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ABSTRACT

We consider the problem of selecting the best among several
heavy-tailed systems using a large deviations perspective.
In contrast to the light-tailed setting studied by Glynn and
Juneja (2004), in the heavy-tailed setting, the probability of
false selection is characterized by a rate function that does
not require as detailed information about the probability
distributions of the system’s performance. This motivates
the question of studying static policies that could potentially
provide convenient implementable in heavy-tailed settings.
We concentrate in studying sharp large deviations estimates
for the probability of false detection which suggest precise
optimal allocation policies when the systems have compa-
rable heavy-tails. Additional optimality insights are given
for systems with non-comparable tails.

1 INTRODUCTION

We assume that there are d systems, each of which can be
independently simulated and for each of the simulations we
can evaluate the performance of the corresponding system
and obtain a score. The value of the score for the j-th
replication of the i-th system is denoted via Xi, j and the
mean score is denoted by µi = EXi, j, which is assumed to
be unknown.

Given a computer budget n (in terms of total number
of replications), we are interested in studying the problem
of optimizing the allocation of the computer budget across
the different systems in order to select, via simulation, the
system with the smallest mean score in such a way that the

probability of false selection (PFS) is minimized. Our focus
is on the analysis of heavy-tailed systems – in particular, we
will not assume that the Xi, j’s possess moment generating
function. Our approach involves the use of large deviations
theory for heavy-tailed random walks; therefore, our allo-
cation policies are shown to be asymptotically optimal as
the computational budget, n, increases.

The problem of maximizing the probability of correct
selection in ordinal optimization has been studied substan-
tially in the literature. A popular approach is based on the
so-called indifferent zone formulation (see, for instance,
Goldsman and Nelson (2001) and Kim and Nelson (2003)
for an overview). For instance, in the case of two systems,
one assumes a known lower bound in the difference between
the mean scores of the systems. One then tries to allocate
the computational budget in order to control the probability
of false selection in terms of such bound. In turn, the
analysis of such allocation policies is based on Gaussian
assumptions, which are justified by means of the Central
Limit Theorem (CLT) (see, for instance, Chen at al (2000)
for allocation analysis under Gaussian assumptions). These
types of assumptions may be reasonable if the indifference
zone is relatively small. More precisely, the use of the CLT
is appropriate if the size of the indifference zone (potentially
after appropriate scaling relative to the largest mean score) is
of order O

(
n−1/2

)
where n is the total number of simulation

runs. When the indifference zone is relatively large (say
of order O(1) relative to the number of simulation runs)
a large deviations approach seems more appropriate. Our
approach here follows the same spirit as that proposed by
Glynn and Juneja (2004), which take a large deviations ap-
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proach to ordinal optimization in the context of light-tailed
systems. Broadie, Han and Zeevi (2007) have also taken a
similar perspective to that Glynn and Juneja in the setting of
heavy-tailed systems but our results here strengthen theirs
and also, as we shall discuss, provide a somewhat different
interpretation of the optimal allocation policy.

In order to discuss our main results and to put them
in perspective, let us start by summarizing some key ideas
behind the analysis of Glynn and Juneja (2004). In the
light-tailed setting, the most likely way in which false
detection occurs is dictated by the so-called rate functions
associated to large deviations probabilities for empirical
means (there is one such rate for each of the empirical means
corresponding to each of the d systems). In particular, the
i-th rate function (for 1≤ i≤ d) is computed as the Legendre
transform of the associated cumulant generating function of
Xi, j. The rate of decay for the probability of false detection
is computed combining the d rate functions in a concave
optimization problem over a region that represents false
detection. Turns out that, in principle, one can recover
the cumulant generating functions from the rate functions
(by applying once again Legendre transforms). Therefore,
since the rate of decay for the probability of false detection
requires knowledge of the rate functions, it follows that
a static allocation policy would require knowledge of the
whole distribution (via the cumulant generating function)
and therefore such policy is typically difficult to implement.

Another feature implicit in the analysis of Glynn and
Juneja (2004) is the fact that, in its most likely scenario, false
detection occurs due to atypical behavior of basically all
of the Xi, j’s. In other words, the most likely way in which
false detection occurs is given by ”cooperation” among
all the different sampled scores in a way that is described
(asymptotically) by the solution to the concave optimization
problem mentioned in the previous paragraph.

