
ON STEP SIZES, STOCHASTIC SHORTEST PATHS, AND SURVIVAL PROBABILITIES IN
REINFORCEMENT LEARNING

Abhijit Gosavi

Department of Engineering Management & Systems Engineering
Missouri University of Science and Technology

Rolla, MO 65401, U.S.A.

ABSTRACT

Reinforcement Learning (RL) is a simulation-based tech-
nique useful in solving Markov decision processes if their
transition probabilities are not easily obtainable or if the
problems have a very large number of states. We present
an empirical study of (i) the effect of step-sizes (learning
rules) in the convergence of RL algorithms, (ii) stochastic
shortest paths in solving average reward problems via RL,
and (iii) the notion of survival probabilities (downside risk)
in RL. We also study the impact of step sizes when function
approximation is combined with RL. Our experiments yield
some interesting insights that will be useful in practice when
RL algorithms are implemented within simulators.

1 INTRODUCTION

Reinforcement Learning (RL) is a simulation-based tech-
nique that is useful on large-scale and complex Markov
decision processes (MDPs) (Sutton and Barto 1998). In
this paper, we will address (i) the role of step sizes (learn-
ing rules) in discounted-reward problems and (ii) that of
the grounding mechanism of the shortest stochastic path
(SSP) in average-reward problems and (iii) the notion of
introducing survival probability (downside risk) within RL.
We will study the impact of these factors on the values
of iterates and examine by how much values can diverge
from the values obtained from dynamic programming. In
the context of step sizes, we will perform a study using
some standard rules to determine how they perform. For
average reward problems, the SSP-grounding mechanism
allows us to compare the values of the iterates to those
obtained from a comparable value iteration algorithm; here,
however, multiple step-sizes are needed and an empirical
study needs to take that into account. We also develop and
test an RL algorithm that models the survival-probability of
a system. Typically, the survival probability is defined with
respect to a known target revenue. The survival probability
of a system is the probability that the revenue in unit time

will exceed the target. It is directly related to the downside
risk in operations research and the exceedance probability
in the insurance industry (Grossi and Kunreuther 2005).
We present a Bellman equation for survival probabilities,
and then numerically show that the iterates in the associ-
ated RL algorithm converge to an optimal solution. It is
our belief that our results will be of use to a practicing
analyst interested in using RL. The rest of this article is
organized as follows. Section 2 presents a discussion of
our experiments with discounted reward, Section 3 presents
our results with the SSP-grounding mechanism on average-
reward problems, and Section 4 discusses our algorithm with
the survival probability considerations. Section 5 concludes
this paper.

2 DISCOUNTED REWARD

The impact of the rate of convergence of linear and poly-
nomial step sizes on the values to which Q-values in RL
converge has been studied in Even-Dar and Mansour (2003).
They have established theoretically that linear rules (e.,g,
1/k, where k denotes the iteration number) can take an
exponential time to converge while polynomial rules (e.g.,
1/kψ where ψ is some integer) can converge in polynomial
time. In this paper, our goal is less ambitious; we wish
to conduct experiments with some simple step sizes to test
how they perform empirically and how far they stray from
the optimal values in an empirical setting. It is well-known
that, in practice, one has to fine tune the performance of
an RL algorithm via trials of numerous step sizes, and
we believe that it will be beneficial to a practical user of
these algorithms to know how some of the well-known rules
perform under known conditions. We chose the following
rules: 1/k, a/(b + k) (note that 1/k is a special case of
this), and log(k)/k. A disadvantage of a/(b + k) is that
one has to conduct numerous trials to determine suitable
values of a and b, where as the other rules do not have such
parameters.

525 978-1-4244-2708-6/08/$25.00 ©2008 IEEE

Proceedings of the 2008 Winter Simulation Conference
S. J. Mason, R. R. Hill, L. Mönch, O. Rose, T. Jefferson, J. W. Fowler eds.

