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ABSTRACT

In this paper, we use exact simulation to price CDO under a
new dynamic model, the Conditional Survival (CS) model,
which provided excellent calibration to both iTraxx tranches
and underlying single name CDS spreads on March 14, 2008,
the day before the collapse of Bear Sterns, when the market
was highly volatile. The distinct features of the CS model
include: (1) it is able to generate clustering of defaults
occurring dynamically in time and strong cross-sectional
correlation, i.e., the simultaneous defaults of many names,
both of which have been evidenced in the current subprime
mortgage crisis; (2) it incorporates idiosyncratic default risk
of single names but does not specify concrete models for
them; (3) it provides automatic calibration to underlying
single name CDS; (4) it allows fast CDO tranche pricing
and calculation of sensitivity of CDO tranches to underlying
single name CDS.

1 INTRODUCTION

1.1 CDO and Current Subprime Mortgage Crisis

Collateralized debt obligation (CDO) is a derivative security
constructed from a portfolio of fixed-income securities or
credit derivatives. The stream of cash flow of a CDO is
determined by the cumulative loss of the reference portfolio.
A CDO is traded in terms of tranches, each of which
corresponds to one specific portion of the portfolio loss.
An investor of a CDO tranche receives periodic coupons and
in return pays the portion of default losses that correspond
to that tranche. For example, an investor of a [3%,6%]
CDO tranche assumes the portfolio default losses that fall
in the range from 3% to 6% of the portfolio notional.

CDO provides a way of creating securities with high
credit quality out of a portfolio of securities with low credit
quality. Senior CDO tranches rarely assume any losses
unless a substantial number of names in the portfolio default.

Therefore, senior tranches are usually safer and have higher
credit ratings than the average names in the portfolio.

CDO has played an important role in the current sub-
prime mortgage crisis started in 2007. In the last few
years, financial institutions pooled and packaged mortgage-
backed securities into CDO and sold them to third-party
investors. This resulted in widespread dispersion of default
risk. The declining of house prices and rising defaults of
mortgage borrowers have caused huge loss to a wide range
of investors, leading to credit crunch and turmoils in the
financial markets.

However, as merely an instrument, CDO should not be
held responsible for the financial crisis. The credit rating
agencies have been blamed for their failure of evaluating
CDO correctly. During the subprime mortgage crisis, senior
tranches of CDO with AAA rating caused huge loss to in-
vestors. The difficulty of CDO pricing lies in the appropriate
modeling of default correlation among the underlying names
in the portfolio. Although the marginal default probability
of single names can usually be implied from single name
CDS spreads, the pricing of CDO requires the knowledge of
the joint distribution of default times of underlying names,
which can not be directly implied from the market.

1.2 Review of Extant CDO Pricing Models

In the rest of the paper, we assume that there are n names
in the reference portfolio underlying the CDO and use τi

to denote the default time of the i-th name, i = 1, . . . ,n.
The two main kinds of approaches in portfolio credit

risk modeling are the bottom-up approach, which builds
models for the correlated default times of single names
in the portfolio; and the top-down approach, which builds
models for the cumulative loss of the whole portfolio without
referring to the underlying single names.

Bottom-up models can be separated into static mod-
els and dynamic models. Static models view the default
times of the underlying names as static random variables
and model their joint distribution directly. The Gaussian
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copula model proposed by Li (2000) used to be the most
popular model in industry (see also Andersen et al. 2003
and Schönbucher 2003). A major problem is that the Gaus-
sian copula model cannot generate tail dependence. More
precisely, if the joint distribution of two default times τ1

and τ2 follows a Gaussian copula, it can be shown that (see
Joe 1997 page 178) limq↓0 P(τ2 < F−1

2 (q)|τ1 < F−1
1 (q)) =

limq↑1 P(τ2 > F−1
2 (q)|τ1 > F−1

1 (q)) = 0, where Fi is the
distribution function of τi, i = 1,2. Therefore, the Gaus-
sian copula model may not work during crisis, in which
there should be strong dependence, but the Gaussian cop-
ula gives no dependence. In addition, Gaussian copula
model cannot calibrate to the market data well. Extensions
to the Gaussian copula model include the double-t copula
(Hull and White 2004) and the random factor loading cop-
ula (Andersen and Sidenius 2004, 2005, Andersen 2006),
among others.