Our analysis in this paper, in the context of heavy-tailed
Xi, j’s (which we shall assume to have essentially power-law
type tails), provides different qualitative insights relative
to the light-tailed situation. First, the large deviations rate
function for the empirical means of each of the d systems
is basically polynomial and does not characterize the dis-
tribution of the increments. In fact, not even the mean of
the µi’s can be recovered if one has perfect knowledge of
such rate functions. Second, false selection occurs as a
consequence of at most d atypical outcomes (in contrast to
cooperation among basically n samples in the light-tailed
case). In particular, the large deviations analysis of the prob-
ability of false detection has a very intuitive interpretation.
Namely, false detection can be decomposed in d scenarios,
corresponding to false detection caused by large deviations
behavior of the empirical estimate of µi for 1≤ i≤ d. The
chance that false detection is caused by large deviations
behavior involving two or more empirical estimates is neg-
ligible. When the associated large deviations rates for each

of the d empirical means have comparable behavior as the
number of samples grows, then the allocations are propor-
tional as in the light-tailed setting and take a non-trivial
form based on the solution to a concave program.

Heavy-tailed systems in the context of ordinal opti-
mization have also been studied by Broadie, Han and Zeevi
(2007). Their analysis is different from ours in the fol-
lowing aspects. First, they concentrate on the analysis of
the log-rate function (i.e. logPFS), so the exact decay rate
of the PFS is not discussed. Second, they focus only on
proportional allocation rules, much in the spirit of the light-
tailed setting. Based on these two items, the analysis of
Broadie, Han and Zeevi (2007) suggests that the PFS is, in
a rough sense, asymptotically independent of the selected
policy.

In contrast to the analysis of Broadie, Han and Zeevi, we
study the exact rate of decay of the PFS and we also allow ar-
bitrary allocation policies. Our analysis suggests somewhat
different interpretations. In particular, we conclude that al-
location policies might have a significant impact, specially
when several systems possess comparable tail behaviors.
Moreover, proportional policies do not necessarily might
have substantially different performance when it comes to
the exact rate of decay for the PFS. In particular, we
conclude that when the systems do not have comparable
tail behavior, then one should allocate substantially more
resources to the system that has the highest “risk” (i.e. heav-
iest tail) but one should still allocate a substantial amount
of computational budget (described explicitly in terms of
the large deviations rate functions) to each of the less risky
systems.

The rest of the paper is organized as follows. Section 2
reviews the basic ideas in the analysis of Glynn and Juneja
(2004) that gives rise to proportional allocation rules. In
Section 3 we discuss some large deviations results that are
used in our analysis. The rate of convergence analysis of
the PFS is given in Section 4. Finally, Section 5 discusses
a simulation experiment in which the various parameters
required to implement the policy are also estimated.

2 ORDINAL OPTIMIZATION FOR LIGHT-
TAILED SYSTEMS

Without loss of generality we assume that µ1 < µ2≤ ...≤ µd
and let us introduce some notation. We let

X i (ni) =
1
ni

ni

∑
j=1

Xi, j

be the empirical mean of the scores of the i system given
ni replications. We assume that ∑

d
i=1 ni = n and the goal is

to select the ni’s (as a function of n) in order to minimize
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the probability of false selection (PFS) which is given by

PFS = P
(

X1 (n1) > min
j≥2

X j (n j)
)

.

In the context of light-tailed systems studied by Glynn
and Juneja (2004) one has

logP
(
X i (ni)≥ ε + µ j

)
=−niIi (µ j + ε)+o(niIi (µ j + ε))

as ni↗∞ uniformly over ε ≥ 1/n1/2−δ

i for each δ > 0, where
I j (·) is a positive and convex rate function with the property
that I j (µ j + ε)∼ ε2/(2σ2

j ) as ε↘ 0 with σ2
j =Var (Xi) (see,

for instance, Dembo and Zeitouni (1998)). In the light-tailed
setting, the rate functions I j (·)’s governs the exponential
rate of decay of small probabilities and they can be used
to provide asymptotics for PFS.