Gosavi

We will restrict our attention to the asynchronous Q-
Learning algorithm (Watkins 1989) for which convergence
has been established under asynchronous conditions in nu-
merous works (see e.g., Borkar and Meyn (2000)). In all
the literature, the step-sizes are required to satisfy some
basic conditions such as ∑

∞
k=1 αk = ∞ and ∑

∞
k=1

(
αk

)2
< ∞

where αk denotes the step size in the kth iteration. For some
other less well-known conditions, see Borkar (1998); all the
three rules we consider satisfy these conditions. Our tests
will compare the performance of a Q-Learning algorithm
with that of value iteration (Puterman 1994) which instead
of computing the value function computes Q-values.

We will now present some notation. Let r(i,a, j) denote
the reward earned in going from state i to state j under
action a. Let p(i,a, j) denote the probability associated
with the same transition. We will use µ to denote a policy
for which µ(i) will denote the (deterministic) action to be
chosen in state i; e.g., (2,1) will denote a policy with action
2 in state 1 and action 1 in state 2. Let λ denote the discount
factor. Also, Pµ and Rµ will denote the transition probability
and transition reward matrices, respectively, associated with
policy µ . Finally, Q(i,a) will denote the Q-value for state
i and action a.

2.1 Parameters for mdp1

The first test instance, which we call md p1, is a 2-state
MDP with the following parameters: λ = 0.8, and

P(1,1) =
[

0.7 0.3
0.4 0.6

]
;P(2,2) =

[
0.9 0.1
0.2 0.8

]
;

R(1,1) =
[

6.0 −5
7.0 12

]
;R(2,2) =

[
10.0 17
−14 13

]
.

2.2 Parameters for other test instances

We use 3 other test instances, which are defined as follows.
All the parameters for the remaining test instances are iden-
tical to those of md p1 with the following exceptions: md p2
— r(1,1,2) = 5 and r(2,2,1) = 14; md p3 — r(1,2,1) = 12;
md p4 — r(1,1,1) = 16.

2.3 Numerical results

We now present numerical results obtained in five set-
tings: Q-Learning with the three different step-size rules,
Q-learning with a neuron that uses the log-rule for the
neuron’s learning rule, and value iteration performed with
Q-values; see Table 1. The value of a = 150 and b = 300
in our experiments. Also, ε = 0.01 in the value itera-
tion algorithm (Puterman 1994); the main transformation
in that algorithm is: For all (i,a) do until ε-convergence:

Q(i,a)← ∑ j p(i,a, j) [r(i,a, j)+λ maxb Q(j,b)]. The Q-
Learning algorithms were run for 10,000 iterations,
with a exploration probability set at 0.5 throughout.
The computer programs were written in MATLAB
and can be found at <www.eng.buffalo.edu/∼
agosavi/codes/wsccodes.html>.

Table 1: This table compares the Q-values obtained via Q-
Learning (Q-L) under the various step-size rules, via a neuron
coupled with Q-Learning (N-QL), and via value iteration
using Q-values (Q-VI). Q-L-ab will denote Q-Learning with
rule a/(b+k), Q-L-k will denote Q-Learning with rule 1/k
and Q-Learning with the log rule will be denoted by Q-L-log.

Method Q(1,1) Q(1,2) Q(2,1) Q(2,2)
md p1 Q-VI 44.84 53.02 51.87 49.28
md p1 Q-L-ab 44.40 52.97 51.84 46.63
md p1 Q-L-k 11.46 18.74 19.62 16.52
md p1 Q-L-log 39.24 47.79 45.26 42.24
md p1 N-QL 43.90 51.90 51.54 49.26
md p2 Q-VI 51.67 55.76 57.34 61.45
md p2 Q-L-ab 51.55 55.53 57.11 60.94
md p2 Q-L-k 17.12 20.38 21.08 23.53
md p2 Q-L-log 45.61 50.16 50.07 53.78
md p2 N-QL 50.99 54.70 57.27 62.01
md p3 Q-VI 50.36 60.83 56.66 53.59
md p3 Q-L-ab 49.89 60.82 56.66 51.18
md p3 Q-L-k 12.54 21.72 20.17 16.89
md p3 Q-L-log 43.96 54.83 49.09 45.60
md p3 N-QL 49.20 59.43 56.19 53.38
md p4 Q-VI 48.97 40.91 49.36 47.02
md p4 Q-L-ab 47.72 40.29 48.93 43.93
md p4 Q-L-k 16.16 9.16 18.96 16.04
md p4 Q-L-log 42.73 34.97 42.38 39.72
md p4 N-QL 48.64 40.72 49.71 47.76

