail behavior of the underlying factors.

Using the previous principle a natural importance sam-
pling strategy that one might consider for computing α (b)
is one that induces high variances. This motivates consider-
ing as importance sampler a distribution a N (µ,Σ/(1−θ))
for some 0 < θ < 1; in other words, relative to the nom-
inal (original) probability distribution, we just inflate the
covariance matrix by the factor 1/(1−θ). This importance
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sampling distribution is denoted by Pθ (·) and we shall use
the notation Eθ (·) for the associated expectation operator.

The estimator induced by this simple strategy is

Z1 (b) =
I (Sd > b)exp

(
−YT Σ−1Y/2

)
/det(Σ)1/2

exp(−YT Σ−1Y(1−θ)/2)det(Σ/(1−θ))1/2

= I (Sd > b)
exp
(
−θYT Σ−1Y/2

)
(1−θ)d/2 .

The next lemma summarizes a useful representation
for the second moment of Z1 (b) under the importance
sampling distribution. However, in order to state such
representation we introduce another family of probability
measures (in addition to the Pθ ’s), which we shall denote
by (Qθ : 0 ≤ θ ≤ 1). We use Qθ (·) to denote a probability
measure under which Y is N (µ,Σ/(1+θ)).

Proposition 1

Eθ Z2
1 (b) = (1−θ

2)−d/2Qθ (Sd > b) (4)

Proof.

Eθ Z2
1 (b)

=
∫ I (ey1 + ...+ eyn > b)exp

(
−2θ (y−µ)T

Σ−1 (y−µ)/2
)

(1−θ)d

×
exp
(
−(1−θ)(y−µ)T

Σ−1 (y−µ)/2
)

(2π)d/2 det(Σ/(1−θ))
dy1...dyn

=
∫

I (ey1 + ...+ eyn > b)

×
exp
(
−(1+θ)(y−µ)T

Σ−1 (y−µ)/2
)

(1+θ)−d/2

(1−θ)d(1−θ)−d/2 (2π)d/2 det(Σ/(1+θ))

= (1−θ
2)−d/2Qθ (Sn > b) .

As an immediate consequence of the previous result we
obtain that the estimator Z1 (θ) is logarithmic efficient if one
chooses θ (b) → 1 at an appropriate speed. In particular,
the asymptotic behavior of Qθ (·) (as given by (3)), suggests
selecting θ close to unity.

Theorem 1 Suppose that 0 ≤ 1 − θ (b) =
o
(

1/(log(b))2
)

, then

Eθ(b)Z
2
1 (b)∼ o

(
log(b)d

)
2−d/2

α (b)2 (5)

as b↗∞ and in particular, Z1 (b) is logarithmically efficient.

Proof. [Sketch of the Proof]The proof proceeds by taking
advantage of (4) directly together with approximations such
as (2) and (3). The only missing details in the argument,
which is given in Blanchet, Juneja, and Rojas-Nandayapa
2008, involve covering asymptotics for (4) when the co-
variance matrix is changing according to θ (b).

One can choose θ (b) in many ways which are consistent
with the condition that 1−θ (b) = o

(
1/(log(b))2 ) as b→

∞. One of them involves finding θ (b) that minimizes
the asymptotic expressions for the second moment of the
estimator given by (4). A simpler approach is to find the
unique positive root θ (b) (which exists for b large enough) to
the equation Eθ(b)Sd = b. This root-finding procedure does
not contribute significantly to the computational cost of the
algorithm because is done just once and is straightforward to
see that the condition 1−θ (b) = o

(
1/ log(b)2 ) is satisfied

as b ↗ ∞. We implemented the numerical examples that
we will show in Section 6 using the root finding approach.

Although the estimator Z1 (θ) possesses two very con-
venient features, namely, is very easy to implement and is
asymptotically optimal, it also has the disadvantage that the
premultiplying factor in the asymptotic variance expression
(5) might grow substantially. For instance, in the case of the
root finding selection, such factor is of order O

(
log
(
b
)d/2 ).

