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ABSTRACT

Design Of Experiments (DOE) is needed for experiments
with real-life systems, and with either deterministic or ran-
dom simulation models. This contribution discusses the
different types of DOE for these three domains, but fo-
cusses on random simulation. DOE may have two goals:
sensitivity analysis and optimization. This contribution starts
with classic DOE including 2k−p and Central Composite
Designs (CCDs). Next, it discusses factor screening through
Sequential Bifurcation. Then it discusses Kriging includ-
ing Latin Hypercube Sampling and sequential designs. It
ends with optimization through Generalized Response Sur-
face Methodology and Kriging combined with Mathematical
Programming, including Taguchian robust optimization.

1 INTRODUCTION

DOE is needed for experiments with

• real-life (physical) systems;
• deterministic simulation models;
• random (stochastic) simulation models.

For real-life systems the scientific DOE—based on
mathematical statistics—started with agricultural experi-
ments in the 1920s (Sir Ronald Fisher), followed by chemical
experiments in the 1950s (George Box), and is now also
applied in social systems such as educational and service sys-
tems. This domain is covered extensively by Montgomery
(2009) and Myers and Montgomery (1995).

In deterministic simulation, DOE gained popularity with
the increased use of ‘computer codes’ for the design (in an
engineering, not a statistical sense) of airplanes, automo-
biles, TV sets, chemical processes, computer chips, etc.—in
Computer Aided Engineering (CAE) and Computer Aided
Design (CAD)—at companies such as Boeing, General Mo-
tors, and Philips; see Koehler and Owen (1996), Santner,
Williams, and Notz (2003), and also Kleijnen (008a). This

domain often does not use the term DOE but DACE, Design
and Analysis of Computer Experiments.

Random simulation includes ‘Discrete-Event Dynamic
Systems (DEDS)’ such as queuing and inventory models, but
also stochastic difference and differential equation models.
This type of simulation is the focus of the yearly Winter
Simulation Conference (WSC). DOE for random simulation
is the focus of Kleijnen (008a) and of this overview.

DOE may vary with the type of experiment. In real-life
experiments it is not practical to investigate many factors;
ten factors seems a maximum. Moreover, in these ex-
periments it is hard to experiment with many values (or
‘levels’) per factor; five values per factor seems the limit.
In experiments with simulation models (either determinis-
tic or random), however, these restrictions do not apply.
Indeed, computer codes may have hundreds of inputs and
parameters—each with many values. Consequently, a mul-
titude of scenarios—combinations of factor values—may be
simulated. Moreover, simulation is well-suited to sequential
designs instead of ‘one shot’ designs (ignoring simulation on
parallel computers). So a change of mindset of simulation
experimenters is necessary; see Kleijnen et al. (2005).

Random (unlike deterministic) simulation uses Pseudo-
Random Numbers (PRNs) inside its model; e.g., a queueing
simulation uses random service times (say, exponentially
distributed). Common pseudo-Random Numbers (CRN) are
often used when simulating different input combinations;
e.g., the popular simulation software called ‘Arena’ uses
CRN as its default when simulating different scenarios. CRN
violate the classic DOE assumption of white noise, because
CRN make the simulation outputs (responses) positively
correlated instead of independent.

DOE for real-life experiments pays much attention to
blocked designs, because the environment cannot be con-
trolled, which creates undesirable effects such as learning
curves. In simulation experiments, such effects do not occur,
because everything is completely under control—except for
the PRNs. CRN and antithetic PRN can be used as a block
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factor in simulation; see Schruben and Margolin (1978) and
also Kleijnen (008a).

DOE for real-life experiments often uses fractional
factorial designs such as 2k−p designs: each of the k fac-
tors has only two values and of all the 2k combinations
only 2k−p combinations are observed; e.g., a 27−4 design
means that of all 27 = 128 combinations only a 2−4 = 1/16
fraction is executed. This 27−4 design is acceptable if the
experimenters assume that a first-order polynomial is an
adequate approximation or—as we say in simulation— a
valid ‘metamodel’. A metamodel is an approximation of
the Input/Output (I/O) function implied by the underlying
simulation model. Besides first-order polynomials, clas-
sic designs may also assume a first-order (‘main effects’)
metamodel augmented with the interactions between pairs of
factors, among triplets of factors, . . . , and ‘the’ interaction
among all the k factors (however, I am against assuming such
high-order interactions, because they are hard to interpret).
Moreover, classic DOE may assume a second-order poly-
nomial. See Montgomery (2009), Myers and Montgomery
(1995), and also Kleijnen (008a).

In deterministic simulation, another metamodel type is
popular, namely Kriging (also called spatial correlation or
Gaussian) models. Kriging is an exact interpolator; i.e., for
‘old’ simulation input combinations the Kriging prediction
equals the observed simulation outputs—which is attractive
in deterministic simulation. Because Kriging has just begun
in random simulation, I will discuss this type of metamodel
in more detail; see Section 4.

Each type of metamodel requires a different design
type, and vice versa: chicken-and-egg problem. Therefore I
proposed the term DASE, Design and Analysis of Simulation
Experiments, in Kleijnen (008a). Which design/metamodel
is acceptable is determined by the goal of the simulation
study. Different goals are considered in the methodology
for the validation of metamodels presented in Kleijnen and
Sargent (2000). I focus on two goals:

• Sensitivity Analysis (SA);
• optimization.