The results show that while all the RL algorithms
converge to the optimal policy, the 1/k-rule produces values
that remain far away from the optimal Q-values generated by
the value iteration algorithm. Perhaps this behavior can be
improved by reducing exploration, but that will introduce
additional parameters for tuning. What is interesting is
that theoretically all the rules are guaranteed to take us to
optimal Q-values. The best performance was produced by
the a/(b+k) rule; it must be noted, however, that the log-rule
which does not have any tuning parameter performs much
better than the 1/k-rule in terms of approximating the value
function. The poor performance of 1/k can be explained
by the fact that it decays very quickly. Also, encouraging is
the performance of a neuron-coupled Q-Learning algorithm
that uses a log-rule for the neuron’s internal learning and an
a/(b+k)-rule for the algorithm. The results indicate that (i)
1/k (used in Gosavi (2004a)) is perhaps not an ideal choice
for most cases, (ii) the log rule appears to be promising, and
(ii) there is a need to find parameter-less rules (which do not

526

Gosavi

have parameters such as a and b) that can be used without
elaborate experimentation. It needs to be pointed out that
in large-scale problems, one does not have the luxury of
knowing what the optimal value function is and it is very
critical that one has a step-size rule that takes one close to
optimality. In large-scale problems, it is quite possible that
the rule which causes significant deviation from the optimal
value function actually leads one to a sub-optimal policy.

3 AVERAGE REWARD

We now turn our attention to average-reward MDPs. We will
perform computational studies with a Q-Learning algorithm
that uses two time scales for updating and hence needs two
different step sizes simultaneously (Gosavi 2004b). Other
algorithms with proven convergence properties include a
version of Q-Learning based on relative value iteration (see
e.g., Borkar and Meyn (2000)). Here, we wish to study the
impact of the stochastic shortest path on average reward
problems in RL (Bertsekas 1995).

We will compute the optimal value function using a
value iteration algorithm for average reward. Let ρµ de-
note the average reward of the policy µ , and ρ∗ denote
the optimal average reward. Then if ρ∗ is known, one
can develop a value iteration algorithm for average reward
problems. It must be noted that such a value iteration al-
gorithm is being studied here only for the sake of testing
how far the Q-Learning algorithm strays from the opti-
mal values (clearly, in practice ρ∗ is unknown, and one
must use other algorithms; see e.g., Puterman (1994)).
The value iteration algorithm will have the following
main transformation: For all (i,a) do until ε-convergence:
Q(i,a) ← ∑ j p(i,a, j) [r(i,a, j)−ρ∗+maxb Q(j,b)]. The
Q-learning algorithm with its SSP-grounding mechanism
is described in the Appendix. It has two step sizes:
α(k) for the Q-value and β (k) for the value of ρ , where
limk→∞ β (k)/α(k) = 0. We use the test instances used in
the last section with the understanding that there is now no
discount factor. The results are tabulated in Table 2. We
ran the Q-learning algorithm for 10,000 iterations and used
ε = 0.01; also md p1 — ρ∗ = 10.56, mpd2 — ρ∗ = 11.53,
md p3 — ρ∗ = 12.00 and md p4 — ρ∗ = 9.83. These val-
ues for ρ∗ were determined by an exhaustive evaluation
of the average reward of each deterministic policy. The
exploration probability was fixed at 0.5 for both actions.
The results show that the value function, which is defined
as v(i) = maxa Q(i,a), is reasonably approximated by the
Q-Learning algorithm, although some Q-values are not so
well approximated.

