
DISCRETE STOCHASTIC OPTIMIZATION USING LINEAR INTERPOLATION

Honggang Wang
Bruce W. Schmeiser

School of Industrial Engineering
Purdue University

West Lafayette, IN 47907, U.S.A.

ABSTRACT

We consider discrete stochastic optimization problems where
the objective function can only be estimated by a sim-
ulation oracle; the oracle is defined only at the discrete
points. We propose a method using continuous search with
simplex interpolation to solve a wide class of problems.
A retrospective framework provides a sequence of deter-
ministic approximating problems that can be solved using
continuous optimization techniques that guarantee desirable
convergence properties. Numerical experiments show that
our method finds the optimal solutions for discrete stochas-
tic optimization problems orders of magnitude faster than
existing random search algorithms.

1 INTRODUCTION

Many methods have been developed to solve discrete
stochastic optimization (DSO) problems as discussed in
(Andradóttir 1998, Fu et al. 2005, Swisher et al. 2000).
Most of the approaches for large-size DSO problems seek to
find the optimum through the discrete space using random
search.

1.1 Problem Statement

We consider discrete optimization problems of the form
(IP) find x∗ such that x∗ ∈ argmin

x∈X
g(x)

where g is a real-valued function on X, X⊆ Zd and Zd is
the set of d-dimensional integer vectors.

The discrete DSO problems of interest have the form
of IP with the following three assumptions:

Assumption 1. The function g is bounded on any closed
subset of X.

Assumption 2. There is a simulation oracle that returns
Y (x,ω), for every x ∈ X and the ω is the random vec-

tor defined on some probability space, such that Y (x) =
∑

k
i=1 Y (x,ωi)/k → g(x) almost surely, as k → ∞, ∀ x ∈ X.

Assumption 3. There exists an optimum set M∗, such that
M∗ 6= /0 and ∀x∗ ∈M∗, g(x∗) is finite.

We also need following defintions to define our problem
statement.

Definition 1. The local neighborhood of an integer point
x ∈ X is N(x) = {x′ : x′ ∈ X, ||x′− x|| ≤ 1}, where X is the
feasible set of function g and ||x|| is the Euclidean norm of
vector x.

Definition 2. x∗ ∈X is called a local optimizer of a function
g in a feasible region X, if g(x′)≤ g(x) ∀x′ ∈ N(x∗)∩X.

Definition 3. The optimal set M∗ of a function g is the set
of all local optimizers of g over the feasible set X.

We want to design algorithms to find one of the local
optimizers x∗ in the optimal set M∗ of objective function
g over set X, given a simulation oracle Y (x,ω) provided
that the sample mean of Y (x) consistently estimates g(x)
for all x ∈ X. Thus, we define our problem statement in a
stochastic form of IP:

(ISP) find an x∗ that minimizes g locally, provided that
a simuluation oracle Y consistently estimates g.

1.2 Background and Motivation

In many practical applications of stochastic optimization,
the objective function is usually estimated by an expensive
simulation process and the problem IP itself is NP-hard.
For instance, consider a classical (s,S) inventory problem
(Pichitlamken and Nelson 2003, Koenig and Law 1985),
where s is the reorder point and S is the order-up-to level.
Assume that the level of inventory of units is periodically
reviewed, we want to find the inventory levels of units

502 978-1-4244-2708-6/08/$25.00 ©2008 IEEE

Proceedings of the 2008 Winter Simulation Conference
S. J. Mason, R. R. Hill, L. Mönch, O. Rose, T. Jefferson, J. W. Fowler eds.

Wang and Schmeiser

of products for a manufacturing plant such that it yields
the maximum expected profits. If the production times
are truncated normal distributions and the demand times
and quantities are distributed exponentially and uniformly
respectively, then the problem cannot be solved analytically.