The majority of dynamic bottom-up models are instan-
taneous intensity based models, where the default time of
a single name is modeled as the first jump time of a Cox
process, or doubly-stochastic Poisson process, which is char-
acterized by its instantaneous default intensity. Single-name
instantaneous intensity based credit risk models were intro-
duced by Jarrow and Turnbull (1995), Lando (1994,1998),
Schönbucher (1998) and Duffie and Singleton (1999). In
instantaneous intensity based models, the default time τ of
a single name can be represented as

τ = inf

{

t ≥ 0 :
∫ t

0
λ (s)ds ≥ E

}

,E
d∼ exp(1),

where λ (t) is the instantaneous default intensity of τ and
exp(1) denotes exponential distribution with mean 1. The
first instantaneous intensity based model for CDO pricing
was proposed by Duffie and Gârleanu (2001) and was ex-
tended by Mortensen (2006), in which the correlation of
default times τi are modeled through a factor structure of
the default intensities. More precisely, Mortensen (2006)
postulated that

λi(t) = aiλ m(t)+ λ id
i (t)

τi = inf

{

t ≥ 0 :
∫ t

0
λi(s)ds ≥ Ei

}

, i = 1, . . . ,n, (1)

where λ m(t) is the market factor intensity; λ id
i (t) is the id-

iosyncratic intensity of the i-th name; Ei, i = 1, . . . ,n are i.i.d.
exp(1) random variables. Papageorgiou and Sircar (2007)
used a square-root diffusion process with stochastic volatility
to model the idiosyncratic intensity λ id

i (t).
There are some other dynamic bottom-up models.

Joshi and Stacey (2006) proposed the intensity Gamma

model

τi = inf

{

t ≥ 0 :
∫ t

0
ci(s)dI(s) ≥ Ei

}

, i = 1, . . . ,n,

where I(t) is a multi-Gamma process representing the market
information that drives the default of all names and ci(t) is a
piecewise constant function. Schönbucher (2007) proposed
a time-changed instantaneous intensity model

τi = inf

{

t ≥ 0 :
∫ T (t)

0
λi(s)ds ≥ Ei

}

, i = 1, . . . ,n,

where T(t) is a stochastic time change process that introduces
correlation among default times.

Top-down models are generally dynamic models that
describe directly the dynamics of the cumulative loss process
of the whole portfolio. Top-down models are investigated
in Arnsdorf and Halperin (2007), Cont and Minca (2007),
Errais, Giesecke, and Goldberg (2006),
Giesecke and Kim (2007), Longstaff and Rajan (2007),
among others.

Bottom-up models are consistent with single name de-
fault probabilities but have more difficulty calibrating CDO
tranches. Top-down models can calibrate CDO tranches ex-
cellently but they make little connection to the underlying
single names. In this paper, we propose a new dynamic
model, the Conditional Survival (CS) model, which pro-
vides excellent calibration to both CDO tranches and single
name CDS spreads and enables calculation of sensitivity of
CDO to underlying single name CDS spreads.

The remainder of the paper is organized as follows. The
next section proposes the CS model. Section 3 provides the
exact simulation algorithm for CDO pricing, the sensitivity
analysis, and the algorithm for calibration. Section 4 shows
the numerical results of calibrating the model to the CDS
and iTraxx tranche spreads on March 14, 2008, right before
the collapse of Bear Sterns.

2 THE NEW MODEL: CONDITIONAL SURVIVAL
(CS) MODEL

2.1 Motivation

Schönbucher (2003) mentioned that the range of default
correlation that can be generated by traditional instanta-
neous intensity models as in (1) may be limited, due to the
fact that the default times are indirectly correlated through
a common market factor in the default intensities. He
pointed out that the introduction of joint jumps in the
instantaneous default intensities can enhance the level of
correlation. Mortensen (2006) used mean-reverting affine
jump diffusion processes to model λ m(t) and λ id

i (t) in (1).
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However, a major drawback of model (1) is that it can-
not generate simultaneous default of many names, which
has been seen during the current financial crisis. In (1),
default time τi is defined as the first passage time of the
cumulative default intensity process

∫ t
0 λi(s)ds across a ran-

dom barrier Ei. Although the default intensity λi(t) can
jump, the cumulative default intensity

∫ t
0 λi(s)ds is always

continuous. When a jump in the market intensity λ m(t)
occurs, all default intensities λi(t) jump together, but the
jump effect is smoothed by the integration, i.e.,

∫ t
0 λi(s)ds

does not change at all at the time of jump, but only starts to
increase continuously at a higher rate after the jump occurs.
Hence, jumps in the market intensity λ m(t) can not lead to
simultaneous default of many names.

Table 1 shows the mid-bid-ask tranche spreads of the
iTraxx Europe Series 8 5 Year index on September 20,
2007 and March 14, 2008. The Federal Reserve provided
an emergency loan to near-bankrupt Bear Sterns on March
14 and financed the purchase of Bear Sterns by JPMorgan
Chase two days later. The extremely high spreads of senior
tranches on March 14, which are around 10 times as high as
they were half a year ago, imply that the default correlation
was substantially high during the peak of the crisis. A good
model should be able to generate such strong correlation,
i.e., the concurrent default of many names.

