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ABSTRACT

This tutorial is intended to provide an overview of the
key algorithms that are used to simulate sample paths of
diffusion processes, as well as to offer an understanding of
their fundamental approximation properties.

1 INTRODUCTION

Diffusion process and their generalization to jump diffusions
are widely used as mathematical models within the physical
sciences, engineering, finance, and economics. The modern
perspective on diffusions is to view such stochastic processes
as arising as Rd-valued solutions X = (X(t) : t ≥ 0) of
stochastic differential equations (SDE’s). The simplest such
SDE’s evolve on a state space S that is an open subset of
Rd (e.g. S ⊆ Rd), in which X never touches the boundary
of S. In such cases, the process X is fully described by a
stochastic equation of the form

dX(t) = µ(t,X(t))dt +σ(t,X(t))dB(t) (1.1)

subject to X(0) = x∈ S, where µ : [0,∞)×Rd →Rd and σ :
[0,∞)×Rd →Rd×m are deterministic functions specified by
the modeler (known as the “drift” and “volatility” functions,
respectively), and B = (B(t) : t ≥ 0) is a Rm-valued standard
Brownian motion (i.e. B is a continuous path Gaussian
process with EB(0) = 0 and EB(t)B(t)T = t · I, where xT

denotes the transpose of x and I is the identity matrix). When
X can reach the boundary of S with positive probability, the
modeler must specify the behavior of X at the boundary,
leading to an “SDE with boundaries” (or, equivalently, a
“diffusion with boundaries”).

The rigorous mathematical meaning of (1.1) is to view
(1.1) as a short-hand for requiring that X satisfy the stochastic
integral equation

X(t)− x =
∫ t

0
µ(s,X(s))ds+

∫ t

0
σ(s,X(s))dB(s) (1.2)

for t ≥ 0. In this integral form, it is evident that one must
make mathematical sense of the stochastic integral

∫ t

0
σ(s,X(s))dB(s) (1.3)

in order to construct a mathematically rigorous theory of
the SDE’s (and, hence, diffusions). As is well known,
there are several different mathematically satisfactory ways
of defining such stochastic integrals which, unfortunately,
do not coincide with one another (in the sense that the
distribution of the random variable (rv) defined by (1.3)
typically depends on the definition that is used). However,
for reasons that will become clearer in the next section, the
Itô stochastic integral is generally the one that is understood
to underlie the stochastic integral appearing in (1.2).

2 THE CONNECTION TO PDE’S

There exists a large number of probabilities and expectations
for diffusions that can be computed by solving partial differ-
ential equations (PDE’s). To get a sense of the connection,
suppose that µ(t,X(t)) and σ(t,X(t)) depends only on X(t)
(and not explicitly on t) and that we wish to compute

u∗(x) =Ex

∫ T

0
exp
(
−
∫ t

0
α(X(s))ds

)
g(X(t))dt

+Ex exp
(
−
∫ T

0
α(X(t))dt

)
f (X(T )),

where T = inf{t ≥ 0 : X(t)∈ A} is the “first hitting time” of
the “target set” A⊆ S, and f , g, and α are given functions.
Clearly, u∗(x) = f (x) for x ∈ A. For x ∈ Ac, we note that
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for h > 0,

u∗(x) = Ex

∫ h∧T

0
exp
(
−
∫ t

0
α(X(s))ds

)
g(X(t)) dt

+Ex exp
(
−
∫ h∧T

0
α(X(s))ds

)
u∗ (X(h∧T )) (2.1)

where h∧T , min(h,T ). Since we expect the solution X
of (1.2) to have continuous paths, it should follow that for
T > h∫ h∧T

0
exp
(
−
∫ t

0
α(X(s))ds

)
g(X(t))dt = g(X(0))h+o(h)

(2.2)

and

exp
(
−
∫ T∧h

0
α(X(s))ds

)
= 1−α(X(0))h+o(h) (2.3)

as h ↓ 0, where o(r(h)) defines a function for which
o(r(h))/r(h) → 0 as h ↓ 0. On the other hand, if A is
closed and x ∈ Ac, the likelihood of hitting A from x in the
interval [0,h] is typically exponentially small, so that