The objective function is not available analytically but
can be evaluated with noise by simulating the stochastic
system. The simulation evaluation, however, is computa-
tionally expensive and returns only the estimates of the
function with limited sample size. One wants to limit the
number of function evaluations while get the function es-
timates at a high-level accuracy. A continuous search can
save computing iterations with the guided improving direc-
tions. Can we search the discrete space “continuously” by
creating gradient-type directions?

1.3 Proposed Method

We propose a continuous search method with linear inter-
polation for DSO problems. Instead of random search, we
search the optimal solutions through a constructed contin-
uous space. Piecewise-linear interpolation creates a con-
tinuous response surface that agrees with g at all feasible
points in X. We use retrospective optimization approach to
solve the constructed continuous stochastic problem with
nonlinear derterministic optimization tools.

Kriging (Biles et al. 2007, Huang et al. 2006) is
another approach to stochastic optimization via simulation
that relies on interpolation of the response surface.

2 CONSTRUCTION OF CONTINUOUS RESPONSE
USING LINEAR INTERPOLATION

A continuous response surface that connects all integer
response points of ISP reveals the curvature information
of its objective function g. This curvature of g often helps
search algorithms mover faster toward the optimum of g.
Simplex interpolation creates piecewise-linear continuous
surface fast and offers nice properties.

2.1 Continuous Relaxation

To do continuous search in the solution space we create
a continuous response surface for the discrete problem IP.
Nonetheless the objective function in IP or in ISP is often
defined at x ∈ X in the discrete space. Doing continuous
relaxation by dropping the integral constraints on these
variables is typically not applicable because a fractional
number of machines or workers does not make any sense in
real world. A half of machine or 1.4 workers or machines
are not defined in our simulation model.

Although the function g is not defined at non-integer
points, we like to be able to search on these fractional points,
since that provides us the possibility using the faster and

more-reliable continuous search methods to solve discrete
optimization problems. We want to define, for instance,
what x = {4.6,2.3,0.8} means in an integer parameter set-
ting problem. How can 4.6 machines be simulated in the
simulation model? Some type of continuous interpolation is
required on the integral points. Coupling with data interpo-
lation, we create a continuous function f : Q→R,Q⊆Rd

and Q
⋂

Zd = X, such that f (z) = g(z), ∀z ∈X. The origi-
nal integer problem is relaxed in the sense that the domain
of the objective function of IP is now a connected subset Q
in Euclidean space Rd . This relaxation is different from the
usual continuous relaxation, since except the grid integral
points all the continuous points do not have any real val-
ues and physical meanings in our problems. The function
values are created at fractional points only for the purpose
of continuous search.

2.2 Multiple-Dimensional Continuous Interpolation

In multiple-dimensional Euclidean space, interpolating data
on grid points is an easy way to create a continuous function
with desirable features through the whole space. Data
interpolation provides a continuous function that agrees
with true function values g at every integral point x ∈ X.
The extreme points in the domain of the interpolated function
are always integral point in X.

We can use multi-linear interpolation (Weiser and Zaran-
tonello 1988) on the entire unit cube, however, the dimen-
sionality issue implies that d-cube interpolation may con-
sume a lot of computing resource, as the number of vertices
of a unit hyper-cube is 2d . A simplex interpolation is a
faster alternative, because it requires only d +1 vertices for
calculating the function value at any point x in that simplex.

2.3 Simplex Piecewise-Linear Interpolation

We use the method described in (Weiser and Zarantonello
1988) and (Rovatti et al. 1998) to interpolate the
integer-ordered data on every feasible simplex defined by
integer vertices in X. The interpolation partitions the real
set Q to a collection of closed simplices {Si}i∈K , where Si
denotes a unit simplex defined by neighboring integer points
in X. We define the simplex-interpolation routine as follows.

Routine SI
Given: A point x ∈Q and a function g on X;
Return: f (x).