3.1 Is Bellman optimality worth achieving?

The numerical results of this section and the previous section
raise an important question. Is Bellman optimality, which

means achieving the value function that would result from
solving the Bellman equation, really worth achieving, or
would it be okay for an algorithm to generate the optimal
solution? Note that in Section 2.3, the 1/k-rule and the log-
rule generate optimal policies, although the value function
they generate strays considerably from that generated by
dynamic programming (Bellman equation). The same is
true of the results for average reward. This is an issue that
requires further analysis. An important question that needs
to be addressed is: how much deviation in the value function
can be tolerated? In other words, by how much can the value
function deviate without resulting in a sub-optimal policy?
The answer to this question might pave the way to solving
the MDP without strict adherence to Bellman principles.
Gosavi (2004a) has shown that that for any given state, if
the absolute value of the error in the value function is less
than half of the absolute value of the difference between the
Q-value of the optimal function and the Q-value of the sub-
optimal action (assuming we have 2 actions in each state),
then that error can be tolerated. But an in-depth study of
this issue may prove to be of importance in the future —
especially in the context of function approximation, where
we have clear deviation from Bellman optimality.

Table 2: This table compares the Q-values obtained via
Q-Learning (Q-L) for average reward (see Appendix) and
via value iteration using Q-values (Q-VI). For md p2 α(k) =
500/(1000 + k) and β (k) = 150/(300 + k), while for the
remaining instances we used α(k) = 150/(300 + k) and
β (k) = 50/(49+ k).

Method Q(1,1) Q(1,2) Q(2,1) Q(2,2)
md p1 Q-L -3.46 0.1710 -1.89 -3.02
md p1 Q-VI -7.99 0.2789 -1.12 -3.80
md p2 Q-L -2.85 0.57 4.48 6.10
md p2 Q-VI -1.85 0.37 7.18 7.31
md p3 Q-L -4.99 0.1061 -4.81 -5.19
md p3 Q-VI -9.80 0.99 -3.996 -7.39
md p4 Q-L -1.14 -8.19 -0.298 -3.94
md p4 Q-VI -0.1904 -8.28 0.24 -2.08

4 SURVIVAL PROBABILITY

The notion of risk has been studied in the context of RL
via utility functions (Borkar 2002), variance penalties (Sato
and Kobayashi 2001), and probability of entering forbidden
states (Geibel and Wysotzki 2005). See Heger (1994) for
an earlier work. Variance penalties in the context of MDPs
were studied in Filar, Kallenberg, and Lee (1989). In this
paper, we consider the penalties associated with downside
risk which is defined with respect to a target. Given a
target for the one-step reward, we define the downside risk
(DR) to be the probability of the reward falling below the
target; this risk should be minimized. Hence 1−DR will

527

Gosavi

denote the probability of survival, which is maximized. If
one considers costs instead of rewards, the probability of
exceeding the target will be the associated downside risk;
this is also called the exceedance probability in catastrophe
modeling (Grossi and Kunreuther 2005). We next present
intuitively-conjectured Bellman and Poisson equations, and
then an RL algorithm.

4.1 Bellman Equation

Let τ denote the target one-step reward. Then for a given
deterministic, stationary policy µ , the downside risk is
defined as:

DRµ = ∑
i∈S

Π
µ(i) ∑

j∈S
p(i,µ(i), j)I(r(i,µ(i), j) < τ) (1)

where I(.) denotes the indicator function (which equals 1
if the condition inside the brackets is true and 0 otherwise)
and Πµ(i) denotes the limiting probability (invariant prob-
ability) for state i under policy µ . Our objective function in
the downside-risk-penalized problem will be: φ = ρ−θDR
where ρ denotes the average reward and θ is a positive
scalar chosen by the risk manager. The greater the value
of θ , the higher the risk-sensitivity. Such parameters were
popularized by the pioneering work by Markowitz (1952)
in finance, and have been used in MDPs by Filar, Kallen-
berg, and Lee (1989) and Gosavi (2006) and in RL by
Sato and Kobayashi (2001). We now propose Bellman and
Poisson equations for this objective function without proof.
A theoretical analysis will be the subject of future work.
(i) (Poisson equation) If a scalar φ ∈ ℜ and an |S|-
dimensional finite vector ~h satisfy for all i ∈S :