Table 1: iTraxx Europe Series 8 5 Year index mid-bid-ask
tranche spreads on 09/20/07 and 03/14/08, denoted in units
of basis points.

Tranches(%) 0-3 3-6 6-9 9-12 12-22 22-100
09/20/07 1812 84 37 23 15 7
03/14/08 5150 649 401 255 143 70

2.2 Conditional Survival (CS) Model

In order to incorporate simultaneous defaults, we introduce
jumps to the cumulative intensities of default times. More
precisely, we postulate the following Conditional Survival
(CS) model:

Λi(t) =
J

∑
j=1

ai, jM j(t)+ Xi(t),

τi = inf{t ≥ 0 : Λi(t) ≥ Ei}, i = 1, . . . ,n, (2)

where
(1) M j(t) represents the j-th market factor in the cumulative
intensities, which is a nonnegative and increasing stochastic
process with M j(0) = 0, j = 1, . . . ,J. These market factors
may be dependent on each other, but they are all inde-
pendent of Ei and Xi(t), ∀i. Most importantly, M j(t) are
allowed to have jumps, which enables the model to generate
simultaneous default of many names.

(2) ai, j ≥ 0 is the constant loading of the i-th name on the
j-th market factor, i = 1, . . . ,n; j = 1, . . . ,J.
(3) Xi(t) represents the idiosyncratic part of the cumulative
default intensity of the i-th name, which is a nonnegative and
increasing process with Xi(0) = 0, i = 1, . . . ,n. {Xi(t) : i =
1, . . . ,n} are mutually independent, and they are independent
of market factors M j(t), j = 1, . . . ,J.
(4) {Ei : i = 1, . . . ,n} are i.i.d. exp(1) random variables; they
are independentof stochastic processes Xi(t) and M j(t), ∀i, j.

Note that in this model, when a market factor M j(t)
jumps, all cumulative intensities Λi(t), i = 1, . . . ,n jump
together simultaneously, which might lead to the concurrent
crossing of the barriers Ei for many names.

We call this model “conditional survival” because con-
ditional survival probabilities are the building blocks for
CDO pricing in our model, as will be shown in section 3.

2.3 Conditional Survival Probability in the CS model

The conditional survival probability in the CS model is
very simple. Let M(t) , (M1(t), . . . ,MJ(t)) be the vector
of market factor processes. Let

qc
i (t) , P(τi > t|M(t)) and qi(t) , P(τi > t) (3)

be the conditional survival probability and marginal survival
probability of the i-th name, respectively. Then we have
the following lemma:

Lemma 1. For the i-th name in model (2), we have

qc
i (t) = E

[

e−Xi(t)
]

e−∑J
j=1 ai, jM j(t), (4)

qi(t) = E
[

e−Xi(t)
]

E
[

e−∑J
j=1 ai, jM j(t)

]

, (5)

And qc
i (t) can be represented by qi(t) and market factors

as

qc
i (t) = qi(t) ·

e−∑J
j=1 ai, jM j(t)

E
[

e−∑J
j=1 ai, jM j(t)

] . (6)

Proof. By (2), we have

qc
i (t) = E

[

1{Xi(t)+∑J
j=1 ai, jM j(t)<Ei}

∣

∣

∣M(t)
]

= E
[

E
[

1{Xi(t)+∑J
j=1 ai, jM j(t)<Ei}

∣

∣

∣Xi(t),M(t)
]∣

∣

∣M(t)
]

= E
[

e−Xi(t)−∑J
j=1 ai, jM j(t)

∣

∣

∣M(t)
]

= E
[

e−Xi(t)
∣

∣

∣M(t)
]

e−∑J
j=1 ai, jM j(t)

=E
[

e−Xi(t)
]

e−∑J
j=1 ai, jM j(t), (7)
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where the last equality follows from the independence of
Xi(t) and M(t). Then by taking expectation on both sides
of (7), we obtain (5). Dividing equation (4) by (5), we
obtain (6).

Remark 1. Note that marginal survival probability qi(t)
can be implied from the market quotes of single name CDS
spreads by standard bootstrap method. Using marginal sur-
vival probability qi(t) as input to the model allows automatic
calibration to single name CDS.

Remark 2. Equation (6), though simple, has an important
implication that there is no need to specify concrete models
for idiosyncratic cumulative intensities Xi(t). This is a
distinctive feature of the CS model, in which we do not
specify any dynamics for Xi(t), because in the CS model,
the portfolio loss distribution only depends on the market
factor M(t) and marginal survival probability qi(t). The
contribution of idiosyncratic risk Xi(t) to the CDO pricing
has been incorporated in qi(t).