(i) Locate the unit cube containing x by identifying
the “lower left” vertex of the cube, which is bxc;

(ii) Let x′ = x−bxc, a point in the unit cube;
(iii) Sort the components of x′ to obtain x′p(1) ≥

x′p(2) ≥ . . .≥ x′p(d). As a permutation of {1, . . . ,d},
{p(1), p(2), . . . , p(d)} defines a simplex enclosing

503

Wang and Schmeiser

x with the vertices x0,x1, . . . ,xd , where x0 = bxc,
xi = xi−1 + ei, and ei is the unit vector with the
p(i)th element equal to 1, for i = 1,2, . . . ,d;

(iv) construct the function f using

f (x) =
d

∑
i=0

[
g(xi)(x

′p(i)− x′p(i+1))
]
, (1)

where x′p(0) = 1 and x′p(d+1) = 0. For a fixed simplex, the
integral components bxc of a design point x are constant
integers; thus Equation 1 is a linear function of x.

Replacing the deterministic function values g(xi) in
(1) with the stochastic simulation oracle Y (xi,ω), for i =
0,1, . . . ,d, we obtain the stochastic form to estimate the
function value f (x) at any point x ∈Q. We extend Y (x) to
the real set Q based on simplex-interpolation routine SI

Y (x,ω) =
d

∑
i=0

[
Y (xi,ω)(x′p(i)− x′p(i+1))

]
. (2)

From Assumption 2, Equation (2) allows the consistent
estimation of f (x) at any x ∈ Q using the sample average
Y k(x).

2.4 Constructed Continuous Response Surface

We present some of the properties of simplex interpolation
discussed in (Weiser and Zarantonello 1988) without proofs.

Proposition 1. f (x) = g(x),∀x ∈ X.

Proposition 2. The constructed function f is continuous
and piecewise linear on its domain Q.

Proposition 3. Given a point x in Rd , the simplex enclosing
x created by the interpolation is uniquely identified.

Proposition 4. The set of created simplices is a partition
of the domain Q of f .

The simplex-interpolation also provides following proposi-
tion:

Proposition 5. An integer optimum of g is also an optimal
point of f .

With these properties provided by the simplex inter-
polation, the ISP problem is converted to a continunous
stochastic optimization (CSO) problem with desirable char-
acteristics:

(CSP) Find a local optimizer x∗ of function f over
the feasible set Q, where f can be consistently estimated
by the simulation oracle Y (x,ω), where ω is the random
effects in the simulation model, Q⊆ R, and Q∩Zd = X.

3 RETROSPECTIVE OPTIMIZATION
FRAMEWORK FOR STOCHASTIC PIECEWISE-
LINEAR OPTIMIZATION PROBLEMS

With the construction of continuous response surface us-
ing simplex interpolation, we create a class of continuous
stochastic optimization (CSO) problems of the form CSP.
The objective functions of these CSO problems are contin-
uous and piecewise linear on their domains. The classical
Stochastic Approximation (Kushner and Clark 1978) ap-
proach cannot be applied to these CSO problems due to the
nondifferentiability of objective functions at the boundary
points. Although CSO problems generally are not contin-
uously differentiable, the piecewise linearity makes them
tractable due to the developed theories of nondifferentiable
analysis. In particular if CSO is convex, there are many con-
vex optimization tools adaptable for stochastic settings, e.g.
stochastic subgradient methods (Shor 1985) and conjugate
gradient search (Hiriart-Urruty and Lemarechal 1993).

The Retrospective Optimization (RO, also called sam-
ple average approximation method) approach offers us a
general setting in that we can use deterministic nonlinear
optimization tools for solving a convergent sequence of ap-
proximating problems of CSP. The sequence of the sample
path problems converges to CSP w.p.1 as the sample size
goes to infinity under the Assumption 2.

3.1 The Sample-Path Approximation Approach

Healy and Schruben (1991) propose the retrospective ap-
proach for stochastic optimization. The fundamental idea
of the RO algorithms is simple. It generates a sample of the
random inputs and uses the sample average of system ob-
servations to approximate f in CSP. With a fixed sample of
random vectors, CSP becomes deterministic. One can solve
the approximating problem with deterministic optimization
tools.