φ +h(i) =

∑
j∈S

p(i,µ(i), j) [r(i,µ(i), j)−θ I(r(i,µ(i) j) < τ)+h(j)]

then φ is the variance-penalized score associated with the
policy µ .
(ii) (Bellman equation) Assume that a scalar φ ∗ and an
|S |-dimensional finite vector J(i) satisfy for all i ∈S

φ
∗+ J(i) = max

a∈A (i)

[
∑
j∈S

p(i,a, j)[r(i,a, j)−θ I(r(i,a, j) < τ)+ J(j)]

]
. (2)

Any policy that attains the max in the RHS of the above will
be an optimal policy, i.e., it will generate the maximum
value for the risk-penalized score. Analogous equations
for variance penalties and semi-variance penalties can be

constructed. Variance in the MDP for a policy µ is defined
as:

∑
i∈S

Π
µ(i) ∑

j∈S
p(i,µ(i), j)(r(i,µ(i), j)−ρµ)2

and semi-variance as:

∑
i∈S

Π
µ(i) ∑

j∈S
p(i,µ(i), j)(τ− r(i,µ(i), j))2

+

where a+ = max(0,a). For semi-variance, the indicator
function would be replaced by (τ − r(i,µ(i), j))2

+ in the
Poisson equation and by (τ − r(i,a, j))2

+ in the Bellman
equation (Gosavi 2008), and for variance, we would replace
the indicator function in the Bellman equation by (r(i,a, j)−
ρ∗)2, where ρ∗ is the average reward of the optimal policy
of the variance-penalized MDP (Gosavi and Meyn 2008).
While variance and semi-variance are acceptable measures
of risk, downside risk is even more appealing because it is
a probability measure. We now present an RL algorithm
for downside-risk penalties.

4.2 Q-Learning for survival

A Q-value version of the Bellman equation can be developed
from Equation (2) above. From that, it is not difficult to
derive a Q-Learning algorithm. Since the Bellman equation
models the optimal value of the objective function, φ ∗, (this
is analogous to ρ∗ in the risk-neutral Bellman equation
for average reward), we need to use an algorithm that
uses relative values. Our algorithm’s main features are as
follows. In the first step, choose some state-action pair to be
a distinguished state-action pair; call it (i∗,a∗). The main
update in the simulator is:

Qk+1(i,a)← (1−α(k))Qk(i,a)+α(k)×

[
r(i,a, j)−θ I(r(i,a, j) < τ)−Qk(i∗,a∗)+

+ max
b∈A (j)

Qk(j,b)
]
,

where Qk(., .) is the Q-value in the kth iteration. For the
risk-neutral case, it can be shown that with probability
1, limk→∞ Qk(i∗,a∗) = ρ∗ (see Borkar and Meyn (2000));
intuition suggests that with probability 1:

lim
k→∞

Qk(i∗,a∗) = φ
∗. (3)

Of course, as stated earlier, a theoretical proof is a subject
of future work. We will now conduct simulation tests to
determine how the algorithm performs.

528

Gosavi

4.3 Parameters for test instances

We use four test instances named mdp5 through mdp8. For
all the test instances, τ = 8 and θ = 2. We describe them
next.
mdp5: Identical to md p1 except for: r(1,1,1) =
3;r(1,1,2) = 11;r(1,2,1) = 6;r(2,2,2) = 7.
mdp6: Identical to md p1 except for: r(1,1,1) =
3;r(1,1,2) = 11;r(2,1,2) = 9;r(1,2,1) = 6;r(2,2,2) = 7.
mdp7: Identical to md p1 in terms of the transition proba-
bilities, but with the following reward structures:

R(1,1) =
[

9.0 −1
12.0 8

]
;R(2,2) =

[
6.0 20
−14 7

]
.

mdp8: Identical to md p1 in terms of the transition proba-
bilities, but with the following reward structures:

R(1,1) =
[

3.0 7
9.0 1

]
;R(2,2) =

[
6.0 9
14 7

]
.

