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ABSTRACT

In this paper, we consider the optimization of service rates
in queueing systems, especially in closed Jackson networks.
The optimization criterion is the customer-average perfor-
mance, which is another important performance metric com-
pared with the traditional time-average performance. Based
on the methodology of perturbation analysis, we can derive
a performance difference equation when the service rates
are changed. With this difference equation, we find the
optimal service rates have a Max-Min property, i.e., the
optimal service rates can be chosen from its maximal or
minimal value. This property can reduce the complexity of
this type of optimization problems. Moreover, we also prove
the max-min optimality is valid for both state-dependent
service rates and load-dependent service rates in queueing
systems.

1 INTRODUCTION

Perturbation analysis (PA) is an important theory for the
performance optimization of discrete event dynamic systems
(DEDS). It gives an efficient way to estimate the performance
gradient with respect to system parameters (e.g., the service
rates of servers in queueing systems) based on a single
sample path (Cao 1994, Cassandras and Lafortune 1999,
Glasserman 1991, Gong and Ho 1987, Ho and Cao 1991,
Ho, Cao, and Cassandras 1983). With the estimated perfor-
mance gradients, the gradient-descent algorithms can be used
to optimize the system parameters (Chong and Zak 2001).
The traditional PA theory of queueing systems is extended
to Markov systems in the past decade. With the PA theory
of Markov systems (we also call it Markov performance
potential theory), many new insights into Markov decision
processes (MDP) are obtained from a new point of view
(Cao and Chen 1997, Cao 2003). Although the perturba-

tions in queueing systems are continuous in nature and those
in Markov systems are discrete, Xia and Cao (2006b) estab-
lish the relationship between these two theories. It bridges
the gap between PA theory in these two systems. Based
on this relationship, we can develop the parallel results
between these two theories, such as the performance differ-
ence equations and policy iteration algorithms to optimize
the service rates under the customer-average performance
criterion in queueing systems (Xia, Chen, and Cao 2008).

In most of the optimization algorithms, time-average
performance is used as the performance metric of queue-
ing systems. In fact, customer-average performance is also
an important performance metric in queueing systems. It
quantifies the system performance averaged by the number
of served customers and reflects the idea of “customer-
oriented”, which is very popular in many service industries.
In practice, many performance measurements belong to the
customer-average performance, such as the average waiting
time of each customer in a banking system, the probability
of a packet successfully reaching the destination node in a
wireless communication network, and so on. On the other
hand, to the best of our knowledge, there seems not to exist
any algorithm for the customer-average performance. More-
over, by a numerical experiment presented in this paper we
find that the algorithm for time-average performance can not
be directly used to optimize the customer-average perfor-
mance. Therefore, it is desirable to study the optimization
of service rates under the customer-average performance
criterion.

In this paper we consider the optimization of service
rates in a closed Jackson network. The objective is to
change the service rates to achieve the optimal customer-
average performance. We study the optimization of two
types of service rates, state-dependent service rates and
load-dependent service rates. With the performance dif-
ference equation in PA theory, we prove that the service
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rates have the Max-Min optimality when the performance
function satisfies some properties. It means that we only
need to choose the maximal or minimal values of service
rates during the optimization of this type of problems. It
can greatly reduce the complexity of optimization problems.
The Max-Min optimality of service rates is similar to the
results of Ma and Cao (1994), Yao and Schechner (1989).
But in this paper the optimization criterion is customer-
average performance, which is different from the time-
average performance discussed by Ma and Cao (1994),
Yao and Schechner (1989). Moreover, the previous articles
(Ma and Cao 1994, Yao and Schechner 1989) only discuss
the load-dependent service rates. Here we prove the Max-
Min optimality for both state-dependent service rates and
load-dependent service rates. Furthermore, in this paper we
prove the Max-Min optimality based on the difference equa-
tion in PA theory with a very clear and concise manner. The
proofs of Ma and Cao (1994), Yao and Schechner (1989)
are much more difficult respectively from the performance
gradients and linear programming. The performance differ-
ence equation and policy iteration used in this paper give
another way to do the optimization of queueing systems.