As discussed in (Spall 2005), retrospective optimization
approach has some noticeable advantages: (a) there are many
powerful deterministic search methods applicable and robust
optimization tools for handling complex constraints; (b) for
a fixed sample path, it is possible to conduct a large number
of iterations of deterministic search at nominal cost.

Chen and Schmeiser (1994) propose the retrospective
approximation in the context of stochastic root finding.
Instead of solving one sample-path problem, they gener-
ate and solve a sequence of sample-path problems {Pk}
with increasing sample sizes {mk} and decreasing sequence
of tolerance errors. Jin and Schmeiser (2003) develop a
retrospective optimization algorithm to solve continuous
stochastic optimization problems with general constraints.
Shapiro and Wardi (1996) analyze the convergence prop-
erties of a gradient-based implementation of RO method.
Kleywegt et al. (2001) use the RO approach to solving a

504

Wang and Schmeiser

stochastic knapsack problem. They have studied the conver-
gence rates, stopping rules, and computational complexity
of their RO algorithms.

3.2 The Sample-Path Approximation of Problem CSP

Recall that we are interested in solving a CSO problem of
the form CSP: find a local optimizer x∗ of function f over
Q, where f can be estimated by Y (x,ω), ω is the random
effects in the simulation model, the connected set Q⊆Rd ,
and Q∩Zd = X.

We put problem CSP in the RO setting by randomly
generating an independent and identically distributed (i.i.d.)
sample of mk realizations of random vector ω . The sample
path function is denoted as f̂k(x,ξk) = ∑

mk
i=1 Y (x,ω i)/mk and

a deterministic counterpart problem of the kth sample path
is defined as follows.

(Pk) Find a local optimal solution x∗k of f̂k(x,ξk) over
a feasible set Q ⊆ Rd , where ξk = {ω1, . . . ,ωmk

} is inde-
pendently generated realizations of random vector that is
fixed at any feasible point for this particular sample path.

The constructed objective function f̂k of Pk is piecewise
linear, differentiable almost everywhere (nondifferentiable
on a set of Lebesgue measure zero), and consequently the
generalized gradient (Clarke 1990) is well defined at every
feasible point. These properties allow us to adopt nonsmooth
optimization techniques such as bundle methods (Kiwiel
1985) and r-algorithm (Shor 1985) to solve the problem Pk.

Bundle methods basically are descent or ascent meth-
ods using bundles of information, including function values
and generalized gradients of multiple trial points, to cal-
culate the improving direction and the distance to search.
For piecewise-smooth functions, bundle methods have been
proved to converge to a local optimum and many numeri-
cal results show that they are probably the most promising
algorithms for optimizing general nonsmooth nonconvex
functions (Haarala, Miettinen, and Mäkelä 2007).

Shor (1985) created a method using operation of space
dilation in the direction of the difference of two successive
almost-gradients, called r-algorithm. Under some weak
conditions r-algorithm guarantees the local convergence for
piecewise-smooth functions.

There are other methods like sampling gradient method,
quasi-newton BFGS, modified interior point method, etc,
that may solve our sample path problems Pk. But they
may not be efficient for Pk due to nonsmoothness and
nonconvexity of f̂k.

3.3 Retrospectively Optimizing Problem CSP

RO algorithms recursively solve sample path problems
for the estimates of x∗k . The algorithms need to define
rules for creating a sequence of sample path problems.
Typical settings for a RO algorithm include: determining

the increasing sample sizes {mk}; a strategy for sampling
ξk = {ω1, . . . ,ωmk

} across iterations; calculation of a start-
ing solution for each Pk; determining a decreasing sequence
of error tolerance {εk} for sample path problems {Pk}. In
addition, a deterministic method must be chosen to solve
each sample path problem Pk before we develop an efficient
retrospective optimization method.

Seeking an exact solution for each Pk is time consuming
and not necessary since Pk itself is an approximating problem
of true problem CSP. Thus approximated εk-solutions for
those sample path problems are desirable.

