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ABSTRACT

We consider the problem of simulating X conditional on
the value of X +Y , when X and Y are independent positive
random variables. We propose approximate methods for
sampling (X |X +Y ) by approximating the fraction (X/z|X +
Y = z) with a beta random variable. We discuss applications
to Lévy processes and infinitely divisible distributions, and
we report numerical tests for Poisson processes, tempered
stable processes, and the Heston stochastic volatility model.

1 INTRODUCTION

In its simplest form, the problem we consider reduces to
sampling from (X |X +Y ), the conditional distribution of X
given X +Y , for independent, positive random variables X
and Y . This becomes practically interesting if we have an
efficient simulation method for X +Y , but not for X or Y .

This problem arises naturally in, for example, the sim-
ulation of financial models driven by Lévy processes. (See
Cont and Tankov 2004 for background on such models.)
A Lévy process Xt has X0 = 0 and stationary, independent
increments: the increment Xt −Xs, t > s, is independent of
Xs, and its distribution depends on t and s only through their
difference, t− s. To simulate a Lévy process at a fixed set
of times, Xt1 ,Xt2 , . . . ,Xtm , one might simulate the increments

Xt1 , Xt2 −Xt1 , . . . , Xtm −Xtm−1 ,

and then take their cumulative sums. Alternatively, one
might start by simulating Xtm and then recursively fill in
intermediate values by sampling from

(Xt1 |Xtm), (Xt2 |Xt1 ,Xtm), . . . , (Xtm−1 |Xtm−2 ,Xtm); (1)

indeed, the intermediate values could be generated in any
order, recursively bisecting the time interval, for example.

Conditioning a Lévy process on its endpoints produces
a Lévy bridge, generalizing the notion of a Brownian bridge.

Generating a value from a Lévy bridge fits in the framework
we consider. For example, writing X = Xt1 and Y = Xtm −Xt1
puts the problem of simulating (Xt1 |Xtm) in the form of
sampling from (X |X +Y ), with X and Y independent. The
same applies to simulating (Xt |Xs,Xu), s < t < u, if we write
this as

Xs +(Xt −Xs|(Xt −Xs)+(Xu−Xt)),

and use the fact that the increments are stationary and
independent. We focus on the case of positive X and Y ; in
the Lévy context, this corresponds to a process with positive
increments, called a subordinator.

There are several reasons one might use bridge sampling
to simulate a Lévy process. One might start by simulating
a rough approximation to the path by taking large time
steps and then generate additional intermediate values where
needed — for example, where the process is close to a
barrier in pricing a barrier option. Bridge sampling is also
useful in implementing quasi-Monte Carlo methods; this is
a familiar technique in the Brownian setting and has been
applied to the gamma process in Avramidis, L’Ecuyer, and
Tremblay (2003). Bridge sampling is also potentially useful
if, as often happens, the increment distributions are known
only through their characteristic functions. In this case, one
might use numerical transform inversion to simulate Xtm and
then use potentially faster methods to generate Xt1 , . . . ,Xtm−1

conditional on Xtm .
A second application of the general problem we consider

arises in simulating the Heston (1993) stochastic volatility
model. Building on work of Broadie and Kaya (2006),
we show in Glasserman and Kim (2008) that the Heston
model can be simulated exactly by sampling from certain
infinitely divisible distributions. Recall that a distribution
with characteristic function φ is infinitely divisible if φ δ

is the characteristic function of a probability distribution
for all rational 0 < δ < 1. In our application to the Heston
model, this extends to all real δ , and we need to sample
from the distribution associated with φ δ for any value of
δ — the relevant value changes as the simulation evolves.
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However, these characteristic functions do not admit closed-
form inverses and carrying out numerical inversion for each δ

is potentially time-consuming. Instead, we can numerically
invert φ and tabulate the distribution; sampling from φ δ

then reduces to bridge sampling: let X have characteristic
function φ δ , let Y have characteristic function φ 1−δ , with X
and Y independent; then X +Y has characteristic function
φ , so we can generate X +Y from the tabulated values of
φ and then try to generate (X |X +Y ) to sample from φ δ .
We return to this application in Section 4.