The remainder of the paper is organized as follows. In
Section 2 we give an introduction of PA theory in queue-
ing systems related to this paper. Section 3 discusses the
optimization problems in closed Jackson networks. We
prove the Max-Min optimality of service rates based on
the performance difference equation. The policy iteration
algorithm is also introduced to do the optimization. In Sec-
tion 4 we give the numerical experiments to demonstrate
the optimality of Max-Min service rates. The difference
between customer-average performance and time-average
performance is also demonstrated by numerical examples.
Finally, we conclude this paper in Section 5.

2 BACKGROUND ON PERTURBATION ANALYSIS

In this section, we give an introduction of PA theory in
queueing systems, especially the concept of perturbation
realization factors and performance sensitivity equations in
queueing systems.

Consider a closed Jackson network consisting of M
servers (Chen and Yao 2001, Gordon and Newell 1967).
The number of total customers in the network is N. After
the service of a customer has been completed at server i,
this customer will depart from server i and enter server
j with routing probabilities qi j, i, j = 1,2, · · · ,M. Without
loss of generality, we assume qii = 0. The service discipline
in each server is FCFS (First-Come First-Served) and the
buffer size is infinite. Let ni be the number of customers
at server i, and set n = (n1,n2, · · · ,ni, · · · ,nM). The service
requirement of each customer at every server is assumed to
be exponentially distributed with mean one, and the service
rate of server i depends on n and is therefore denoted as

μi,n, i = 1,2, · · · ,M. It is easy to see that n is the system
state, and the state space is S = {all n : ∑M

i=1 ni = N}. We
call this network a state-dependent closed Jackson network.

Let n(t) denote the system state at time t and
f (n) : S → R = (−∞,∞) be the cost function. Let TL

be the Lth service completion time of the network (count-
ing all the service completions of servers in the network).
The time-average performance is defined as

ηT = lim
L→∞

∫ TL
0 f (n(t))dt

TL
= lim

L→∞

FL

TL
, (1)

where FL :=
∫ TL

0 f (n(t))dt, and the customer-average per-
formance is defined as

η( f ) = lim
L→∞

FL

L
. (2)

We assume that the state process n(t) is ergodic so that the
limits in (1) and (2) exist. The time-average performance is a
traditional metric used in many systems, while the customer-
average performance is also another important performance
metric. These two performance metrics describe different
aspects of the performance in queueing systems and both
are widely used in practical applications. The difference
between them will be discussed later.

We now review the perturbation realization factors in
PA theory. In a closed network, if the service completion
time of a server is delayed by a small amount of time Δ,
we say that the server has a perturbation. This perturbation
will affect the system performance η ( f ). The effect of a
single perturbation Δ of server k when the system is at state
n can be measured by the perturbation realization factor,
which is defined as

c( f )(n,k) = lim
L→∞

lim
Δ→0

E

{
ΔFL

Δ

}

=lim
L→∞

lim
Δ→0

E

{
F ′

L −FL

Δ

}

=lim
L→∞

lim
Δ→0

E

{
1
Δ

(∫ T ′
L

0
f (n′(t))dt −

∫ TL

0
f (n(t))dt

)}
,

(3)

where n′(t) is the state of the perturbed sample path at time
t, T ′

L is the Lth service completion time on the perturbed
sample path. From (3), we define the perturbation realization
probability c(n,k) as a special case of c( f )(n,k) where
f (n) = I(n) ≡ 1 for all n ∈ S . c(n,k) is the probability
with which a perturbation of server k at state n will be
realized at every server of the network ultimately.

With the perturbation realization factors c( f )(n,k), we
may derive the system performance derivative with respect
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to the service rates as follows (Cao 1994).

dη ( f )

dμk,n
= −η(I)

μk,n
π(n)c( f )(n,k), (4)

where η (I) is a special system performance corresponding to
f (n) = I(n)≡ 1 for all n ∈ S , and π(n) is the steady-state
probability of state n. Since η (I) is a special case of η ( f ),
from (2) we have

η(I) = lim
L→∞

∫ TL
0 I(n(t))dt

L
= lim

L→∞

TL

L
. (5)

It is easy to know that η (I) is the reciprocal of average
throughput of the network, i.e.,

ηth = lim
L→∞

L
TL

=
1

η(I) , (6)

where ηth is denoted as the throughput of queueing networks.
With (1), (2), and (5), we have

η( f ) = lim
L→∞

FL

TL

TL

L
= ηT η(I), (7)

which shows the relationship between the customer-average
performance η ( f ) and the time-average performance ηT .
Since the service rates will affect the value of both ηT and
η(I), the optimal values of service rates for η ( f ) and ηT are
generally different. The numerical experiments in Section 4
demonstrate this point.