So, for moderate values of b and d, the variance performance
of the estimator might degrade in a significant way. To cope
with this problem one can introduce additional variance re-
duction techniques. In the next two sections we introduce
a couple of alternatives that help address this problem, one
can obviously think about combining the strategies that we
shall discuss in future sections.

4 ASYMPTOTICALLY OPTIMAL
CONDITIONAL MONTE CARLO

The estimator discussed in the previous section showed a
successful (in the sense of achieving asymptotic optimality)
importance sampling strategy based on a simple parametric
family of distributions that places all the effort of the sampler
uniformly on the variances. In other words, we induce the
rare event by multiplying the whole covariance matrix by
the same factor, namely, 1/(1−θ).

Now, recall that the vector Y can be represented as
Y = µ+C Z, where Z = (Z1, ...,Zd)T is a vector of iid stan-
dard Gaussians and CCT = Σ. In turn, we can represent
Z in polar coordinates, as Z =Rφ , where R is the radial
distance, φ is a point selected uniformly over the surface of
the unit ball in d dimensions and φ and R are independent. It
then follows that we can interpret the importance sampling
strategy in the previous section as a change in scale applied
to R only. In turn, this suggests that the randomness of
R contributes substantially to the variance of the estimator
and this motivates our search for a conditional Monte Carlo
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algorithm that integrates in closed form the contribution of
the radial distance to the evaluation of α (b).

More precisely, let Ci,· denote the i-th column of the
matrix C and write Wi = Ci,·φ , so that Xi = exp(µi +RWi).
Our conditional Monte Carlo estimator takes the form

Z2 (b) = P(Sd > b|φ) = P(Sd > b|W1, ...,Wd) .

In order to generate Z2 (b), we need to generate copies of
φ and, given a realization Wi = wi, we need to evaluate
P(R ∈ Ab), for Ab of the form

Ab = {r ≥ 0 : exp(µ1 + rw1)+ ...+ exp(µd + rwd) > b}.

Generating copies of φ is easily done by computing Z/‖Z‖2.
We also know that R2 ∼ χ2

d (chi-squared with d degrees
of freedom) or, equivalently, R2 is distributed gamma with
mean d and variance 2d. So we just need to find parameterize
the set Ab in an appropriate way. Fortunately, this can be
easily done in terms of a root finding procedure as we now
describe. Define

f (r) = exp(µ1 + rw1)+ ...+ exp(µd + rwd)

and note that f (·) is the sum of exponentials and therefore is
strictly convex. As a consequence, Ab can be characterized
in terms of the non-negative roots of the equation f (r) = b
as follows: a) No solution exists on (0,∞) and f (0) ≥ b
in which case Ab = (0,∞), b) No solution exists on (0,∞)
and f (0) < b in which case Ab = �, c) there is only one
solution on (0,∞), say r+ (b) > 0 and f (0)≤ b, in which
case Ab = (r+ (b) ,∞), d) there is only one solution on
(0,∞) and f (0) > b, in which case Ab = (0,r+ (b)) and
e) there are two solutions 0 ≤ r− (b) < r+ (b), in which
case Ab = (0,r− (b))∪ (r+ (b) ,∞). The following lemma,
which follows directly from the fact that f (·) is the sum
of exponential functions, is useful to find the precise form
of Ab given particular parameters µiand wi for 1 ≤ i ≤ d.

Lemma 1 i) If min1≤i≤d wi > 0 then there is at most
one solution to the equation f (r) = b on (−∞,∞). Moreover,
a non-negative solution exists if and only if f (0) > b; if no
solution exists, then Ab =� whereas if a solution r+ (b) > 0
exists then Ab = (0,r+ (b)).

ii) If min1≤i≤d wi > 0 then there is at most one solution
to the equation f (r) = b on (−∞,∞). Moreover, a non-
negative solution exists if and only if f (0) < b; if no solution
exists, then Ab = (0,∞) whereas if a solution r+ (b) > 0 exists
then Ab = (r+ (b) ,∞).

iii) If min1≤i≤d wi < 0 < max1≤i≤d wi then the equation
f ′ (r∗) = 0 has exactly one solution on (−∞,∞) and f (r∗) =
minr∈R f (r).