4 ALGORITHM DESIGN

4.1 Introduction

The classic steepest-decent method is easy to implement for
optimizing differentiable functions to find stationary points.
Our problem in CSP is not differentiable everywhere thus the
usual gradient-based method may not work. We design an
algorithm using generalized gradient to extend the smooth
descent search for nonsmooth problems. Instead of the
usual gradient we use one arbitrary subgradient in the set
of subdifferentiable to calculate the descent direction. A
generalized-gradient algorithm has the global convergence
for convex problems in general, but it solves the inventory
problem quite efficiently.

Besides the calculation of descent direction, selection of
step sizes is important for the performance of most gradient-
type numerical search algorithms. Due to the discreteness
of the original problem IP, the step sizes for the problem
CSP is not helpful if they get too small. We are searching
for the optimal integer solution not the exact continuous
solution to CSP. Thus we are not quite interested in some
specific points in the domain Q of problem CSP, but the
optimal region or simplex in Q is particularly concerned.

An increasing sequence of sample sizes are determined
to generate sample-path problems {Pk}. Suppose the initial
sample size is m0, we increase the sample size by multiplying
a constant c > 1 but c < 2 so that it increases but not too
fast. In the early search, with a small sample size mk, Pk can
be solved quickly; while within later iterations, with a large
sample size but a better starting solution and information
from past sample paths, Pk still can be efficiently solved.

We want to save the computing time by evaluating few
function values. The simplex linear interpolation approach
allows us to evaluate the function at any continuous point
by simulating (d +1) integer points. For a high dimensional
problem computing time for those function evaluations is still
quite much. Especially at the early stage of solving process
with a small sample size, we can estimate a function value
with partial number of vertices of the associated simplex, i.e.
estimating f (x) with fewer than (d +1) integer vertices of
the simplex enclosing x. Approximating f (x) with a partial

505

Wang and Schmeiser

number of simplex vertices associated is more reasonable
if x is close to the boundary of this simplex.

4.2 A Linear Interpolation Search Algorithm Using
Generalized Gradient

We implement a simplex-interpolation search algorithm
based on the descent method with inexact line search for
the problem CSP.

Algorithm LIS0
Given: a starting point x0 ∈ Q, initial sample size m0, the
initial step size s0, a sample size multiplier c > 1, and
the simulation oracle returning Y (x,ω) for all x ∈ Q and
random vector ω .
Find: an optimal design point x∗ that minimizes g(x)
locally over X.

Step 0 Set the iteration counter k = 0;
Step 1 Generate random inputs ξk = {ω1, . . . ,ωmk

}, in-
dependent of ξ0, . . . ,ξk−1;

Step 2 Search:

(i) Simulate at xk to obtain f̂ (xk) = Y mk(xk,ξk),
and the estimate v̂ of the generalized gradient
v at xk;

(ii) Set i = 0;

(iii) Set xnew = xk;

(iv) Search in direction v̂:
(a) Set i = i+1;

(b) Set s = 2i−1× s0;
(c) Set xold = xnew;
(d) Set xnew = xold + s× v̂/||v̂||;
(e) If xnew /∈Q, project xnew back to Q;
(f) Simulate at xnew with sample size mk
to calculate f̂ (xnew) = Y mk(xnew,ξk);
(g) If f̂ (xnew) < f̂ (xold), go to (a);

(v) Set xk = xold;
If i > 1, go to Step 2;

Step 3 Iterate:

(i) Set k = k +1;

(ii) Set sample size mk = c×mk−1;

(iii) Set xk = xk−1;

(iv) Go to Step 1;

The above algorithm produces a sequence of continuous
solutions {xk} that estimate the true optimal solution of CSP
better as the sample size mk goes larger. We can round xk to
the closest integer solution or pick the best integer solution
from the last RO iteration to get an estimate of the optimal
integer solution of ISP.