If we substitute f (n) = I(n) into (4), we get the deriva-
tive equation of η (I) as below.

dη (I)

dμk,n
= −η(I)

μk,n
π(n)c(n,k). (8)

These formulas (4) and (8) are important for the
gradient-based algorithm of PA theory in queueing systems.
We can estimate the performance derivative from sample
paths and use the gradient-descent algorithms to optimize
the system performance through adjusting the service rates
(Cao 1994, Chong and Zak 2001).

3 MAX-MIN OPTIMALITY OF SERVICE RATES

In this section, we consider the optimization problem of
a state-dependent closed Jackson network, where the op-
timization parameters are the service rates μk,n of each
server k at each state n, k = 1,2, · · · ,M, n ∈ S . The ob-
jective is to minimize (or maximize) the customer-average
performance η ( f ). With the notation of Markov decision
processes (Puterman 1994), we can denote U = {μk,n,k =
1,2, · · · ,M,n ∈ S } as a stationary policy based on pa-

rameter μk,n. The total policy space is Ψ = {all U },
which is parameterized by μk,n. The cost function is
f (n),n ∈ S , which may be different for different actions.
Furthermore, we denote the cost function as f (n, �μn), where
�μn := (μ1,n,μ2,n, · · · ,μM,n) is the action at state n. With
this notation, a policy can be denoted as U = {�μn,n ∈S }.

With PA of queueing systems, we can use the perfor-
mance derivative equation (4) to optimize the service rates.
But this type of gradient-descent algorithms has a slow
convergence speed and may be trapped in a local optimum.
In the middle of 90’s of the last century, PA theory has
been extended to Markov systems (Cao and Chen 1997,
Cao 2003). The performance difference equation and pol-
icy iteration algorithm are derived along this direction. But
this methodology can only optimize the traditional time-
average performance. Recently, the performance difference
equation for customer-average performance is also derived
(Xia, Chen, and Cao 2008). It gives a new way to do op-
timization of queueing systems with customer-average per-
formance criterion.

With the relationship formula of perturbation realiza-
tion factors between queueing systems and Markov sys-
tems (Xia and Cao 2006b), researchers derive the customer-
average performance difference equation for queueing
systems. Here we just list the main results with-
out explanation. The detailed proof can be found in
Xia, Chen, and Cao (2008). When the service rates μk,n
of server k at state n is changed to μ ′

k,n, the customer-
average performance of closed Jackson networks will be
changed from η ( f ) to η ′( f ). The performance difference
equation is derived as below.

η ′( f ) −η( f ) = η ′(I)π ′(n)
{−Δμk,n

μk,n
c( f )(n,k)+ h(n)

}
, (9)

where Δμk,n = μ ′
k,n − μk,n, h(n) = f ′(n)− f (n), the super-

script ‘prime’ represents the parameters of the perturbed
system.

If the service rates of all the servers at all the states
have changes, the performance difference equation is derived
similarly as below.

η ′( f )−η( f ) =

η ′(I) ∑
n∈S

π ′(n)

{
M

∑
k=1

−Δμk,n

μk,n
c( f )(n,k)+ h(n)

}
. (10)

Furthermore, with the property of perturbation realiza-
tion factors c( f )(n,k), equation (10) can be simplified as
follows (Xia, Chen, and Cao 2008).

η ′( f )−η( f ) = η ′(I) ∑
n∈S

π ′(n)

{
f ′(n)−

M

∑
k=1

μ ′
k,n

μk,n
c( f )(n,k)

}
.

(11)

511



Xia et al.

With these performance difference equations, we can
find the optimal service rates of closed Jackson networks
have a Max-Min optimality if the cost functions satisfy
some requirements. The detailed Max-Min optimality is
described as below.