2.4 Constraints on Factor Loading Coefficients in the
CS Model

In the CS model, the idiosyncratic cumulative default inten-
sity Xi(t) is nonnegative and increasing. Therefore, for a se-
quence of coupon payment dates 0 = T0 < T1 < · · ·< Tm = T ,
it must hold that

E
[

e−Xi(Tk)
]

≤ E
[

e−Xi(Tk−1)
]

,1 ≤ k ≤ m. (8)

By equation (5) in Lemma 1, we have E
[

e−Xi(t)
]

=

qi(t)

E

[

e
−∑J

j=1 ai, jMj(t)
] , which in combination with equation (8)

gives the constraints on loading coefficients ai, j:

qi(Tk)

E
[

e−∑J
j=1 ai, jM j(Tk)

] ≤ qi(Tk−1)

E
[

e−∑J
j=1 ai, jM j(Tk−1)

] ,1 ≤ k ≤ m.

(9)

2.5 Specifying Market Factors in the Model

As we will see in section 3, in order to price CDO using
exact simulation, we have two requirements on the dynamics
of market factors: (1) the market factors can be exactly
simulated, (2) the Laplace transform of the market factors
should have closed-form.

We use Pólya process to model the clustering of defaults
that occurs both cross-sectionally and dynamically in time
when the market is in crisis, and use the discrete integral of
CIR process to model the fluctuation in the market during
normal time.

2.5.1 Pólya Process: Modeling Clustering of Defaults

A Pólya process M(t) is a generalized Poisson process.
More precisely, it is a Poisson process with random rate Λ,
where Λ is a Gamma random variable. Suppose the shape
and scale parameters of Λ are α and β respectively, then
the Laplace transform of M(t) is given by

E
[

e−uM(t)
]

=

(

p
1− (1− p)e−u

)α
, p =

1
1 + β t

. (10)

A Pólya process M(t) has a negative binomial distribution
and has stationary but positively correlated increments. In-
deed, it can be shown that cov(M(t),M(t + h)−M(t)) =
htαβ 2 > 0, so the arrival of one event tends to trigger the
arrival of more events, which makes Pólya process suit-
able for the modeling of clustering of defaults occurring
dynamically in time. As we have pointed out, the jumps
in the Pólya process cause jumps in the cumulative intensi-
ties of all names, which produces the cross-sectional strong
correlation.

2.5.2 Discrete Integral of CIR Process

Let λ (t) be a square-root diffusion that has dynamics

dλ (t) = κ(θ −λ (t))dt + σ
√

λ (t)dW (t), (11)

where W (t) is a standard Brownian motion. This pro-
cess was studied in Feller (1951) and was proposed by
Cox, Ingersoll, and Ross (1985) as a short rate model, gen-
erally referred to as the CIR model. The transition law of λ (t)

given λ (s) for s < t is λ (t)|λ (s)
d∼ α(s,t)χ ′2

d (β (s,t)λ (s)),
where χ ′2

v (λ ) denotes the noncentral chi-square distribution
with v degrees of freedom and noncentrality parameter λ ,

α(s,t) = σ 2(1−e−κ(t−s))
4κ , β (s,t) = 4κe−κ(t−s)

σ 2(1−e−κ(t−s))
, and d = 4κθ

σ 2 .

The transition law allows the exact simulation of the CIR
process (see Glasserman 2004).

The discrete integral of CIR process is defined as

M(t) =
h
2

λ (t0)+ h
m−1

∑
i=1

λ (ti)+
h
2

λ (tm), (12)

where m is the number of discretization steps in the time
interval [0,t], h = t/m, ti = it

m . The discrete integral M(t)
defined in (12) is the trapezoidal approximation to the exact
integral

∫ t
0 λ (s)ds. The advantage of using (12) is that

its exact simulation only involves the simulation of a CIR
process, which may be easier and faster than the exact
simulation of

∫ t
0 λ (s)ds (see Broadie and Kaya 2006 for

the exact simulation of
∫ t

0 λ (s)ds).
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The transition law of the CIR process implies that the
conditional Laplace transform of λ (t) is given by

E
[

e−uλ (t)
∣

∣

∣λ (s)
]

= (1 + 2α(s,t)u)−
d
2 e

− α(s,t)β(s,t)u
1+2α(s,t)u λ (s)

.

(13)
Let αi = α(ti,ti+1), βi = β (ti,ti+1), i = 0,1, . . . ,m−1. Then
the Laplace transform of the discrete integral process (12)
is given in the following lemma:

Lemma 2. The Laplace transform of M(t) in (12) is

E
[

e−uM(t)
]

= e f0(u)λ (t0)

(

m−1

∏
i=0

(1−2αi fi+1(u))

)−d/2

,

where d = 4κθ
σ 2 and fm(u), fm−1(u), . . ., f0(u) are defined

by the recursion

fm(u) = −h
2

u; fi−1(u) = −hu +
αi−1βi−1 fi(u)

1−2αi−1 fi(u)
,m ≥ i ≥ 2;

f0(u) = −h
2

u +
α0β0 f1(u)

1−2α0 f1(u)
. (14)

Proof. See Appendix A.