5 NUMERICAL EXPERIMENTS

We apply our algorithm to optimize the assemble-to-order
system studied in (Hong and Nelson 2006). The performance
of our linear-interpolation search method is compared with
that of COMPASS by several numerical tests.

5.1 An Assemble-to-Order Inventory Problem

We study the exactly same instance of assemble-to-order
problem as presented in (Hong and Nelson 2006). The
inventory system has eight items I1, I2, . . . , I8 and five cus-
tomers. Customers arrive in Poisson times with different
rates, λ1,λ2, . . . ,λ5, and each of them orders a set of re-
quired key items and optional items. Customer arrives to
check the stock of all of key items; if they are in stock
the customer buys the key items plus the available optional
items, otherwise leaves without an order. Each item has
sale profit pi, holding cost hi and inventory capacity Ci,
i = 1,2, . . . ,8. The production time for item Ii is normally
distributed with mean µi and variance σ2

i truncated at 0,
i = 1,2, . . . ,8.

In each simulation replication we set a warm-up period
of 20 units of time and then average profits over the rest
of time. We want to find the reorder inventory levels
{x1, . . . ,x8} to maximize the expected total profit.

5.2 Experimental Results

Within each sample path, our algorithm uses the common
random numbers and the same sample size for all the
design points visited. The sequence of sample-path problems
increase sample sizes by 10% each time and use the random
initial seed values. We run 10 independent macroreplications
with random starting solutions and different initial seeds
using our LIS0 algorithm. Figure 1 shows 10 independent
simulation runs of our algorithm. The dot-dash line shows
the performance of COMPASS solving the same problem.
Figure 2 (Hong and Nelson 2006) shows the performance
of COMPASS compared to those of simulated annealing
and random search. In the inventory example, for the same
quality of solution COMPASS requires roughly one-hundred
times the computing effort of LISO. COMPASS solves a
transient problem but it cannot optimize the steady-state
systems. Our algorithm solves the steady-state assemble-
to-order problem with similar results to those of the transient
case presented here.

Our LIS0 algorithm finds the optimal solution faster and
more efficiently especially for problems with large feasible
sets. Figure 3 shows its search path for an assemble-to-
order problem with a feasible set of integer vectors [1,1000]8

which is much larger than the previous instance of problem.
Random search methods like COMPASS can be quite slow.
Our algorithm finds the optimal solution of problems having

506

Wang and Schmeiser

0 1 2 3 4 5 6

x 104

20

40

60

80

100

120

140

160

180

Total sim ulation tim e

E
st
im

a
te
d
 e
x
p
e
ct
e
d
 p
ro
!
t

compass

Figure 1: Optimizing an assemble-to-order system

0 0.5 1.0 1.5 2.0 2.5 3.0

 ×7×10 5

70

80

90

100

110

120

130

140

150

160

170

Total Sim ulation Tim e

E
st
im

a
te
d
 o
p
ti
m
a
l p

ro
"
t

CO M PASS
sim ulated annealing
random search

Figure 2: Performance of COMPASS (Hong and Nelson 2006)
compared to random search and simulated annealing

large solution space with a small increase of computing time.

6 SUMMARY

The proposed LIS0 algorithm using linear interpolation gives
promising results in our numerical experiments. Conver-
gence analysis and new algorithm design are our future
work.

0 1 2 3 4 5 6

x 104

60

80

100

120

140

160

180

Total sim ulation tim e

E
st
im

a
te
d
 e
x
p
e
ct
e
d
 p
ro
!
t

Figure 3: Optimizing an large assemble-to-order system

REFERENCES

Andradóttir, S. 1998. A review of simulation optimization
techniques. Proceedings of the 1998 Winter Simulation
Conference:151–158.

Biles, W., J. Kleijnen, and I. Nieuwenhuyse. 2007. Kriging
metamodeling in constrained simulation optimization:
an explorative study. Proceedings of the 2007 Winter
Simulation Conference:355–362.