The starting point for the approximations we consider is
a standard property of gamma random variables. Let X and
Y be independent with gamma distributions X ∼ Γ(α,θ)
and Y ∼ Γ(β ,θ), meaning that they have shape parameters
α and β and a common scale parameter θ . Then

X
X +Y

has a beta distribution with parameters α and β and is
independent of X +Y . Thus, in this setting, our generic
problem is solved by sampling U from the indicated beta
distribution and then setting

(X |X +Y = z) = zU. (2)

This idea is used for the simulation of a gamma bridge with
an application in Avramidis et al. (2003).

However, a characterization result of Lukacs (1955)
implies that gamma random variables provide the only setting
in which such a procedure is exact: Lucacks shows that for
two non-degenerate, independent positive random variables
X and Y , the associated random variables Z = X +Y and
V =Y/X are independent if and only if X and Y have gamma
distributions with the same scale parameter, in which case
1/(1+V ) has a beta distribution.

Nevertheless, for any positive X and Y , the ratio X/(X +
Y ) takes values in [0,1] and, as is often noted (e.g., in
Springer 1979) beta distributions provide a flexible family
to approximate general distributions on the unit interval.
We therefore investigate the use of beta random variables to
approximate (X/z|X +Y = z). For gamma random variables,
the distribution of this ratio is independent of z; but since this
property is limited to the gamma case, we allow our choice
of beta parameters to depend on z in testing approximations.

The rest of this article is organized as follows. In
Section 2, we give two results that provide some insight
into the effectiveness of beta approximations. Section 3
deals with the question of choosing the parameters of the
beta distribution used in the approximation. Section 4
reports numerical results for several examples, including
the application to the Heston model. Section 5 concludes
the paper.

2 ERROR ANALYSIS

In this section, we focus on the simplest case in which U in
(2) has a beta distribution that does not depend on z. Thus,
we generate X +Y and then generate U independently and
make the approximation

X ≈U · (X +Y ) (3)

to generate X . We stress that this involves two approxima-
tions: approximating the distribution of X/(X +Y ) with a
beta distribution and treating this ratio as though it were
independent of X +Y .

Our first result indicates that, as one would expect, if
the positive independent random variables X and Y are close
to gamma random variables with the same scale parameter,
then (3) is close to exact. We make the notion of “close”
precise through the ratio of densities.

Proposition 2.1 Suppose that X and Y have den-
sities fX and fY and let

hX = fX/gX , hY = fY /gY ,

where gX and gY are the densities of the gamma distributions
Γ(α,1) and Γ(β ,1), for some α and β . Let U have a beta
distribution with parameters α and β . Then, at any point
x, the ratio of the density of (X |X +Y = z) to the density
of zU is, with u0 = x/z, given by

R(u0,z) =
hX (u0z)hY ((1−u0)z)

E[hX (Uz)hY ((1−U)z)]
.

Proof The density of (X |X +Y = z) at a point x is

fX (x) fY (z− x)
fX+Y (z)

.

Recall that the probability density function (PDF) of Γ(k,1)
is xk−1e−x/Γ(k). So,

fX+Y (z)

=
∫ z

0
fX (x) fY (z− x)dx

=
∫ z

0
gX (x)gY (z− x)hX (x)hY (z− x)dx

=
e−zzα+β−1

Γ(α)Γ(β )

∫ 1

0
uα−1(1−u)β−1hX (uz)hY ((1−u)z)du

= gX+Y (z)
Γ(α +β )
Γ(α)Γ(β )

×
∫ 1

0
uα−1(1−u)β−1hX (uz)hY ((1−u)z)du
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and thus, with u0 = x/z,

fX (x) fY (z− x)
fX+Y (z)

=
e−z

Γ(α)Γ(β )
xα−1(z− x)β−1hX (x)hY (z− x)

÷
{

gX+Y (z)
Γ(α +β )
Γ(α)Γ(β )

×
∫ 1

0
uα−1(1−u)β−1hX (uz)hY ((1−u)z)du

}
= e−zzα+β−2uα−1

0 (1−u0)β−1hX (u0z)hY ((1−u0)z)

÷
{

e−zzα+β−1

×
∫ 1

0
uα−1(1−u)β−1hX (uz)hY ((1−u)z)du

}
=

uα−1
0 (1−u0)β−1hX (u0z)hY ((1−u0)z)

z
∫ 1

0 uα−1(1−u)β−1hX (uz)hY ((1−u)z)du
.

We compare this with the density of zU , which is given
by fU (u0)/z, where U ∼ Beta(α,β ), i.e.,

uα−1
0 (1−u0)β−1

z
∫ 1

0 uα−1(1−u)β−1du
=

Γ(α +β )
Γ(α)Γ(β )

·
uα−1

0 (1−u0)β−1

z
.