3 CDO PRICING, SENSITIVITY ANALYSIS and
CALIBRATION IN THE CS MODEL

3.1 Notation and Setting of CDO Pricing

Let T be the maturity date of the CDO, and T1,T2, . . . ,Tm = T
be the coupon payment dates. Let [a,b] be the CDO tranche
loss window. Let Ni and Ri be the notional principle and
recovery rate of the i-th name in the portfolio, respectively.
The cumulative loss process of the portfolio is defined as

Lt =
n

∑
i=1

(1−Ri)Ni1{τi≤t},0 ≤ t ≤ T. (15)

The tranche cumulative loss process is defined as

L[a,b]
t = (Lt −a)+− (Lt −b)+,0 ≤ t ≤ T, (16)

which denotes the cumulative loss assumed by the investor
of the CDO tranche up to time t. The outstanding notional

of the tranche at time t is O[a,b]
t = b−a−L[a,b]

t . Let D(0,t)
be the risk free discounter factor from time t to time 0.

If a default happens at time τ , the investor of the tranche

would make a payment equal to L[a,b]
τ −L[a,b]

τ− , where L[a,b]
τ− ,

limt↑τ L[a,b]
t . Therefore, the present value of the default leg of

the CDO tranche can be represented as E[
∫ T

0 D(0,t)dL[a,b]
t ],

under the risk-neutral probability measure.

For simplicity, it is usually assumed in the literature
that defaults only occur in the middle of coupon pay-
ment dates (see e.g. Mortensen 2006, Andersen et al. 2003,
Papageorgiou and Sircar 2007). Under this simplification,
the present value of the default leg is given by

E

[

∫ T

0
D(0,t)dL[a,b]

t

]

= E

[

m

∑
i=1

∫ Ti

Ti−1

D(0,t)dL[a,b]
t

]

=E

[

m

∑
i=1

D(0,
Ti−1 + Ti

2
)(L[a,b]

Ti
−L[a,b]

Ti−1
)

]

(17)

Let S[a,b] be the CDO tranche spread. The coupon
payment at time Ti, i = 1, . . . ,m is specified as

S[a,b](Ti −Ti−1)

∫ Ti

Ti−1

O[a,b]
t

Ti −Ti−1
dt = S[a,b]

∫ Ti

Ti−1

O[a,b]
t dt.

Assuming defaults only occur in the middle of premium
periods, the present value of the premium leg is given by

E

[

m

∑
i=1

D(0,Ti)S
[a,b]

∫ Ti

Ti−1

O[a,b]
t dt

]

=E

[

m

∑
i=1

D(0,Ti)S
[a,b](Ti −Ti−1)

1
2
(O[a,b]

Ti−1
+ O[a,b]

Ti
)

]

=S[a,b]E





m

∑
i=1

D(0,Ti)(Ti −Ti−1)



b−a−
L[a,b]

Ti
+ L[a,b]

Ti−1

2









(18)

Then the fair spread for the CDO tranche is

S[a,b] =
E
[

∑m
i=1 D(0,

Ti−1+Ti
2 )(L[a,b]

Ti
−L[a,b]

Ti−1
)
]

E

[

∑m
i=1 D(0,Ti)(Ti −Ti−1)

(

b−a−
L

[a,b]
Ti

+L
[a,b]
Ti−1

2

)] .

(19)
The cash flow specification for the equity tranche is different
from the other tranches. The seller of the equity tranche
pays an upfront fee at time 0 to the investor and pays
coupons at a fixed running spread of 500 basis points. The
equity tranche spread is defined as the ratio of the upfront
fee to the notional of equity tranche, which is given by

S[0,b] =
1
b

{

E

[

m

∑
i=1

D(0,
Ti−1 + Ti

2
)(L[0,b]

Ti
−L[0,b]

Ti−1
)

]

−0.05E





m

∑
i=1

D(0,Ti)(Ti −Ti−1)



b−
L[0,b]

Ti
+ L[0,b]

Ti−1

2















.

(20)
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3.2 Pricing CDO in the CS Model by Exact Simulation

It is clear from equations (19) and (20) that the CDO tranche
spreads are determined by the marginal distribution of the
cumulative loss process Lt at coupon payment dates Tk.
Hence, to price CDO, we only need to simulate LTk exactly.

The key observation is that conditional on M(t), the
random variables 1{τi≤t}, i = 1, . . . ,n are conditionally inde-
pendent, and 1{τi≤t} has a Bernoulli(1−qc

i (t)) distribution,
i = 1, . . . ,n. Therefore, by equation (15), conditional on the
market factor M(t), the cumulative loss Lt is equal to the
weighted sum of n independent Bernoulli random variables,
which can be easily simulated.