Theorem 1 (Max-Min Optimality for State-
Dependent Service Rates) In a state-dependent closed
Jackson network, if f (n) = l0(n)+ ∑M

k=1 l(n,k)μk,n, l0(n)
and l(n,k) are constants, i.e., f (n) changes linearly with
service rates μk,n, then the optimal service rate of each
server can be either maximal or minimal.
Proof. In a state-dependent closed Jackson network, when
the service rate of server k changes from μk,n to μk,n +Δμk,n,
the cost function f at state n also changes from f (n) to
f ′(n). Since f (n)= l0(n)+∑M

k=1 l(n,k)μk,n, we have h(n)=
f ′(n)− f (n) = Δμk,nl(n,k), where l(n,k) is a constant which
means the changed cost function per unit changed service
rate Δμk,n. So, the performance difference equation (9)
becomes

η ′( f ) −η( f ) = η ′(I)π ′(n)
{−Δμk,n

μk,n
c( f )(n,k)+ h(n)

}

= η ′(I)π ′(n)Δμk,n

{
−c( f )(n,k)

μk,n
+ l(n,k)

}
. (12)

With (12), we can prove Theorem 1 easily. We first assume
that the optimal service rate μk,n is neither maximal nor
minimal. Since η ′(I) and π ′(n) are always positive, from

(12) it is easy to know that
{

l(n,k)− c( f )(n,k)
μk,n

}
should be

zero (otherwise we can change μk,n to get a better η ′( f )).

Since
{

l(n,k)− c( f )(n,k)
μk,n

}
is zero, it is obvious that the

maximal or minimal value of μk,n can also achieve the
optimal performance. Therefore, it is proved that we can
get the optimal performance from the maximal or minimal
values of service rates. �

This theorem extends the similar results of
Ma and Cao (1994), Yao and Schechner (1989), which
discuss the optimization of the time-average performance
of load-dependent networks, to the optimization of the
customer-average performance of state-dependent closed
networks. It implies that in the performance optimization
of closed queueing networks, if f changes linearly with
service rates, we only need to consider the maximal or
minimal service rates for every state n. So, the action space
is reduced to 2M. Using this property may speed up the
optimization procedure greatly. Moreover, from ( 12) it is
easy to know that η ( f ) is monotone with respect to μk,n if
we only change μk,n and fix other parameters.

So far, we have discussed the optimization of state-
dependent service rates in closed Jackson networks. The
Max-Min optimality of service rates have been proved and it
can be used to simplify the optimization procedure. With the

performance difference equations (9) and (11), the policy it-
eration type of algorithms can be further derived. This type of
algorithms can be implemented on-line based on the estima-
tion of realization factors on a single sample path. The details
of algorithm can be found in Xia, Chen, and Cao (2008)
and we will use it to do numerical experiments in Section 4.
Below, we further discuss the optimization problem for load-
dependent service rates in closed Jackson networks. We
use the similar procedure to prove the Max-Min optimality
for load-dependent service rates.

In a load-dependent closed Jackson network, the service
rate of a server k is dependent only on the queue length at
server k. We denote the load-dependent service rates as μ k,nk ,
k = 1,2, · · · ,M, nk = 0,1, · · · ,N. Obviously, it is known
that μk,nk ≡ 0 when nk = 0. As we know, the steady-state
distribution of closed Jackson network has a product-form
solution. With the product-form solution and customer-
based aggregation of realization factors, the performance
difference equation is derived as follows when the service
rates are changed from μk,nk to μ ′

k,nk
for a particular server

k and nk = 1,2, · · · ,N (Xia and Cao 2006a).

η ′( f )−η( f ) =

η ′(I)
N

∑
nk=1

π ′(nk)
{−Δμk,nk

μk,nk

c̃( f )(nk,k)+ h̃(nk,k)
}

, (13)

where c̃( f )(nk,k) := ∑
n∈Snk

π(n|nk)c( f )(n,k), h̃(nk,k) :=

∑
n∈Snk

π(n|nk)h(n,k) = ∑
n∈Snk

π(n|nk)[ f ′(n)− f (n)], Snk is

the set of states where the number of customers at server
k is equal to nk.

With the performance difference equation (13), we can
also derive the Max-Min optimality of service rates in a load-
dependent closed Jackson network. The proof is similar to
that of Theorem 1 and it is neglected for the simplicity of
paper.

Theorem 2 (Max-Min Optimality for Load-
Dependent Service Rates) In a load-dependent closed
Jackson network, if f (n) = l0(n)+∑M

k=1 l(nk,k)μk,nk , l0(n)
and l(nk,k) are constants, i.e., f (n) changes linearly with
service rates μk,nk , then the optimal service rate of each
server can be either maximal or minimal.