The ratio R(u0,z) is thus given by

R(u0,z)

=
uα−1

0 (1−u0)β−1hX (u0z)hY ((1−u0)z)

z
∫ 1

0 uα−1(1−u)β−1hX (uz)hY ((1−u)z)du

×Γ(α)Γ(β )
Γ(α +β )

· z

uα−1
0 (1−u0)β−1

=
hX (u0z)hY ((1−u0)z)∫ 1

0 uα−1(1−u)β−1hX (uz)hY ((1−u)z)du

Γ(α)Γ(β )
Γ(α +β )

=
hX (u0z)hY ((1−u0)z)

E[hX (Uz)hY ((1−U)z)]
.

If hX and hY are close to 1, then R(u0,z) is close to 1. Also,

∫ 1

0
fU (u0)R(u0,z)du0 = 1,

and this leads to the conclusion that for each z, R(u0,z) = 1
for some u0, i.e., the beta approximation is exact for some
x, for every z.

Consider the application of the beta approximation
to the problem of simulating a positive Lévy process (a
subordinator), as discussed in the introduction. We may
generate Xt0 (perhaps through numerical transform inversion)
and then approximate Xs for some s < t0 by setting Xs =UXt0 ,

with U having a beta distribution. Without loss of generality,
we may take t0 = 1. In the following result, we investigate
how the beta approximation UX1 to Xs works as s approaches
1. For reasons that will be illustrated in Section 3, we set
E(U |X1) = sX1. Denote the CDF (PDF) of Xs by Fs ( fs).
Let G denote the CDF of UX1.

Proposition 2.2 Suppose there exist x0 > 0 and ε >
0 such that

c(x0,ε)≡ sup
s∈(1−ε,1]

sup
x≥x0

fs(x) < ∞.

Then, for some x′ ≥ x0, we have

sup
x≥x′

|G(x)−Fs(x)|= O
(√

1− s
)

.

Proof The Lévy metric ρ(F,G) for two CDFs,

ρ(F,G)
= inf{ε : F(x− ε)− ε ≤ G(x)≤ F(x+ ε)+ ε, ∀x},

and the Ky Fan metric for random variables X and Y ,

α(X ,Y ) = inf{ε ≥ 0 : P(|X −Y |> ε)≤ ε},

satisfy the following properties: if α(X ,Y ) = a, then

ρ(F,G)≤ a,
a2

1+a
≤ E

(
|X −Y |

1+ |X −Y |

)
≤ E|X −Y |.

See, for example, p.91 of Durrett (1996).
For X = Xs, Y = UX1 and F , G their CDFs, we get

a2

1+a
≤ E|Xs−UX1| ≤ E|Xs−X1|+E|(1−U)X1|

= EX1−s +E(1− s)X1 = 2(1− s)µ.

This leads to

ρ(Xs,UX1) ≤ α(Xs,UX1)

≤ µ(1− s)+
√

µ2(1− s)2 +2µ(1− s)

≤ 2µ(1− s)+
√

2µ(1− s).

If ρ(Xs,UX1) = ρ , then

Fs(x−ρ)−ρ−Fs(x)≤G(x)−Fs(x)≤Fs(x+ρ)+ρ−Fs(x).

By the Mean Value Theorem, the right side becomes fs(x+
h)ρ +ρ and the left side−ρ fs(x−h′)−ρ , for some positive
real numbers h, h′ ∈ (0,ρ). This holds for x ≥ x′ = x0 +
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2µε +
√

2µε with µ = EX1 because, for s ∈ (1− ε,1],

x−ρ ≥ x0 +2µε +
√

2µε −2µ(1− s)−
√

2µ(1− s)
≥ x0 > 0.

Therefore, we have

|G(x)−Fs(x)| ≤ max
(

fs(x+h)+1, fs(x−h′)+1
)

ρ

≤

(
sup

y≥x−ρ

fs(y)+1

)
ρ ≤ (c(x0,ε)+1)ρ

and thus, for an interval (x′,∞) bounded away from zero,
|G(·)− Fs(·)| converges uniformly to zero at a rate of
O(
√

1− s).

If the densities fs are uniformly bounded, one may take
x′ arbitrarily close to zero. The bound in this proposition is
conservative in the sense that U can be any random variable
in [0,1] with one constraint E(U |X1) = sX1.