In particular, following the analysis of Glynn and Juneja
(2004) we see that if one has n j ≥ n1/2+δ for any fix δ > 0,
then

logP
(

X1 (n1) > min
2≤ j≤d

X j (n j)
)

=−H (n1, ...nd)+o(H (n1, ...,nd))

as n↗ ∞, where

H (n1, ...nd) = min
2≤ j≤d

inf
x

(n1I1 (µ1 + x)+n jI j (µ j + x)) .

Now proportional allocation follows from the analysis of
the previous rate function. In particular, it follows from the
fact that the I j (·)’s are positive and I j (µ j + ε)∼ ε2/(2σ2

j )
that in order to maximize the growth rate of H (n1, ...,nd)
as n↗ ∞ as a function of (n1, ...,nd) as long as the ni’s
and subject to the constraint ∑

d
j=1 n j = 1, one is forced

to select n j = p jn (where the p j’s are strictly positive
numbers, independent of n, that add up to 1). Glynn and
Juneja provide the optimal selection of the p j’s, which
clearly depends on the fine structure of the I j’s, which in
turn depends on the whole distribution of the Xi, j’s through
the moment generating function. In fact, the I j’s are so
intimately connected to the distribution of the Xi, j’s that,
in principle, if one knows I j (·), then one can basically
recover the whole distribution of Xi, j’s via the associated
moment generating function. This makes the asymptotic
optimal policy of Glynn and Juneja difficult to implement
in practice.

3 BASIC RESULTS FOR AVERAGES OF
REGULARLY VARYING RANDOM WALKS

In contrast to the light-tailed setting, large deviations ap-
proximations for heavy-tailed systems often require less

detailed information about the structure of the distribution.
In particular, assuming that the Xi, j’s have a right tail that
is regularly varying with index αi > 0 which means that
P(Xi, j > x) = L(x)x−αi , L(tx)/L(x)→ 1, as x→∞ for some
αi > 0 and every t > 0 we have that

P
(
X i (ni) > (µi + ε)

)
= niGi (niε)+o(niG(niε)) ,

as ni↗ ∞ (for fixed ε) where Gi (·) is any function such
that Gi (t)∼ P(Xi, j > t) as t↗∞ (see, for instance, Nagaev
(1979) and Rozovskii (1989) for generalization to other types
of heavy-tailed random variables). A completely analogous
estimate holds for left tails.

Note that if one knows an associated “rate function”
(a function with the same asymptotic behavior as Gi (·))
then the distribution of the increments cannot be recovered.
In fact, not even the mean can be identified given precise
knowledge of such rate function. This observation suggests
that a large deviations perspective to ordinal optimization
in the context of heavy-tailed systems could provide some
guideline that may be helpful in practical settings. This is
one of the reasons that motivates our analysis in this paper.

An additional feature of typical heavy-tailed random
variables is that the conditional overshoot over a large level
increases, in some way, as the level in question increases.
For instance, let X1,..., Xn be iid mean zero random variables
with regularly varying right tail. Now, consider Sn = ∑

n
i=1 Xi.

Consider the conditional overshoot of Sn given that Sn > cn
for some c > 0. We then have that for any δ > 0,

P(Sn− cn > δn|Sn > cn)∼ P(X1 > (δ + c)n)
P(X1 > cn)

→ P(Zα > δ/c) =
1

(1+δ/c)α .

In other words, Zα +1 is Pareto distribution with tail index,
α . As a consequence, if Xi, j’s are regularly varying with
tail index, αi, for all ε1 and ε2 > 0,

P(X i(ni)−µi > ε1 + ε2|X i(ni)−µi > ε1)→ P(Zα > ε2/ε1)

as ni→ ∞. The previous basic feature is basically all what
we shall need for our development of sharp asymptotics for
the probability of false detection in the next section.

4 ANALYSIS OF PROBABILITY OF FALSE
DETECTION

The main result in this section is the following:
Theorem 1 Let EXi, j = µi and suppose that −∞ <

µ1 < µ2 ≤ ...≤ µd . In addition, suppose that

P
(
X1, j > t

)
= L1 (t) t−α1 +o

(
L1 (t) t−α1

)
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as t↗ ∞ and that

P
(
X1, j ≤ t

)
= L j (|t|) |t|−α j +o

(
L j (|t|) |t|−α j

)
as t↘−∞. Then, assuming that n j↗∞ for all 1≤ j ≤ d,
we have that

PFS∼ P
(
X1 (n1) > µ2

)
+

d

∑
j=2

P
(
X j (n j) < µ1

)
∼ (µ2−µ1)

−α1 n−α1+1
1 L1 (n1)+

+
d

∑
j=2

(µ j−µ1)n
−α j+1
j L j (n j) .