More precisely, suppose M(t) can be easily simulated

and E
[

e−∑J
j=1 ai, jM j(t)

]

can be calculated in closed form,

then we have the following algorithm to simulate the
cumulative loss LTk , k = 1, . . . ,m:

Step 1: Generate sample path of market factors M(Tk),
k = 1, . . . ,m.
Step 2: For each i = 1, . . . ,n, calculate the conditional
survival probability qc

i (Tk), k = 1, . . . ,m, according to (6),
using the samples of market factors generated in Step 1.
Step 3: Generate independent Bernoulli random variables

Ii,k
d∼ Bernoulli(1−qc

i (Tk)), i = 1, . . . ,n;k = 1, . . . ,m.
Step 4: Calculate LTk = ∑n

i=1(1−Ri)NiIi,k, k = 1, . . . ,m.

Using simulated samples of LTk , we can estimate the
CDO tranche spreads S[a,b] given in equations (19) and (20).

By equation (15), the expectation of the cumulative
loss Lt is given by E[Lt ] = ∑n

i=1(1−Ri)Ni[1−qi(t)]. So LTk

can be used as the control variates for variance reduction.

3.3 Sensitivity Analysis in the CS Model

Since the present value of the default leg and the premium leg

of the CDO tranches are both determined by E[L[a,b]
t ](cf.

(17) and (18)), calculating CDO sensitivities amounts to

calculating sensitivities of E[L[a,b]
t ]. One of the major ad-

vantages of the CS model is that the sensitivities of CDO to
single name CDS can be obtained concurrently with CDO
pricing. More precisely, we have the following lemma:

Lemma 3. The sensitivities of E[(Lt −a)+] to the survival
probability of the i-th name is

∂E[(Lt −a)+]

∂qi(t)
=

E

{

qc
i (t)

qi(t)
[(L(−i)

t −a)+− (L(−i)
t +(1−Ri)Ni −a)+]

}

,

(21)

where L(−i)
t , ∑ j 6=i(1−R j)N j1{τ j≤t} represents the cumu-

lative loss of the portfolio excluding the i-th name.

Proof. See Appendix B.

Remark 3. By (6), we have
qc

i (t)
qi(t)

= e
−∑J

j=1 ai, jMj (t)

E

[

e
−∑J

j=1 ai, jMj (t)
] . In

addition, L(−i)
Tk

= ∑ j 6=i(1−R j)N jI j,k, where {I j,k} are the
Bernoulli random variables generated in the pricing al-
gorithm in Section 3.2. Hence, the sensitivities can be
calculated at the same time as the CDO is priced with
little extra computational cost. This is one of the major
advantages of the CS model.

3.4 Calibrate the Model to Market CDS and CDO
Spreads

As we mentioned in section 2.3, we use qi(t) implied from
market CDS spreads as input to our model, so the CS model
provides automatic calibration to the CDS market data.

To calibrate to market CDO tranche spreads, we need
to determine two sets of parameters: (1) the parameters that
specify the dynamics of M(t), which we denote by Θ; (2)
the factor loading coefficients (ai,1, . . . ,ai,J) for each name
i, i = 1, . . . ,n.

3.4.1 Determine Factor Loading Coefficients by
Regression

Suppose the parameters Θ for market factors have been fixed.
By equation (2), the factor loading coefficients (ai,1, . . . ,ai,J)
can be viewed as the regression coefficients of Λi(t) on the
regressors (M1(t), . . . ,MJ(t)), with Xi(t) being the regression
error term. When the regression error term Xi(t) is small,

E
[

e−Xi(t)
]

is close to 1. Therefore, the regression error can

be measured by
∣

∣

∣
1−E

[

e−Xi(t)
]∣

∣

∣
. Expecting that good mar-

ket factors are able to explain substantial part of the default
risk, we determine (ai,1, . . . ,ai,J) by minimizing the regres-

sion error
∣

∣

∣1−E
[

e−Xi(t)
]∣

∣

∣. By equation (5) and the fact that

E
[

e−Xi(t)
]

≤ 1 since Xi(t)≥ 0, minimizing
∣

∣

∣1−E
[

e−Xi(t)
]∣

∣

∣

is equivalent to minimizing E
[

e−∑J
j=1 ai, jM j(t)

]

−qi(t). Re-

calling the loading coefficients must satisfy the constraints in
(9), (ai,1, . . . ,ai,J) can be obtained by solving the following
optimization problem:

min E
[

e−∑J
j=1 ai, jM j(T )

]

−qi(T )

s.t.
qi(Tk)

E
[

e−∑J
j=1 ai, jM j(Tk)

] ≤ qi(Tk−1)