Px(T ≤ h)≤ exp(−c/h) (2.4)

for some c > 0. Relations (2.2) and (2.4) suggest that

Ex

∫ h∧T

0
exp
(
−
∫ t

0
α(X(s))ds

)
g(X(t))dt = g(x)h+o(h),

(2.5)

as h ↓ 0.
To handle the second term on the right-hand side of (2.1),

assume that u∗ is smooth. Write X(t) = (X1(t), . . . ,Xd(t))T ,
so that Xi(t) is the i’th component of X . Similarly, Bi(t) is
the i’th component of B(t). The smoothness of u∗ guarantees
that when T > h,

u∗(X(T ∧h))−u∗(X(0))
=u∗(X(h))−u∗(X(0))

=
d

∑
i=1

∂u∗

∂xi
(X(0))(Xi(h)−Xi(0)) (2.6)

+
1
2

d

∑
i, j=1

∂ 2u∗

∂xi∂x j
(X(0))(Xi(h)−Xi(0))(X j(h)−X j(0))

+
1
6

d

∑
i, j,k=1

∂ 3u∗

∂xi∂x j∂xk
(X(0))(Xi(h)−Xi(0))(X j(h)−X j(0)

· (Xk(h)−Xk(0))+ · · ·

The continuity of X suggests that

∫ h

0
µ(X(s))ds = µ(X(0))h+o(h). (2.7)

Furthermore, we expect the stochastic integral in (1.3) to
obey

∫ h

0
σ(X(s))dB(s)≈ σ(X(0))(B(h)−B(0)) (2.8)

for h small, where ≈ denotes “approximately equal to”.
We also note that B(h)−B(0) has the same distribution
as h1/2N(0, I), so the third term (and all the higher order
terms) on the right-hand side of (2.6) should be of order
h3/2. In view of (2.6), (2.7), and (2.8), we arrive at

u∗(X(T ∧h))−u∗(X(0))

≈
d

∑
i=1

∂u∗

∂xi
(X(0))

(
µi(X(0))h+

m

∑
k=1

σik(X(0))(Bk(h)−Bk(0))

)

+
1
2

d

∑
i, j=1

∂ 2u∗

∂xi∂x j
(X(0))

m

∑
k,l=1

σik(X(0))(Bk(h)−Bk(0))

·σ jl(X(0))(Bl(h)−Bl(0))+o(h)

and consequently,

exp
(
−
∫ T∧h

0
α(X(s))ds

)
u∗(X(T ∧h))

≈u∗(X(0))(1−α(X(0))h)

+
d

∑
i=1

∂u∗

∂xi
(X(0))

(
µi(X(0))h+

m

∑
k=1

σik(X(0))(Bk(h)−Bk(0))

)

+
1
2

d

∑
i, j=1

∂ 2u∗

∂xi∂x j
(X(0))

m

∑
k,l=1

σik(X(0))(Bk(h)−Bk(0))

·σ jl(X(0))(Bl(h)−Bl(0))+o(h)

as h ↓ 0. So, this suggests that

Exu∗(X(T ∧h))exp
(
−
∫ T∧h

0
α(X(s))ds

)
=u∗(x)(1−α(x)h)+

d

∑
i=1

∂u∗

∂xi
(x)µi(x)h (2.9)

+
1
2

d

∑
i, j=1

∂ 2u∗

∂xi∂x j
(x)

m

∑
k=1

σik(x)σ jk(x)h+o(h).

Plugging (2.9) and (2.6) into (2.1), subtracting u∗(x) from
both sides, dividing by h, and sending h ↓ 0, we conclude
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that u∗ should satisfy

−g(x) =
d

∑
i=1

µi(x)
∂u∗

∂xi
(x)+

1
2

bi j(x)
∂ 2u∗

∂xi∂x j
(x)−α(x)u∗(x)

(2.10)

for x∈Ac (where b(x) , σ(x)σ(x)T ), subject to u∗(x) = f (x)
for x ∈ A.

Of course, the above derivation is heuristic and non-
rigorous. To make this connection between the PDE (2.10)
and SDE (1.1) rigorous, it turns out that we must adopt a
specific definition for the stochastic integral (1.3), namely
the Itô definition. The Itô definition of (1.3) defines the
stochastic integral as the limit (in mean-square) of

n−1

∑
i=0

σ

(
X
(

it
n

))(
B
(

(i+1)t
n

)
−B

(
it
n

))
as n → ∞. Use of other definitions will typically lead to a
different PDE for the above expectation.

The connection between PDE’s and diffusions is of
fundamental mathematical importance, and offers the op-
portunity to compute certain probabilities and expectations
by numerically solving the appropriate PDE. Since nu-
merical computation of the solution to a PDE involves a
time-step integration over the state space of X , it is clear
that such integration schemes become inefficient when the
dimension d is of moderate size or larger. In such settings,
(as often occur in finance), Monte Carlo schemes become
computationally attractive.