3 CHOICE OF PARAMETERS

The main question we face in implementing a beta approxi-
mation is choosing the parameters α , β of U . In this section,
we investigate this question by looking at Weibull distri-
butions. We choose this distribution as our first example
because its density resembles that of a gamma distribution,
but has qualitatively different behavior.

The Weibull density with parameters k and λ is

f (x;k,λ ) =
k
λ

( x
λ

)k−1
e−(x/λ )k

.

For independent X ∼ Weibull(k1,λ1) and Y ∼
Weibull(k2,λ2), we want to approximate(

X
z
|X +Y = z

)
∼ fX (zu) fY (z(1−u))

fX+Y (z)
· z (4)

by a beta random variable U ∼ Beta(α,β ), and then use
(3). The right side of (4) can be written as

C(z)uk1−1(1−u)k2−1e−(zu/λ1)k1−(z(1−u)/λ2)k2

for some function of z, C(z). This suggests that we might
choose α = k1 and β = k2 regardless of z. Figure 1 shows
the conditional densities for different z values and the PDF
of Beta(k1,k2). Clearly, the beta density gets closer to the
conditional density as z decreases, but the difference becomes
large as z increases. This leads to a poor approximation to
the distribution of X , as shown in Figure 4.

Alternatively, we can choose α , β such that U ·(X +Y )
matches the first two moments of X , with U independent
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beta(k1,k2)
z=0.5
z=2
z=5

Figure 1: Beta approximation to (X/z|X +Y = z) with k1 =
2, λ1 = 2, k2 = 4, and λ2 = 3

of X and Y . A simple calculation yields

EU =
EX

EX +EY
,

Var(U) =
Var(X)−Var(X +Y )× (EU)2

E((X +Y )2)
.

For the Weibull distribution, we have EX = λ1Γ(1+1/k1),
Var(X) = λ 2

1 Γ(1+2/k1)− (EX)2. From

EU =
α

α +β
, Var(U) =

αβ

(α +β )2(α +β +1)
,

we choose α , β and the results are shown in Figure 2. As
we fix α , β , the conditional PDFs are quite different from
the beta density for selected z values.
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Figure 2: Beta approximation to (X/z|X +Y = z) with two-
moment matching

This observation leads us to consider the third and
last approach, namely, matching the conditional mean and
variance of (X/z|X +Y = z), dropping the assumption that
U is independent of X +Y . In our example, this requires
numerical computation of

E
(

X
z
|X +Y = z

)
, Var

(
X
z
|X +Y = z

)
;
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we choose parameters α = α(z), β = β (z) as functions of
z such that U ∼ Beta(α,β ) matches these conditional mo-
ments. Results are shown in Figure 3. The solid lines are the
true conditional densities for different z values and the dot-
ted lines are the beta densities with corresponding moments.
This choice of parameters gives a better approximation to
the CDF of X , as shown in Figure 4.
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0

0.5

1

1.5

2

2.5

3

3.5

z = 0.5

z = 2

z = 5

Figure 3: Beta approximation to (X/z|X +Y = z), condi-
tional moment matching
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Figure 4: Beta approximation X ≈U · (X +Y ) for Weibull
distributions

These experiments suggest that we choose α and
β by matching the first two conditional moments of
(X/(X +Y )|X +Y ). The availability of an explicit expres-
sion for α , β is case-dependent, but for a subordinator Xt ,
we can say a little more about those parameters, as in the
next lemma.

Lemma 3.1 When we apply the beta approximation
to Xs for s ∈ (0, t) given Xt by conditional two-moment
matching, the parameters α(z) and β (z) satisfy

α

α +β
=

s
t
,

1
α +β +1

=
[ s

t

(
1− s

t

)]−1
Var

(
Xs

z
|Xt = z

)
. (5)

These parameters result in unconditional two-moment
matching: EXs = E(UXt) and Var(Xs) = Var(UXt).

Proof Suppose s = mt/n, for some positive integers
m < n. Then,

Y 1 +Y 2 + · · ·+Y n ∼ Xt , Y i ∼ Xt/n.