4.4 Simulation experiments

We first analyzed via exhaustive evaluation the aver-
age reward and the downside risk for each policy in
the 4 test instances. The average reward is ρµ =
∑i∈S Πµ(i)∑ j∈S p(i,µ(i), j)r(i,µ(i), j). The downside
risk is defined in Equation (1). The limiting probabili-
ties of each state can be determined by solving the classical
invariant equations: ∑ j∈S Πµ(j)p(j,µ(i), i) = Πµ(i) for all
i ∈S and ∑i∈S Πµ(i) = 1. The results are presented in
Table 3. On all the examples, the algorithm converged to
optimal solutions in 10,000 iterations. We fix the explo-
ration probability at a value of 0.5 for each action. We also
show in the table the value to which Q(i∗,a∗) converges.
We do not present all the Q(, .,) values because we have not
compared them to values from dynamic programming, and
hence the values by themselves convey nothing. What is
more interesting is the value to which Q(i∗,a∗) converges.
As is expected from Equation (3), it converges to a value
very close to φ ∗. Also, note that for md p5, md p6, and
md p7, the risk-neutral optimal policy (that maximizes ρ)
does not coincide with the risk-sensitive optimal policy (that
maximizes our risk-penalized score, φ).

4.5 Semi-Markov control

A natural and important extension of MDP theory is to Semi-
Markov decision processes (SMDPs) (Puterman 1994),
where the time spent in each transition is modeled as a
random variable. Let t(i,a, j) denote the time spent in go-
ing from i to j under action a. We first need the definitions
of the risk measures considered above. Downside risk will

be defined as:

DRµ = ∑
i∈S

Π
µ(i) ∑

j∈S
p(i,µ(i), j)I(

r(i,µ(i), j)
t(i,µ(i), j)

< τ).

The corresponding Bellman equation would be: J(i) =

max
a∈A (i)

[
∑
j∈S

p(i,a, j){r(i,a, j)−θ I(r(i,a, j) < τt(i,a, j))

−φ
∗t(i,a, j)+ J(j)}

]
and the Q-learning algorithm can be derived to be:

Qk+1(i,a)← (1−α(k))Qk(i,a)+α(k)×

[
r(i,a, j)−θ I(

r(i,a, j)
t(i,a, j)

< τ)−Qk(i∗,a∗)t(i,a, j)
]

+α(k)
[

max
b∈A (j)

Qk(j,b)
]
,

Semi-variance in the SMDP can be defined as:

∑
i∈S

Π
µ(i) ∑

j∈S
p(i,µ(i), j)(τt(i,µ(i), j)− r(i,µ(i), j))2

+.

The SMDP Bellman equation for semi-variance can be
obtained from that of downside risk via replacement of the
indicator function by (τt(i,a, j)− r(i,a, j))2

+. A Q-learning
algorithm can also be derived for semi-variance.

For variance, we need to define some quantities first.
We will use the renewal reward theorem (RRT) (Ross 1997)
because underlying the SMDP, one has a renewal process.
Consider a counting process {N(t), t ≥ 0}, and let Tn denote
the time between the (n−1)th event and the nth event in
the process; n ≥ 1. If {T1,T2, . . .} denotes a sequence of
non-negative i.i.d random variables, then {N(t), t ≥ 0} is a
renewal process. Let Rn denote the reward accrued in the nth
renewal in the renewal process underlying the SMDP. Also,
let E[Rn]≡ E[R] and E[Tn]≡ E[T]. The average reward for
the SMDP can be shown via the RRT to be : ρ = E[R]/E[T]
where (the action a in each state i is defined by the policy
under consideration)

E[R] = ∑
i∈S

Π(i) ∑
j∈S

p(i,a, j)r(i,a, j) and

E[T] = ∑
i∈S

Π(i) ∑
j∈S

p(i,a, j)t(i,a, j).