Parts i) and ii) from the previous lemma can be applied
to construct the set Ab in some of the cases described by

a) to d) above (we just need to apply Newton-Raphson’s
method in order to find the required root when it exists).
The situation described by iii) is helpful to construct the
set Ab when there is more than one root to the equation
f (r) = b. In such situation we first run Newton-Raphson’s
method to find r∗ such that f ′ (r∗) = b. If f (r∗)≥ b then
Ab = (0,∞), otherwise, there are exactly two roots of the
equation f (r) = b, which can be easily located by applying
Newton-Raphson’s method with initial conditions r∗− 1
and r∗+1 respectively. The form of Ab can then be easily
obtained by looking at the sign of the roots and following
the line of reasoning indicated in a) or e) above.

The analysis of the total computational cost required to
implement the estimator Z2 (b) requires a careful study of
the Newton-Raphson procedures indicated in the previous
paragraph. A detailed discussion of the issues involved is
given in Blanchet, Juneja, and Rojas-Nandayapa 2008.

We close the section with the following result, which
summarizes the efficiency properties of our conditional
Monte Carlo estimator.

Theorem 2 Assuming that the pairwise correlations
of the Yi’s are strictly less than unity, then

logEZ2
2 (b)

logα (b)
→ 2

as b ↗ ∞.

Proof. [Sketch of the Proof] Consider the problem
max‖φ‖2=1 Ci,·φ . By Cauchy-Schwarz inequality, the
(unique) solution to this problem is easily seen to satisfy
φ ∗i = Ci,·/‖Ci,·‖2. Since the pairwise correlations between
the Yi’s are strictly less than unity, then is not difficult to see
that φ ∗i 6= φ ∗j for i 6= j. Now, let T = {i : σi = max1≤ j≤d σ j}
and select i∗ ∈ T such that µi∗ ≥ µ j for all j ∈ T . Since
σi∗ = ‖Ci∗,·‖2 we have (using the fact that φ ∗i 6= φ ∗j for i 6= j)
that for each δ > 0, there exists a deterministic constant
k (δ ) > 0 such that for all r ≥ 0

f (r)≤ exp(µi∗ + rσi∗ (1+δ ))+ k.

Therefore, elementary calculus and approximation (2) allows
to conclude

Z2 (b)≤ P(exp(µi∗ +Rσi∗/(1+δ )) > b− k)

= O
(

α (b)1/(1+δ ) log(b)d
)

as b ↗ ∞. Since δ > 0 is arbitrary, the statement of the
theorem follows.

610



J. Blanchet, S. Juneja, L. Rojas-Nandayapa

5 STRONGLY EFFICIENT IMPORTANCE
SAMPLING ESTIMATOR

In Section 2 we noted that large values of Sd are basically
due to the contribution of a single large jump (the maximum)
and in Section 3 we constructed a weakly efficient estimator
using an importance sampler based on the fact that, roughly
speaking (i.e. in logarithmic sense) and according to (3)
and (2), the variances dictate the tail behavior Sd . The idea
in this section is to combine these two intuitive observations
in order to produce a strongly efficient importance sampling
estimator. First, note that

α (b) = α1 (b)+α2 (b) ,

where

α1 (b) = P
(

max
1≤i≤d

Xi > b
)

,

α2 (b) = P
(

Sd > b, max
1≤i≤d

Xi ≤ b
)

.