Chen, H., and B. Schmeiser. 1994. Retrospective approxima-
tion algorithms for stochastic root finding. Proceedings
of the 1994 Winter Simulation Conference:255–261.

Clarke, F. 1990. Optimization and nonsmooth analysis. So-
ciety for Industrial and Applied Mathematics, Philadel-
phia.

Fu, M., F. Glover, and J. April. 2005. Simulation optimiza-
tion: a review, new developments, and applications.
Proceedings of the 2005 Winter Simulation Confer-
ence:83–95.

Haarala, N., K. Miettinen, and M. Mäkelä. 2007. Globally
convergent limited memory bundle method for large-
scale nonsmooth optimization. Math. Program. 109 (1):
181–205.

Healy, K., and L. Schruben. 1991. Retrospective simulation
response optimization. Proceedings of the 1991 Winter
Simulation Conference:901–906.

Hiriart-Urruty, J., and C. Lemarechal. 1993. Convex analysis
and minimization algorithms I and II. Springer-Verlag.

Hong, L. J., and B. L. Nelson. 2006. Discrete optimization
via simulation using compass. Operations Research 54
(1): 115–129.

507

Wang and Schmeiser

Huang, D., T. Allen, W. Notz, and N. Zeng. 2006. Global
optimization of stochastic black-box systems via se-
quential kriging meta-models. Journal of Global Opti-
mization 34 (3): 441–466.

Jin, J., and B. Schmeiser. 2003. Simulation-based retrospec-
tive optimization of stochastic systems. Proceedings of
the 2003 Winter Simulation Conference:543–547.

Kiwiel, K. 1985. Methods of descent for nondifferentiable
optimization. Springer-Verlag.

Kleywegt, A., A. Shapiro, and T. Homem-De-Mello. 2001.
The sample average approximation method for stochas-
tic discrete optimization. SIAM J. Optimization 12 (2):
479–502.

Koenig, L., and A. Law. 1985. A procedure for selecting a
subset of size m containing the l best of k independent
normal populations, with applications to simulation.
Comm. in Statist.: Simulation and Comput. 14:719–
734.

Kushner, H., and D. Clark. 1978. Stochastic approximation
methods for constrained and unconstrained systems.
Springer-Verlag, New York.

Pichitlamken, J., and B. Nelson. 2003. A combined pro-
cedure for optimization via simulation. ACM Trans.
Modeling and Comput. Simulation 13:155–179.

Rovatti, R., M. Borgatti, and R. Guerrieri. 1998. A geometric
approach to maximum-speed n-dimensional continuous
linear interpolation in rectangular grids. IEEE Trans-
actions on Computers 47 (8): 894–899.

Shapiro, A., and Y. Wardi. 1996. Convergence analysis
of gradient descent stochastic algorithms. Journal on
Optimization theory and application 91 (2): 439–454.

Shor, N. 1985. Minimization methods for non-differentiable
functions. Springer-Verlag.

Spall, J. 2005. Introduction to stochastic search and opti-
mization, 425–432. John Willey & Sons.

Swisher, J., P. Hyden, S. Jacobson, and L. Schruben. 2000.
A survey of simulation optimization techniques and
procedures. Proceedings of the 2000 Winter Simulation
Conference:119–128.

Weiser, A., and S. Zarantonello. 1988. A note on piece-
wise linear and multilinear table interpolation in many
dimensions. Mathematics of Computation 50 (181):
189–196.

AUTHOR BIOGRAPHIES

HONGGANG WANG is a PhD candidate in Shool
of Industrial Engineering at Purdue University. His
research interests include discrete stochastic optimiztion
via simulation, stochastic process and modeling, and
stochastic optimization in supply chain management.

BRUCE W. SCHMEISER is a professor of Industrial En-
gineering at Purdue University. His research interests center

on developing methods for better simulation experiments.
He is a fellow of INFORMS and IIE, and has been active
within the Winter Simulation Conference for many years.

508