The natural definition for the asymptotic variance is defined
in (4) below. From the RRT, we know that with probability

529

Gosavi

1 (w.p.1), limt→∞
N(t)

t = 1
E[T] using which we can work out

the following:

σ
2 ≡ lim

t→∞

∑
N(t)
n=1 [Rn−ρTn]

2

t
(4)

= lim
t→∞

N(t)

∑
n=1

[
R2

n−2ρTnRn +ρ2T 2
n

N(t)

]
N(t)

t

=
E[R2]
E[T]

−2ρ
E[T ·R]

E[T]
+ρ

2 E[T 2]
E[T]

(w.p.1)

=
E[R2]
E[T]

−2ρ
E[T]E[R]

E[T]
+ρ

2 E[T 2]
E[T]

(since T and R independent)

=
E[R2]
E[T]

−2ρ
2E[T]+ρ

2 E[T 2]
E[T]

,

where

E[R2] = ∑
i∈S

Π(i) ∑
j∈S

p(i,a, j)r2(i,a, j) and

E[T 2] = ∑
i∈S

Π(i) ∑
j∈S

p(i,a, j)t2(i,a, j).

Using E[R],E[R2],E[T], and E[T 2] one can define the vari-
ance of the SMDP. Then if ρ∗ denotes the average re-
ward of the policy that optimizes a variance-penalized
SMDP, then the Bellman equation for the variance-penalized
SMDP can be obtained by replacing the indicator func-
tion in the corresponding equation for downside risk by
(r(i,a, j)−ρ∗t(i,a, j))2.

5 CONCLUSIONS

This paper presented an empirical study of (i) the use of
different step-sizes in discounted RL, (ii) the use of shortest
stochastic paths in average reward RL, and (iii) the notion of
survival probability or downside risk in RL. The empirical
study with the step size (Section 2) indicates that the 1/k-rule
does not appear to be a reliable or robust choice even on very
small problems, and that the (a/b+ k)-rule performs very
well on small problems, but the values of a and b need to
be determined. The log-rule performs reasonably well, and
its advantage is that it does not have any tuning parameters.
The empirical study with the stochastic paths (Section 3)
indicates that using SSP grounding, one obtains reasonable
approximations of the actual value function. Our empirical
results do point to the need for studying how much deviation
can be tolerated from Bellman optimality. Finally, in Section
4, we present a new Q-Learning algorithm that allows the
optimization of a survival-probability-penalized objective
function. Numerical results on small test problems indicate

Table 3: This table lists the ρ , DR and φ values of all the
policies along with the value of Q∞(i∗,a∗); we used i∗ = 1
and a∗ = 1. The values in bold are those for the optimal
policy.

µ ρµ DRµ φ µ Q(i∗,a∗)
md p5 (1,1) 7.3714 0.5714 6.2286 6.3340

(1,2) 3.84 0.8800 2.0800 -
(2,1) 7.68 0.8 6.08 -
(2,2) 5.6667 0.9333 3.8 -

md p6 (1,1) 7.7143 0.4 6.9143 6.9545
(1,2) 3.84 0.88 2.08 -
(2,1) 7.84 0.72 6.4 -
(2,2) 5.6667 0.9333 3.8 -

md p7 (1,1) 7.5429 0.1714 7.2 7.2097
(1,2) 4.08 0.72 2.64 -
(2,1) 7.84 0.72 6.4 -
(2,2) 5.866 0.9333 4.000 -

md p8 (1,1) 4.2 0.8286 2.5429 -
(1,2) 6.72 0.88 4.96 -
(2,1) 5.88 0.84 4.2 -
(2,2) 7 0.8667 5.266 5.3043

that the algorithm performs well. A theoretical study of
this algorithm is a topic for future research.

A APPENDIX

We present some details of the Q-Learning algorithm used
for average reward (Gosavi 2004b).
Step 1. Set all Q(l,u)← 0. Set k, the number of state
changes, to 0. Set ρk, the estimate of the average reward
per transition in the kth transition, to 0. Also set W to
0. Run the algorithm for kmax iterations, where kmax is
sufficiently large. Start system simulation at any arbitrary
state. Select some state to be a special state s∗.
Step 2. Let the current state be i. Select action a with
a probability of 1/|A (i)| where A (i) denotes the set of
actions allowed in state i. A greedy action in state i is the
action associated with the highest Q-value for i.
Step 3. Simulate action a. Let the next state be j. Let
r(i,a, j) be the immediate reward earned in going to j from
i under a. Then update Q(i,a) as follows:

Q(i,a)← (1−α(k))Q(i,a)+α(k)
[
r(i,a, j)−ρ

k +M j
b

]
,

where M j
b = 0 if j = s∗ (this is called SSP grounding) and

M j
b = maxb∈A (j) Q(j,b) otherwise.