With Theorem 2 we know if the cost function is linear
with the service rates, we only need to choose the maximal
or minimal service rates. It is similar to Theorem 1. These
optimality properties can greatly simplify the optimization
complexity of closed Jackson networks. With these theo-
rems, we can only focus on the maximal or minimal values
of service rates when we apply any optimization algorithm.
This is also called the Bang-Bang control in the area of
control science.
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Table 1: Optimal service rates of a state-dependent closed Jackson network.

n μ0
1,n μ0

2,n μ0
3,n Dμ1,n Dμ2,n Dμ3,n μ∗

1,n μ∗
2,n μ∗

3,n μ ′∗
1,n μ ′∗

2,n μ ′∗
3,n

(0,0,5) 0.20 0.20 0.30 [0.01,2.00] [0.03,1.50] [0.09,3.00] 0.01 0.03 3.00 0.01 0.03 0.09
(0,1,4) 0.20 0.20 0.30 [0.02,2.50] [0.02,1.50] [0.03,3.50] 0.02 0.02 3.50 0.02 0.02 0.03
(0,2,3) 0.20 0.10 0.30 [0.01,1.50] [0.05,2.50] [0.05,4.50] 0.01 2.50 0.05 0.01 0.05 0.05
(0,3,2) 0.30 0.30 0.25 [0.03,1.50] [0.06,3.00] [0.01,1.50] 0.03 3.00 0.01 0.03 0.06 0.01
(0,4,1) 0.20 0.35 0.20 [0.02,2.00] [0.09,2.00] [0.04,2.00] 0.02 2.00 0.04 0.02 0.09 0.04
(0,5,0) 0.10 0.40 0.40 [0.05,1.50] [0.04,2.50] [0.01,3.00] 0.05 2.50 0.01 0.05 0.04 0.01
(1,0,4) 0.10 0.30 0.15 [0.04,2.00] [0.05,3.00] [0.06,2.00] 2.00 0.05 0.06 2.00 0.05 0.06
(1,1,3) 0.20 0.25 0.25 [0.05,2.50] [0.02,3.50] [0.08,1.50] 2.50 0.02 0.08 2.50 0.02 0.08
(1,2,2) 0.20 0.10 0.30 [0.02,2.00] [0.06,1.50] [0.04,2.50] 2.00 0.06 0.04 2.00 0.06 0.04
(1,3,1) 0.30 0.30 0.25 [0.06,1.50] [0.03,2.00] [0.02,2.50] 1.50 0.03 0.02 1.50 0.03 0.02
(1,4,0) 0.20 0.25 0.30 [0.04,2.50] [0.05,3.50] [0.07,3.50] 2.50 0.05 0.07 2.50 0.05 0.07
(2,0,3) 0.25 0.10 0.10 [0.06,1.00] [0.03,3.50] [0.01,3.00] 1.00 0.03 3.00 1.00 0.03 0.01
(2,1,2) 0.10 0.30 0.35 [0.07,1.50] [0.04,4.00] [0.06,2.00] 1.50 0.04 2.00 1.50 0.04 0.06
(2,2,1) 0.10 0.25 0.15 [0.08,2.50] [0.01,2.00] [0.05,3.50] 2.50 0.01 0.05 2.50 0.01 0.05
(2,3,0) 0.15 0.30 0.30 [0.07,2.00] [0.02,1.50] [0.01,4.00] 2.00 1.50 0.01 2.00 0.02 0.01
(3,0,2) 0.20 0.20 0.10 [0.03,2.00] [0.01,1.00] [0.04,2.00] 2.00 0.01 2.00 2.00 0.01 0.04
(3,1,1) 0.35 0.10 0.20 [0.05,2.50] [0.01,2.00] [0.08,4.00] 2.50 0.01 4.00 2.50 0.01 0.08
(3,2,0) 0.25 0.20 0.20 [0.09,4.50] [0.06,3.50] [0.06,3.50] 4.50 0.06 0.06 4.50 0.06 0.06
(4,0,1) 0.40 0.30 0.20 [0.01,3.50] [0.08,1.50] [0.09,2.00] 3.50 0.08 2.00 3.50 0.08 0.09
(4,1,0) 0.35 0.10 0.20 [0.06,4.00] [0.04,3.00] [0.04,2.50] 4.00 0.04 0.04 4.00 0.04 0.04
(5,0,0) 0.30 0.20 0.10 [0.04,4.50] [0.06,3.50] [0.05,2.00] 4.50 0.06 0.05 4.50 0.06 0.05

4 NUMERICAL EXPERIMENTS

In this section, we use the policy iteration algorithm
to optimize the service rates of closed Jackson net-
works. The numerical results demonstrate the Max-Min
optimality of service rates. The detailed implementa-
tion of policy iteration algorithm is neglected for the
length limitation of paper. Readers who are interested
can refer the literature Xia, Chen, and Cao (2008) and
Xia and Cao (2006a), which are respectively for state-
dependent and load-dependent closed Jackson networks.