Conditional on Xt , the Y i remain identically distributed and
we get E(∑m

i=1 Y i|Xt) = mXt/n. For any real s, we can
find a sequence of rational numbers {qk}k≥1 converging to
s/t. Because Lévy processes are stochastically continuous,
|Xs−Xqkt | → 0 in probability, so E(Xqkt |Xt) = qkXt implies
E(Xs|Xt) = sXt/t. For the conditional variance matching
Var(Xs/Xt |Xt) = Var(U |Xt), we note that

Var(U |Xt) =
αβ

(α +β )2(α +β +1)
=

s
t

(
1− s

t

) 1
α +β +1

from which (5) is immediate. To see the last statement,

E(UXt) = E(E(U |Xt)Xt) = E(E(Xs/Xt |Xt)Xt) = EXs.

Also, from the conditional variance formula, we have

Var(UXt)
= Var(E(U |Xt)Xt)+E(Var(U |Xt)X2

t )
= Var(E(Xs/Xt |Xt)Xt)+E(Var(Xs/Xt |Xt)X2

t )
= Var(Xs).

We cannot expect to have a closed-form expression for
the conditional variance of (Xs/Xt |Xt) in general. When
it is unknown, we approximate the right side of (5) with
some g(s, t,z) and choose α(z), β (z) accordingly. When we
want to match the unconditional variance, the conditional
variance formula gives us

Var(E(U |Xt)Xt)+E(Var(U |Xt)X2
t ) = Var(Xs).

Since Var(Xs) = sVar(Xt)/t, we get

E(Var(U |Xt)X2
t ) =

s
t

(
1− s

t

)
E
(

X2
t

α +β +1

)
=

s
t

(
1− s

t

)
Var(Xt).

This leads to E(g(s, t,Xt)X2
t ) = Var(Xt) and this equation

could be viewed as the minimal requirement for any choice
of a functional form for g(s, t,z) as an approximation to the
true function. If we take g(s, t,z) to be independent of z,
then the resulting beta approximation becomes that of the
second approach in the Weibull case. More specifically,

g(s, t) =
Var(Xt)

EX2
t

=
Var(Xt)

Var(Xt)+(EXt)2 =
σ2

σ2 + tµ2
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where σ2 = Var(X1) and µ = EX1. This, in turn, yields

α = s
µ2

σ2 , β = (t− s)
µ2

σ2 .

In our numerical examples, we show how conditional mo-
ment matching performs compared to unconditional match-
ing via brute force numerical computation. Choosing a
computationally efficient approximate g(s, t,z) remains a
topic for future research.

4 NUMERICAL EXAMPLES

4.1 Poisson Process

Suppose that Nt is a Poisson process with rate λ . We are
interested in simulating (Ns|Nt = n) for s < t. We know this
conditional distribution is Binomial(n, p) with p = s/t. Let
us define

X =
(

Ns

n
|Nt = n

)
∈ [0,1];

then it is known that

P(X ≤ k/n) = I1−p(n− k,k +1), k = 0, . . . ,n−1,

where Ix(a,b) is the incomplete beta function, which is the
same as P(Beta(a,b)≤ x). We want to use a beta random
variable that matches the first two moments and use

P(X ≤ k/n)≈ P(Beta(α,β )≤ k/n+1/2n)

to account for the mass of X at zero. A simple calculation
yields α = (n−1)p, β = (n−1)(1− p).

Figure 5 shows the PDFs of X and the true binomial
distribution Binomial(Nt = n, p) with Nt = 50, 200 for s =
0.1,0.5,0.8 with t = 1 fixed. Also, Figure 6 shows the
CDFs of the beta approximation to Ns and the true CDF
with λ = 50,200 for s = 0.2,0.5,0.8 with t = 1 fixed. In
those figures, the solid lines show exact results and the
dotted lines are approximations. These and other numerical
experiments show that the beta approximation becomes
increasingly accurate as n or λ increases for any fixed s, t.

4.2 Tempered Stable Subordinator

A tempered stable subordinator (a special case of the CGMY
process; see Carr et al. 2003) is a three-parameter Lévy
process Xt with Lévy density

ρ(x) =
ce−λx

xα+1 1x>0, c,λ > 0,α ∈ [0,1).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8
n=50, t=1

s=0.2

s=0.5

s=0.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15
n=200, t=1

s=0.2

s=0.5

s=0.8

Figure 5: Beta approximation to (Ns/n|Nt = n) with n =
50,200

This class of models has been widely studied and applied in
financial engineering (see Cont and Tankov 2004 for more
details). At α = 0, the model reduces to a gamma process,
and at α = 1/2 it yields the inverse Gaussian process. A
tempered stable process can be used to construct a model
St of asset price dynamics through Brownian subordination,
i.e., by setting logSt = µt + σWXt for appropriate µ and
σ , where W is a standard Brownian motion independent
of Xt . This produces the variance gamma process and
the normal inverse Gaussian process when α = 0 and 0.5,
respectively. These two cases are the only instances for
which a closed-form density is available. For these two
cases, exact simulation schemes are known; see Chapter
6 of Cont and Tankov (2004). For general cases, we can
consider using the bridge sampling method in (1).