Step 4. If a greedy action was selected in Step 2, then
increment W as follows: W ←W +r(i,a, j) and then update

530

Gosavi

ρk as follows:

ρ
k+1 = (1−β (k))ρk +β (k)

W
k

Step 5. If k < kmax, set i← j, k← k + 1, and then go to
Step 2. Otherwise, go to Step 6.
Step 6. For each state i, select µ(i) ∈ argmaxa∈A (i)Q(i,a).
The policy (solution) generated by the algorithm is µ . Stop.

REFERENCES

Bertsekas, D. 1995. Dynamic programming and optimal
control. Belmont: Athena.

Borkar, V. 2002. Q-learning for risk-sensitive control. Math-
ematics of Operations Research 27(2):294–311.

Borkar, V. S. 1998. Asynchronous stochastic approximation.
SIAM Journal of Control and Optimization 36 No 3:840–
851.

Borkar, V. S., and S. Meyn. 2000. The ODE method for con-
vergence of stochastic approximation and reinforcement
learning. SIAM Journal of Control and Optimization 38
(2):447–469.

Even-Dar, E., and Y. Mansour. 2003. Learning rates for Q-
learning. Journal of Machine Learning Research 5:1–
25.

Filar, J., L. Kallenberg, and H. Lee. 1989. Variance-penalized
Markov decision processes. Mathematics of Operations
Research 14(1):147–161.

Geibel, P., and F. Wysotzki. 2005. Risk-sensitive reinforce-
ment learning applied to control under constraints. Jour-
nal of Artificial Intelligence Research 24:81–108.

Gosavi, A. 2004a. A reinforcement learning algorithm based
on policy iteration for average reward: Empirical re-
sults with yield management and convergence analysis.
Machine Learning 55(1):5–29.

Gosavi, A. 2004b. Reinforcement learning for long-run
average cost. European Journal of Operational Re-
search 155:654–674.

Gosavi, A. 2006. A risk-sensitive approach to total produc-
tive maintenance. Automatica 42:1321–1330.

Gosavi, A. 2008. Markov decision processes subject to semi-
variance risk. Working paper at University at Buffalo,
SUNY, ISE Department.

Gosavi, A., and S. Meyn. 2008. The variance-penalized
Bellman equation. Working paper at SUNY Buffalo
and University of Illinois at Urbana-Champaign.

Grossi, P., and H. Kunreuther. 2005. Catastrophe modeling:
A new appraoch to managing risk. Springer.

Heger, M. 1994. Consideration of risk in reinforcement
learning. Proceedings of the 11th International Con-
ference on Machine Learning:105–111.

Markowitz, H. 1952. Portfolio selection. Journal of Fi-
nance 7(1):77–91.

Puterman, M. L. 1994. Markov decision processes. New
York: Wiley Interscience.

Ross, S. M. 1997. Introduction to Probability Models. Aca-
demic Press, San Diego, CA, USA.

Sato, M., and S. Kobayashi. 2001. Average-reward rein-
forcement learning for variance-penalized Markov deci-
sion problems. In Proceedings of the 18th International
Conference on Machine Learning, 473–480. Morgan
Kauffman.

Sutton, R., and A. G. Barto. 1998. Reinforcement learning:
An introduction. Cambridge, MA, USA: The MIT Press.

Watkins, C. 1989, May. Learning from delayed rewards.
Ph. D. thesis, Kings College, Cambridge, England.

AUTHOR BIOGRAPHY

ABHIJIT GOSAVI is an Assistant Professor in the
Department of Engineering Management at the Missouri
University of Science and Technology. His research
interests lie in simulation-based optimization, supply chain
management, and lean manufacturing. He is a member
of IEEE, ASEE, POMS, IIE and INFORMS. His email
address for these proceedings is <gosavia@mst.edu>.

531