First, we consider the optimization of state-dependent
service rates in closed Jackson network. The number of
servers is M = 3 and the number of customers is N = 5.
The routing probability matrix is

Q =

⎡
⎣ 0 0.4 0.6

0.7 0 0.3
0.2 0.8 0

⎤
⎦ .

The initial service rates μ 0
k,n are listed in Table 1. The

cost function is defined as f (n) = n1 + r ·∑3
k=1 μk,n, where

r is the cost of unit service rate and we set r = 1 in this
example. In fact, r can be a set of values which represent
the different costs at different states. The objective is to

minimize the customer-average performance η ( f ) through
adjusting the service rates μk,n, k = 1,2,3 and n ∈ S . The
value domains of service rates are listed as Dμk,n in Table 1.

With the policy iteration algorithm for customer-average
performance (Xia, Chen, and Cao 2008), we find the algo-
rithm iterates some times and locates the optimal solu-
tion finally. The optimal service rates μ ∗

k,n are listed in
Table 1. The minimal customer-average performance is
η∗( f ) = 1.1601. From Table 1 we can also see that the
optimal service rates are either maximal or minimal. It
demonstrates the correctness of Theorem 1.

As a comparison, we use the traditional algorithms
in Markov decision processes to optimize the time-average
performance of this problem. With this performance metric,
we obtain the optimal service rates μ ′∗

k,n for time-average
performance, which are listed in Table 1. The corresponding
η( f ) = 1.3845, which is larger than the optimal value η ∗( f ) =
1.1601. The optimal service rates μ ′∗

k,n for time-average
performance are also different from the optimal service rates
μ∗

k,n for customer-average performance. This experiment
illustrates that the algorithm for time-average performance
can not be directly used to optimize the customer-average
performance. These two performance metrics characterize
the different aspects of optimization problems.
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Furthermore, in order to more clearly illustrate the
difference between customer-average performance and time-
average performance, we give another numerical example
as follows. Consider a cyclic network with 2 servers. The
number of customers is N = 3. For simplicity, we can use n1

to represent the system state n. The service rates of server
2 is fixed at μ2,n1 = 1, n1 = 0,1,2,3. The service rates of
server 1 is μ1,n1 = 1 when n1 = 0,1,2, and μ1,n1 ∈ [0.5,2]
when n1 = 3. The cost function is f (0) = f (1) = f (2) = 1,
f (3) = −μ1,3(1− μ1,3)2. The objective is to choose an
optimal μ1,3 to minimize the system performance η ( f ).
With numerical computation, we obtain the performance
curve as Figure 1. It is obvious that the optimal μ1,3 is
2 for η ( f ), while the optimal μ1,3 is 0.5 for ηT . This
example clearly demonstrates the difference between these
two performance metrics.

0.5 1 1.5 2
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

sy
st

em
 p

er
fo

rm
an

ce

η
T

η(f)

μ
1,3

 

Figure 1: Difference between customer-average perfor-
mance and time-average performance.

The above numerical experiment is about the state-
dependent service rates. The situation for load-dependent
service rates is similar and here is not presented for the paper
concision. Interested readers can refer the numerical exper-
iment by Xia and Cao (2006a), which can also demonstrate
the Max-Min optimality of load-dependent service rates.

5 CONCLUSION

In this paper we discuss the service rates optimization
problem in closed Jackson networks. With the difference
equation of customer-average performance, we prove that
the optimal service rates have a so-called Max-Min opti-
mality. This optimality is valid for both state-dependent
and load-dependent closed Jackson networks. With the
Max-Min optimality, we only need to choose the maximal
or minimal values for service rates in optimization proce-

dure. It simplifies greatly the complexity of such type of
optimization problems.
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