In view of (2) we must have that α2 (b) = o(α1 (b))
as b ↗ ∞, so the most important contribution comes from
the term α1 (b). The strategy is to design independent and
unbiased estimators, say Z3,1 (b) and Z3,2 (b), for the terms
α1 (b) and α2 (b) respectively. The gain comes if Z3,1 (b) is
strongly efficient for α1 (b) even if Z3,2 (b) has a coefficient
of variation of order O(α (b)/α2 (b)) as b ↗ ∞. In other
words, Z3,2 (b) may not be strongly efficient for α2 (b), but
its coefficient of variation could grow slowly enough so that
the combined estimator Z3 (b) = Z3,1 (b)+Z3,2 (b) for α (b)
is strongly efficient.

For Z3,2 (b) we propose to use (recall the notation
introduced in Section 3) Pθ as our importance sampling
distribution (i.e. Y has distribution N (µ,Σ/(1+θ))) and
set

Z3,2 (b) = I
(

Sd > b, max
1≤i≤d

Xi ≤ b
)

exp
(
−θYT Σ−1Y/2

)
(1−θ)d/2 .

Just as in Section 3, we conclude that

Eθ Z3,2 (b)2 =
(
1−θ

2)−d/2
Qθ

(
Sd > b, max

1≤i≤d
Xi ≤ b

)
.

A key insight behind the efficiency analysis of Z3,2 (b) is
that α2 (b)/α1 (b) goes to zero at least at a polynomial rate
in b, which dominates any function with growth O(log(b)a)
for a > 0 (which, in turn, is the type of behavior that arises
when selecting Eθ(b)Sd = b as suggested in Section 3.

Finally, we turn our attention to Z3,1 (b), which involves
computing α1 (b) = P

(
max1≤ j≤d Yj > log(b)

)
. We shall

use f j (y j) to denote the marginal density of Yj evaluated at

y j ∈R and y− j to denote the vector (y1, ..,y j−1,y j+1, ...,yd).
The expression f

(
y− j
∣∣y j
)

is used to denote the conditional
density of Y− j = (Y1, ..,Yj−1,Yj+1, ...,Yd)T evaluated at y− j
given Yj = y j. The density of the vector Y evaluated at y is
denoted by f (y). Note that for all j we have that f (y) =
f j (y j) f

(
y− j
∣∣y j
)
. We consider as importance sampling

density g(·) defined via

g(y) =
d

∑
j=1

p j (b) f j (y j) f
(

y− j
∣∣y j
) I (y j > log(b))

P(Yj > log(b))
,

where

p j (b) = P(Yj > log(b))/(
d

∑
i=1

P(Yi > log(b))).

We shall use the notation Varg (·) to denote the variance
operator under the probability measure induced by g(·).

In other words, we first select the j-th index with
probability proportional to P(Yj > log(b)). Then, given that
j∗ has been selected we sample Yj∗ given that Yj∗ > log(b).
Finally, we sample the rest of the components under the
nominal distribution given that Yj∗ = y j∗ (i.e. we use the
law f ( ·|y j∗)). The corresponding estimator is

Z3,1 (b) = f (Y)/g(Y)

= ∑
d
i=1 P(Yi > log(b))

∑
d
j=1 I (Yj > log(b))

≤
d

∑
i=1

P(Yi > log(b)) .

This sampler is proposed and studied in Adler, Blanchet,
and Liu 2008. It is shown that if the pairwise correlations
among the Yi’s are strictly less than unity then the coefficient
of variation of the estimator Z3,1 (b) converges to zero as
b↗∞, a property that is even stronger than bounded relative
error.

Combining the discussion indicated in previous para-
graphs about the estimator Z3,1 (b) and Z3,2 (b) we arrive at
the following result, which summarizes the performance of
the estimator Z3 (b) = Z3,1 (b)+Z3,2 (b).