Proof. Suppose that

P(Xi, j > t) = Li (t) t−αi +o
(
Li (t) t−αi

)
as t↗ ∞. Define

A1 = {X1 (n1)≥ µ1 + ε},
A j = {X j (n j)≤ µ j− ε},

for 2≤ j ≤ d. Then, select ε ∈ (0,(µ2−µ1)/2) so that

P
(

X1 (n1) > min
2≤ j≤d

X j (n j)
)

= P
(

X1 (n1) > min
2≤ j≤d

X j (n j) ,A1∪ ...∪Ad

)
≤

d

∑
j=1

P
(

X1 (n1) > min
2≤ j≤d

X j (n j) ,A j

)
.

We have that y≥ ε

P
(

X1 (n1)−µ1 > y
∣∣X1 (n1)−µ1 ≥ ε

)
−→

( y
ε

)−α1

Therefore, using the law of large numbers and the bounded
convergence theorem we obtain that

P
(

X1 (n1) > min
2≤ j≤d

X j (n j) ,A1

)
= P

(
X1 (n1) > min

2≤ j≤d
X j (n j)

∣∣∣∣A1

)
P(A1)

∼
(

µ2−µ1

ε

)−α1

n−α1+1
1 ε

−α1L1 (n1) =

= (µ2−µ1)
−α1 n−α1+1

1 L1 (n1)

as long as n j ↗ ∞ for all 1 ≤ j ≤ d simultaneously (at
arbitrary rates). Similarly, we have that

P
(

X1 (n1)−µ j > X j (n j)−µ j
∣∣X j (n j)−µ j ≤−ε

)
−→

(
µ j−µ1

ε

)−α j

.

and therefore, once again using dominated convergence, we
obtain

P
(

X1 (n1) > min
2≤ j≤d

X j (n j) ,A1

)
= P

(
X1 (n1) > min

2≤ j≤d
X j (n j)

∣∣∣∣A j

)
P(A j)

∼
(

µ j−µ1

ε

)−α j

n
−α j+1
j ε

−α j L j (n j) =

= (µ j−µ1)
−α j n

−α j+1
j L j (n j) .

Combining the previous estimates, we obtain that an asymp-
totic upper bound for the PFS is given, as long as n j↗ ∞

for all j simultaneously, by

(µ2−µ1)
−α1 n−α1+1

1 L1 (n1)+
d

∑
j=2

(µ j−µ1)n
−α j+1
j L j (n j) .

(1)
For the lower bound we isolate the most important events.
In particular, we define the events

B1 = {X1 (n1) > µ2 + ε ≥ X2 (n2)},
B j = {X1 (n1) > µ1− ε ≥ X j (n j)},

for 2≤ j ≤ d. Note that

P
(

X1 (n1) > min
2≤ j≤d

X j (n j)
)
≥ P

(
∪d

j=1B j

)
.

The analysis of the probability P
(
∪d

j=1B j

)
is easily done

using the inclusion-exclusion principle, in particular, we
obtain

P
(
∪d

j=1B j

)
≥

d

∑
j=1

P(B j)− ∑
1≤ j1< j2≤d

P(B j1 ∩B j2) .

Assuming n j↗∞ as n↗∞ for all 1≤ j ≤ d we have that

P(B1)∼ P
(
X1 (n1)−µ1 > µ2−µ1 + ε

)
∼ (µ2−µ1 + ε)−α1n−α1+1

1 L(n1) ,

P(B j)∼ P
(
X j (n1)−µ j ≤ µ1−µ j− ε

)
,

∼ (µ j−µ1 + ε)−α j n
−α j+1
j L(n j) .
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On the other hand,

P(B1∩B j2)≤ P
(
X1 (n1) > µ2 + ε

)
P
(
µ1− ε > X j (n j)

)
= O(P(B1)P(B j2)) .