E
[

e−∑J
j=1 ai, jM j(Tk−1)

] ,1 ≤ k ≤ m

0 ≤ ai, j, j = 1, . . . ,J (22)
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3.4.2 Objective Function in Calibration

Let so,b
k and so,a

k be the bid and ask of the k-th CDO
tranche spread observed in the market, respectively, k =
1, . . . ,K, where K is the number of CDO tranches. Let
so

k = (so,a
k + so,b

k )/2 be the mid-bid-ask tranche spread. Let
sk be the tranche spread computed by the CS model. The
chi-square of model fitting is given by

CHISQ =
K

∑
k=1

(sk − so
k)

2

sk
. (23)

The root-mean-square error of model fitting is given by

RMSE =

√

√

√

√

1
K

K

∑
k=1

(

sk − so
k

so,a
k − so,b

k

)2

. (24)

We use the chi-square as the objective function in the
calibration, i.e, we search for the market factor parameters
Θ which minimize the chi-square. As a reference, we also
report the root-mean-square error.

3.4.3 The Calibration Algorithm

The calibration algorithm for market factor parameters Θ
is as follows:

Step 1: We start from an initial guess of the market factor
parameters Θ.
Step 2: Given the market factor parameters Θ, for each
i = 1,2, . . . ,n, we determine the factor loading coefficients
(ai,1, . . . ,ai,J) by solving the problem formulated in (22).
Step 3: Calculate CDO tranche spread sk,k = 1, . . . ,K by
the CS model using the market factor parameters Θ and the
factor loading coefficients obtained in the previous step.
Step 4: Calculate the chi-square that corresponds to the
current market factor parameters Θ.
Step 5: If the chi-square is small enough, stop; otherwise,
update the market factor parameters Θ using certain uncon-
strained optimization algorithm (e.g., Powell’s direction-set
method, see Press et al. 2002), and go to Step 2.

Remark 4. In step 2, we need to solve n optimization prob-
lems (22) to find the loading coefficients for all n names. The
dimension of problem (22) is equal to the number of market
factors, which is typically not grater than 3. The objective
function and the constraints all have closed-form deriva-
tives, and the objective function is monotonic. Therefore,
problem (22) can be solved quickly by common methods
such as sequential quadratic programming. We used the
CFSQP package developed by Lawrence et al. (1997).

Table 2: The second and the fourth rows showed the iTraxx
Europe Series 8 5 Year Index mid-bid-ask tranche spreads
and the bid-ask spreads observed in the market on 03/14/08,
respectively. The third and the fifth rows showed the tranche
spreads calculated from the CS model and their standard
error in the Monte Carlo simulation, respectively. We used
50,000 replications in the Monte Carlo simulation without
using variance reduction. All the spreads are denoted in
units of basis points. The chi-square of the fitting is 6.7.
The root-mean-square error is 1.01.

Tranches(%) 0-3 3-6 6-9 9-12 12-22 22-100
Market 5150 649 401 255 143 70
Model 5231 665 374 250 165 67
B-A spread 158 24 25 20 12 3
MC error 15 5 4 3 3 1

4 NUMERICAL RESULTS OF CALIBRATION

In this section, we show the numerical result of calibrating
the CS model to the CDS and iTraxx Europe Series 8 5
Year index data on March 14, 2008.

4.1 Description of the Data

The iTraxx Europe Series 8 5 Year index is composed of the
most liquid 124 CDS referencing European investment grade
companies. Each company has a notional of 8/3 million,
except UniCredit SpA which has a notional of 16/3 million.
The index has 6 trances, which correspond to the 0%-3%,
3%-6%, 6%-9%, 9%-12%, 12%-22% and 22% to 100% of
the portfolio notional, respectively. The 0%-3% is quoted in
terms of percentage upfront fee, and the other tranches are
quoted in terms of running spread. The index was launched
on September 20, 2007 and matures in 5 years. It pays
quarterly coupons. The first coupon date after March 14,
2008 is June 20, 2008. The last coupon date is December
20, 2012. The market quotes of the mid-bid-ask tranche
spreads and the bid-ask spreads are showed in the second
and fourth rows of Table 2, respectively.

The discount factors D(0,t) in the pricing equation (19)
are extracted from the Euro fixing swap curve on March
14, 2008. We use linear extrapolation to obtain the zero
curve.

We use fixed recovery rate Ri = 40%, i = 1, . . . ,n in
the calibration.

We use the 5 year CDS spread on March 14, 2008
to extract the marginal survival probabilities qi(t) for each
name i, assuming that the hazard rate function is flat during
the 5 year period.