Theorem 3 Suppose that 0 ≤ 1 − θ (b) =
o
(

1/(log(b))2
)

. Then, the unbiased estimator Z3 (b) is
strongly efficient in the sense that

sup
b≥0

Var (Z3 (b))

α (b)2

= sup
b≥0

(
Varg (Z3,1 (b))

α (b)2 +
Varθ(b) (Z3,2 (b))

α (b)2

)
< ∞
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6 NUMERICAL EXPERIMENTS

Table 1: P(S10 > 50)

Method Estimator CV
AK 0.002588204 0.450933837
IS 0.002536418 7.668013424
CM 0.002619456 2.990221532
ISS 0.002574308 6.469782624

Table 2: P(S10 > 75)

Method Estimator CV
AK 0.000250592 0.362576756
IS 0.000233741 12.834976956
CM 0.000239655 4.958485430
ISS 0.000200905 9.356164179

Table 3: P(S10 > 100)

Method Estimator CV
AK 0.000048978 0.263833033
IS 0.000068366 31.283224854
CM 0.000048858 7.368722011
ISS 0.000066627 34.425338337

We implemented the three estimators described above
in three examples corresponding to low, medium and high
correlations. In particular, Example 1 assumes that the
Gaussian factors involved are iid; in Example 2 we use a
common correlation coefficient equal to .4 and Example 3
involves a common correlation coefficient equal to .9. In
the construction of the tables we use the following abbrevi-
ations: IS denotes the importance sampling strategy based
on variance scaling discussed in Section 3, CM corresponds
to the conditional Monte Carlo method discussed in Section
4, ISS relates to the strongly efficient importance sampling
strategy described in Section 5. Finally, CV denotes the
empirical coefficient of variation of the estimator (i.e. the
empirical standard deviation divided by the empirical mean).
In Example 1 we have also implemented the estimator of
Asmussen and Kroese 2006 for comparison, denoted by
AK, which shows excellent performance. We used 1,000
replications for each of the estimators shown in all the
examples.

We note, however, that even in the iid case, the per-
formance of the ISS estimator is a good competitor against
the AK estimator. Overall, not surprisingly given that ISS
has bounded relative error, its performance is the strongest
among the three estimators discussed. The CM estimator
seems to achieve higher variance reduction than IS, however,

Table 4: P(S10 > 12500)

Method Estimator CV
IS 0.000615578 19.997044444
CM 0.000575373 10.528366085
ISS 0.000548409 0.847424920

Table 5: P(S10 > 25000)

Method Estimator CV
IS 0.000213384 22.000276130
CM 0.000257832 12.333104669
ISS 0.000241408 0.936462139

Table 6: P(S10 > 37500)

Method Estimator CV
IS 0.000254008 26.417180649
CM 0.000141805 18.442528446
ISS 0.000148114 1.904853911

the rootfinding procedure involved in the implementation
of CM makes somewhat slower than IS. Still, CM might
be a good alternative in terms of robustness, given that it
always achieves variance reduction (compared to IS which,
in some problem instances and for relatively small values
of the tail parameter, might not achieve variance reduction).

Example 1 In Tables 1–3 we use 10 lognormal r.v.’s
iid with parameters µ = 0 and σ2 = 1.

Example 2 In Tables 4–7 we use 10 lognormal with

µi =−i σ
2
i = i i = 1, . . . ,n (6)

and common correlation ρ = .4.
Example 3 In Tables 8–11 we use 10 lognormal with

µi =−i σ
2
i = i i = 1, . . . ,n (7)

and common correlation ρ = .9.
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Table 7: P(S10 > 50000)

Method Estimator CV
IS 0.000143007 27.407531643
CM 0.000101505 15.435680709
ISS 0.000101904 0.681132772

Table 8: P(S10 > 12500)

Method Estimator CV
IS 0.000777656 18.153949459
CM 0.000611142 11.076718679
ISS 0.000418335 15.884860953

Table 9: P(S10 > 25000)

Method Estimator CV
IS 0.000233472 19.799092654
CM 0.000315217 12.805770365
ISS 0.000168077 7.429588684
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