Based on the result of Lukacs (1955), we already noted
that the beta approximation is exact when α = 0, i.e., when
Xt is a gamma process, and this is the only such case.
Avramidis et al. (2003) studied efficient bridge sampling
algorithms for the gamma process and the variance gamma
process based on this idea. For the inverse Gaussian and
the normal inverse Gaussian processes, Ribeiro and Webber
(2003) provide a sampling algorithm for an inverse Gaussian
bridge. However, we know of no exact bridge sampling
scheme for general α .

Other than α = 0, a closed form expression for the
conditional variance of (Xs|Xt) for s < t is not known, and
the expression is quite complicated even when the density
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Figure 6: Beta approximation Ns ≈UNt with λ = 50,200

function for Xt is known. When α = 0.5,

fXs|Xt=z(x) = ct · s
t

(
1− s

t

)(x(z− x)
z

)−3/2

×exp

(
−πc2

(
s2

x
+

(t− s)2

z− x
− t2

z

))
and, after a simple change of variable, we have

g(s, t,z) =
∫ 1

0

ct√
z
(u(1−u))−3/2

(
u− s

t

)2

×exp

(
−πc2t2

z
· (u− s/t)2

u(1−u)

)
du.

Since a direct implementation of a numerical calculation of
this g(s, t,z) in the beta approximation is computationally
expensive, one can adopt the second approach conducted in
the Weibull example, i.e., setting g(s, t,z) to be independent
of z. This means that we set

α = s
µ2

σ2 , β = (t− s)
µ2

σ2

where µ = −cΓ(−α)αλ α−1 and σ2 = cΓ(−α)α(α −
1)λ α−2. Figure 7 shows the performance of the beta ap-
proximation with c = 2 and λ = 4. The upper panel shows
the CDFs of Xs and UXt for different s values and fixed t
and α . The lower panel shows the CDFs of Xs and UXt for
different α values with fixed s and t. The calculation of
the true CDFs is conducted by implementing the algorithm

in Abate and Whitt (1992). The simulation via tabulation
is done by the inverse transform method jointly with linear
interpolation.
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Figure 7: Beta approximation to tempered stable subordi-
nators

The graphs show the beta approximation becoming exact
as s increases to t or α decreases to 0. The first observation
is already noted in Proposition 2.2 and the second one
is expected because the beta approximation is exact for
α = 0. One natural question is how much more can be
done beyond this g = g(s, t). For example, when α = 0.5,
we can numerically compute the conditional variance of
(Xs|Xt) from the above formula and this can be used to
determine α and β . The result is shown in Figure 8, and
this conditional moment matching has a clear advantage
over the unconditional moment matching. Of course, the
problem is how to compute the conditional variance or at
least how to approximate this conditional variance while
satisfying the minimum requirement

E(g(s, t,Xt)X2
t ) = Var(Xt).

Thus, the next open question is how to choose an approximate
functional form instead of the exact one for general α .

4.3 Stochastic Volatility Model

Our last example is the Heston model, given by the following
stochastic differential equations:

dSt

St
= µdt +

√
Vt

(
ρdW 1

t +
√

1−ρ2dW 2
t

)
,

dVt = κ(θ −Vt)dt +σ
√

VtdW 1
t
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Figure 8: Conditional moment matching vs. unconditional
moment matching

Here, (W 1,W 2) is a two-dimensional standard Brownian mo-
tion and St stands for the asset price of interest. This model
has gained wide popularity among academic researchers and
practitioners. For the simulation of this model, discretiza-
tion schemes such as Euler, Milstein have been proposed
and used. Broadie and Kaya (2006) devised an exact method
for simulating this process at fixed times. Their method
relies on the ability to simulate(∫ t

0
Vs ds|V0,Vt

)
,

the integral of the variance process conditional on its end-
points. Broadie and Kaya (2006) derive the characteristic
function for this conditional distribution and then sample
through numerical transform inversion.