All the market data were obtained from Bloomberg
business electronic resources.
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4.2 Parameters to be Calibrated

We use three independent market factors in the calibra-
tion: one Pólya process and two discrete integral of CIR
processes defined in (12). For a CIR process λ (t) with pa-
rameters (κ ,θ ,σ ,λ (0)) which has dynamics given in (11),
its multiple cλ (t) is still a CIR process with parameters
(κ ,cθ ,

√
cσ ,cλ (0)). Therefore, one can always scale the

CIR process by a factor c > 0 to make θ equal to a constant
and divide the corresponding loading coefficients ai, j by c
at the same time. This way model (2) does not change. In
other words, only three free parameters need to be deter-
mined for the CIR process. We choose to fix θ = 0.1 and
estimate (κ ,σ ,λ (0)). To summarize, there are 8 parameters
Θ = (α,β ,κ1,σ1,λ1(0),κ2,σ2,λ2(0)) in total, where α and
β are parameters for the Pólya process and κi,σi,λi(0) are
parameters for the i-th CIR process, i = 1,2. For the discrete
integral of CIR processes, we used 10 discretization steps
for the first premium period (from 03/14/08 to 06/20/08)
and 8 steps for each of the remaining premium periods.

4.3 Calibration Results

The iTraxx tranche spreads calculated from the CS model
and their standard error in the Monte Carlo simulation are
showed in the third and fifth rows of Table 2, respectively.
The chi-square of the fitting is 6.7, corresponding to a p-
value 0.24. The root-mean-square error is 1.01. It is clear
that the CS model provided excellent fitting to all the tranche
spreads.

The calibrated parameters are α = 2.64515812, β =
0.00583919, κ1 = 0.12792013, σ1 = 1.34700857, λ1(0) =
1.14110000, κ2 = 0.00100369, σ2 = 7.40483282, and
λ2(0) = 0.10650913.

Figure 1 shows the implied copula correlation of the
market quotes on March 14, 2008 and the model generated
tranche spreads. The skew of the implied copula correlation,
which was dramatic during the financial crisis, is excellently
reproduced by the CS model.
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A PROOF OF LEMMA 2

Proof. Let Ft , σ(λ (s),s ≤ t) and fk(u) be defined in
(14), k = m, . . . ,0. Then

E
[

e−uM(t)
]

= E
[

e−u( h
2 λ (t0)+h∑m−1

i=1 λ (ti)+
h
2 λ (tm))

]

=E
[

e−u( h
2 λ (t0)+h∑m−1

i=1 λ (ti))+ fm(u)λ (tm)
]
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Figure 1: The implied copula correlation of the market data
on 03/14/08 and the model generated spreads.

=E
[

e−u( h
2 λ (t0)+h∑m−1

i=1 λ (ti)) E
[

e fm(u)λ (tm)
∣

∣

∣Ftm−1

]]

=E
[

e−u( h
2 λ (t0)+h∑m−1

i=1 λ (ti)) E
[

e fm(u)λ (tm)
∣

∣

∣λ (tm−1)
]]

=E






e−u( h

2 λ (t0)+h∑m−1
i=1 λ (ti)) e

αm−1βm−1 fm(u)

1−2αm−1 fm(u)
λ (tm−1)

(1−2αm−1 fm(u))
d
2






(by (13))

=(1−2αm−1 fm(u))−
d
2 E
[

e−u( h
2 λ (t0)+h∑m−2

i=1 λ (ti))+ fm−1(u)λ (tm−1)
]

.

Repeating the above argument by successively conditioning

on Ftm−2 , Ftm−3 , ..., and Ft1 , we obtain E
[

e−uM(t)
]

=

e f0(u)λ (t0)
(

∏m−1
i=0 (1−2αi fi+1(u))

)−d/2
.

B PROOF OF LEMMA 3

Proof. Let ci , (1−Ri)Ni. Noting that conditional on
M(t), the n default indicators 1{τi≤t}, i = 1, . . . ,n are con-
ditionally independent, we have

E[(Lt −a)+|M(t)] = E[(L(−i)
t + ci1{τi≤t}−a)+|M(t)]

=E[E[(L(−i)
t + ci1{τi≤t}−a)+|M(t),L(−i)

t ]|M(t)]

=E[(L(−i)
t + ci−a)+(1−qc

i (t))+ (L(−i)
t −a)+qc

i (t)|M(t)]

=E[(L(−i)
t + ci−a)+|M(t)]

+ E{qc
i (t)[(L

(−i)
t −a)+− (L(−i)

t + ci−a)+]|M(t)}.

Therefore,

E[(Lt −a)+] = E[(L(−i)
t + ci −a)+]+

qi(t)E

{

qc
i (t)

qi(t)
[(L(−i)

t −a)+− (L(−i)
t + ci −a)+]

}

. (25)

585



Peng and Kou

By (6),
qc

i (t)
qi(t)

does not depend on qi(t), so (21) is obtained

through differentiating the above equation by qi(t).
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