Similarly, we obtain that

P(B j1 ∩B j2)≤ O(P(B j1)P(B j2)) .

As a consequence, since ε > 0 is arbitrary, we conclude
that an asymptotic lower bound for PFS is also given by
(1).

In the case in which the right tail of X1, j is comparable
to all of the left tails of the Xi, j’s for 1 ≤ i ≤ d, then it
follows directly from Theorem 1 that it is optimal to have
proportional allocations. These allocations are the heavy-
tailed analogue of those given by Glynn and Juneja (2004).
The next result provides the precise form of such allocations.

Corollary 2 Suppose that P
(
X1, j ≤ t

)
∼ c1L(t) t−α

as t ↗ ∞ and that P(Xi, j ≤ t) ∼ ciL(|t|) |t|−α as t ↘−∞

then, the optimal allocation policy takes the form n j = np j
where the p j’s are obtained by solving the problem

minc1 (µ2−µ1) p−α+1
1 +

d

∑
j=2

c j (µ j−µ1) p−α+1
j

subject to ∑
d
j=1 p j = 1 and p j ≥ 0. In particular, we have

that

p j =
β

1/α

j

∑
d
j=1 β

1/α

j

,

where β1 = c1 (µ2−µ1) and β j = c j (µ j−µ1).

In the case in which the tails do not have comparable
growth, then it is efficient to allocate most of the resources
into systems that have the heaviest tails. However, still,
large enough samples should be allocated to all systems.
This is the content of the next result. For simplicity, we
shall assume that the slowly varying component is common
to all systems.

Corollary 3 Suppose that P
(
X1, j ≤ t

)
∼

c1L(t) t−α1 as t ↗ ∞ and that P(Xi, j ≤ t) ∼ ciL(|t|) |t|−αi

as t↘−∞. Let (i1, ..., id) be a set of indexes such that

αi1 ≤ αi2 ≤ ...≤ αid .

Suppose that αi1 = αi2 = ... = αik∗ for some k∗ ≤ d. Then,
the decay rate of PFS is maximized by selecting ni j = np∗i j

for

p∗i j
=

β
1/αi1
i j

∑
k∗
j=1 β

1/αi1
i j

,

where βi j = c1 (µ2−µ1) if i j = 1 and βi j = ci j

(
µi j −µ1

)
assuming i j 6= 1. Moreover, for k∗ < j ≤ d we must have

that ni j ↗∞ as n↗∞ in such a way that nαi1 /αi j = o
(
ni j

)
.

5 SIMULATION EXPERIMENT

In this section, we carry out the implementation and assume
different systems have the same but unknown tail index,
α , same slowly varying function, L(·), and different ci’s.
Our strategy is to spend a small portion of the samples to
estimate α and ci. Then, estimate the optimal allocation
using the estimated parameters according to the solution in
Corollary 2. As an illustration of our analysis, we performed
a simulation study of two systems in the following example.

Example 4 Suppose we have two systems. One is t
distribution with three degrees of freedom and expectation
zero. The other one is t distribution with three degrees of
freedom, scale factor two, and expectation one. That is,

X1, j
d= T3, and X2, j

d= 1+2T3,

where T3 follows standard t distribution with three degrees
of freedom. We use 20% samples to estimate the tail index,
α , (with the knowledge that both distributions have the same
tail index), and the constants, ci. We used Hill’s estimator
to estimate tail index; see, for instance, Embrechts et al
(1997). In particular, let n0 = bn/10c, and Xi,(1), ...,Xi,(n0)
be the ordered statistics of Xi,1, ...,Xi,n0 (Xi,(1) is the largest
value). We let

α̂ =

[
1

2n0

2

∑
i=1

b√n0c

∑
j=1

logXi,( j)− logXi,(b√n0c+1)

]−1

be the estimator of α and

ĉi = exp
[

1
1+ b√n0c−b

√
n0/2c

n−b√n0/2c

∑
i=n−b√n0c

log
(
b√n0c

n0
X α̂

i,(b√n0c)

)
be the estimator of the constant, ci. We allocate the rest 80%
samples according to Corollary 2. The false selection rates
and the asymptotic optimal false selection rates according
to Theorem 1 are presented in Table 1.
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