3 MONTE CARLO SIMULATION OF DIFFUSIONS

The process X evolves in continuous time, and evolves
randomly within any time interval of positive length. As a
consequence, we can not simulate X exactly as a continuous
time process (unlike Markov jump process, where one can
take advantage of the piecewise-constant sample paths by
simulating the state only at the jump epochs). Hence, the
typical goal in the diffusion setting is to simulate the process
X only at some discrete sequence of times, usually a lattice
of the form 0, h, 2h,. . ..

Unfortunately, the state of the diffusion X can be ex-
actly generated at 0, h, 2h,. . . only for a very special sub-
class of diffusions (e.g. Brownian motion, the Ornstein-
Uhlenbeck process, etc.) Rather, the typical approach used
to simulate X is to generate a discrete-time approximation
Xh = (Xh(kh) : k ≥ 0), just as numerical solution of deter-
ministic differential equations usually evolves computing
a discrete-time numerical approximation to the continuous
time solution. The simplest such approximation is the Euler

approximation defined by the recursion

Xh((k +1)h)−Xh(kh)
= µ(Xh(kh))h+σ(Xh(kh))(B((k +1)h)−B(kh)).

We can then define Xh between the lattice points 0, h, 2h,. . .
via a linear interpolation.

Given a functional ϕ defined on paths of X , computing
α = Eϕ(X(s) : 0≤ s≤ t) involves generating Xh up to time
t, computing ϕ(Xh(s) : 0≤ s≤ t), simulating n independent
and identically distributed (iid) copies of ϕ(Xh(s) : 0≤ s≤ t),
and averaging the n copies to produce the final estimator

αn(h) =
1
n

n

∑
i=1

ϕ
(
X i

h(s) : 0 ≤ s ≤ t
)
.

Because we are simulating an approximation to X rather
than X itself, αn(h) includes a systematic error (i.e. bias), in
addition to the sampling error that is typical of Monte Carlo
schemes. The bias Eαn(h)−α typically is of the order hp

for some p > 0; the parameter p is called the order of the
method/estimator. Given that the computational complexity
of generating αn(h) is of order n/h, it comes as no surprise
that p has a dramatic effect on the optimal rate of convergence
(when optimized over combinations of n and h subject to
the constraint n/h = c); see Duffie and Glynn (1995).

The tutorial will largely be focused on a discussion of the
interaction between the choice of the discretization scheme
(leading to a specific approximation Xh), the functional
ϕ , and the order p. In particular, when ϕ takes the form
ϕ(X(s) : 0≤ s≤ t) = k(X(t)) (for k smooth), a discretization
scheme is said to have weak error of order p if

Ek(Xh(t)) = Ek(X(t))+O(hp)

as h ↓ 0 (where O(r(h)) is a function for which O(r(h))/r(h)
remains bounded as h ↓ 0). On the other hand, if ϕ is
Lipschitz in the sense that

|ϕ(x(s) : 0≤ s≤ t)−ϕ(y(s) : 0≤ s≤ t)| ≤ c sup
0≤s≤t

|x(s)−y(s)|

(for some constant c < ∞), then the discretization Xh is said
to have strong error of order p if

Eϕ(Xh(s) : 0 ≤ s ≤ t) = Eϕ(X(s) : 0 ≤ s ≤ t)+O(hp)

as h ↓ 0. Finally, the scheme Xh is said to have microscopic
error of order p if for any bounded function ϕ ,

Eϕ(Xh(kh) : 0≤ hk ≤ t) = Eϕ(X(kh) : 0≤ hk ≤ t)+O(hp)

as h ↓ 0. In other words, the class of ϕ’s for which a
discretization scheme offers a given order p becomes larger
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(and more demanding) as one moves from a consideration
of weak error to strong error to microscopic error. Our
goal in this tutorial is to discuss the interaction between the
choice of discretization, the order of convergence, and the
choice of functional ϕ; the classical reference for discussion
of weak and strong error is Kloeden and Platen (1992). See
Perez (2004) for an account of microscopic error.

As one might expect, the presence of boundaries for
the diffusion complicates the discussion. Specifically, a
scheme having error of order p when implemented on a
diffusion without boundaries may have an error of order
q < p when implemented on a diffusion with boundaries.
The tutorial will therefore also provide some discussion of
this fundamental issue; see Lepingle (1995) for details in the
reflected case and Gobet (2000) for details in the absorbing
setting.
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