Their method, however, is computationally expensive
mainly because it involves many computations of the mod-
ified Bessel function of the first kind. In Glasserman and
Kim (2008), it is shown that(∫ t

0
Vs ds|V0 = v0,Vt = vt

)
∼ X1 +X2 +

η

∑
j=1

Z j,

where the Z j are independent copies of a random variable
Z, η has a Bessel distribution with parameters ν = δ/2−1
and

z =
2κ

sinh(κt/2)
√

v0vt ,

and X1, X2, η , Z1,Z2, . . . are independent. See Yuan and
Kalbfleisch (2000) for properties of the Bessel distribution.
The distribution of X1 is determined by its Laplace transform:
for u ≥ 0,

Ee−uX1 = exp

(
(v0 + vt)

σ2

(
κ coth

κt
2
−Lcoth

Lt
2

))

where L =
√

2σ2u+κ2. Similarly, for X2 and Z, we have

Ee−uX2 =
(

L
κ
· sinhκt/2

sinhLt/2

)δ/2

,

Ee−uZ =
(

L
κ
· sinhκt/2

sinhLt/2

)2

.

Note that X2 and Z are independent of v0, vt which vary
on every sample path in a simulation. Therefore, their
distributions can be tabulated for fast simulation, as long
as we fix model parameters and a time step size t. As for
X1, we observe that it is infinitely divisible with respect to
v≡ v0 +vt . Therefore, if we tabulate the distribution of X∗

1
for some base number vbase, the problem of sampling X1 for
any v < vbase becomes a problem of bridge sampling: X∗

1
is the independent sum of X1 with parameter v and X ′

1 with
parameter vbase−v, and we are sampling (X1|X1 +X ′

1). We
can also sample X1 with parameter v > vbase by summing
n independent copies of X∗

1 , with n = bv/vbasec, and then
using bridge sampling to generate the remaining fractional
piece, X̃1 which has parameter v−nvbase.

In the Lévy process context, we used bridge sampling
to connect the process across different points in time. In
contrast, here we have infinite divisibility with respect to a
“spatial” parameter v which changes with the level of the
variance process.

With v < vbase, and X̃1 having parameter v, we ap-
proximate X̃1/X∗

1 with a beta random variable and test the
performance of the resulting Heston simulation for a Euro-
pean call option with the following parameters:

κ θ σ ρ

6.2 0.02 0.6 -0.7

and S0 = 100, strike = 100, maturity = 1 year, risk free
rate = 3%, v0 = θ . The model parameters are set close to
the estimated values in Duffie, Pan, and Singleton (2000).
Also, we set vbase = θ because simulated Vt values move
around the long term mean θ .

In our implementation, we tabulate the distribution of
X∗

1 using the algorithm in Abate and Whitt (1992) and the
parameters α , β are chosen to match the unconditional
first two moments of X̃1. We compare the results with two
existing methods: the exact scheme of Broadie and Kaya
(2006) and the QE method of Andersen (2005), which is an
efficient discretization scheme. All computations are done
using programs coded in the C programming language and
compiled by Microsoft Visual C++ 6.0 in the release mode.
A desktop computer with Intel Pentium 4 CPU 3.20 GHz
and 1.0 GB of RAM is used. The number of simulation
trials is from 10K to 10240K. The simulation biases are
based on 1 billion simulation trials and the results are shown
in Figure 9. The tabulation time for the beta approximation
is 0.64 seconds and this is not included in the production
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of the figure because the tabulation needs to be done only
once in the initialization of the Monte Carlo simulation
with fixed κ , σ , θ and t. As illustrated in the figure, the
beta approximation performs very well in the comparison
of methods based on speed and accuracy.
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Figure 9: Beta approximation for a European call in the
Heston model

5 CONCLUSION

We have proposed and tested beta approximations for bridge
sampling for stochastic models such as Poisson processes,
tempered stable subordinators, and the Heston stochastic
volatility model. Even though the beta approximation is
exact only when the random variables of interest follow
gamma distributions, the approximation often works suffi-
ciently well for practical applications. In choosing parame-
ters for the beta distribution used in the approximation, one
can use unconditional moment matching, but conditional
moment matching exhibits better performance. However,
conditional moment matching is computationally more de-
manding. Finding faster methods for selecting effective
parameter choices is a topic for further investigation.
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