SA may serve Validation & Verification (V & V) of sim-
ulation models, and factor screening—or briefly screening—
which denotes the search for the really important factors
among the many factors that are varied in an experiment.
Optimization tries to find the optimal combination of the
decision factors in the simulated system. Optimization may
follow after SA. Recently, I have become interested in ro-
bust optimization, which assumes that the environmental
factors (not the decision factors) are uncertain.

The remainder of this contribution is organized as fol-
lows. Section 2 presents classic designs and the correspond-
ing metamodels. Section 3 reviews screening, focussing on
Sequential Bifurcation (SB). Section 4 reviews Kriging and

its designs. Section 5 discusses simulation optimization,
focussing on Generalized Response Surface methodology
(GRSM), Kriging combined with Mathematical Program-
ming (MP), and Taguchian robust optimization. Section 6
presents conclusions. This overview is based on my recent
book, Kleijnen (008a) and some of my recent papers; see
the References at the end of this contribution.

2 CLASSIC DESIGNS AND METAMODELS

In this section, I do not discuss in detail classic designs and
their corresponding metamodels, because these designs and
metamodels are discussed in many DOE textbooks such as
Montgomery (2009) and Myers and Montgomery (1995);
these designs and models are presented from a simulation
perspective in Kleijnen (008a). I do give a simple example,
and discuss the classic assumptions of univariate output and
white noise.

1. Resolution-III (R-III) designs for first-order poly-
nomials, which include Plackett-Burman and 2k−p

designs;
2. Resolution-IV (R-IV) and resolution-V (R-V) de-

signs for two-factor interactions;
3. designs for second-degree polynomials, which in-

clude CCDs.

I illustrate these various designs through the following
example with k = 6 factors.

1. To estimate the first-order polynomial metamodel,
obviously at least k + 1 = 7 combinations are
needed. The eight combinations of a 27−4 de-
sign ignoring the column for factor 7 enable the
Ordinary Least Squares (OLS) estimation of the
first-order effects (say) β j ( j = 1, . . . ,6) and the
intercept β0. OLS is the classic estimation method
in linear regression analysis, assuming white noise.

2. A R-IV design would ensure that these estimated
first-order effects are not biased by the two-factor
interactions β j; j′ ( j < j′ = 2, . . .6). However, to
estimate the k(k− 1)/2 = 15 individual interac-
tions, a R-V design is needed. A 26−1 design is a
R-V design, but its 32 combinations take too much
computer time if the simulation model is computa-
tionally expensive. In that case, Rechtschaffner’s
saturated design is better; see Kleijnen (2008a,
p.49); by definition a saturated design has a num-
ber of combinations (say) n that equals the number
of metamodel parameters (say) q.

3. A CCD for the second-degree polynomial enables
the estimation of the k ‘purely quadratic effects’
β j; j. Such a CCD augments the R-V design with
the ‘central point’ of the experimental area and 2k
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‘axial points’, which change each factor one-at-a-
time by −c and c units where c > 0. Obviously
the CCD is rather wasteful in case of expensive
simulation, because it has five values per factor
(instead of the minimum, three) and it is not sat-
urated. Alternatives for the CCD are discussed
in Kleijnen (008a) and Myers and Montgomery
(1995).

The assumptions of these classic designs and metamod-
els stipulate univariate output and white noise. Kleijnen
(008a) and Kleijnen (008b) discuss the following.

1. Multivariate (multiple) simulation output may still
be analyzed through OLS because Generalized
Least Squares (GLS) reduces to OLS if the multi-
ple outputs use the same input combinations (same
design).

2. Nonnormality of the simulation output may be ex-
treme (e.g., a small probability is estimated), in
which case it may be tackled through either jack-
knifing or bootstrapping. The basics of bootstrap-
ping are explained in Efron and Tibshirani (1993)
and Kleijnen (008a).

3. Variance heterogeneity may be addressed through
Estimated Weighted Least Squares (EWLS) using
estimated variances, which results in a nonlinear
estimator so either jackknifing or bootstrapping
may be applied.

4. CRN creates correlation between the outputs of
input combinations; the OLS estimate of the fac-
tor effects may be computed per replicate so the
analysis is straightforward if there are at least two
replicates per factor combination.

5. The validity of low-order polynomial metamodels
may be tested through either the classic F lack-of-fit
statistic or the popular cross-validation method.

3 SCREENING: SEQUENTIAL BIFURCATION
(SB)

SB was originally published back in 1990; see Bettonvil
(1990). SB is most efficient and effective if its assumptions
are indeed satisfied. This section summarizes SB, includ-
ing its assumptions. This section also references recent
research. It ends with a discussion of possible topics for
future research. This section is based on Kleijnen (008a)
and Kleijnen (008c), which also reference other screening
methods besides SB. Recently, SB has attracted the atten-
tion of several researchers in the UK and USA; see Xu,
Yang, and Wan (2007). Notice that some authors call R-III
designs (discussed in Section 2) screening designs; see Yu
(2007).

Screening is related to ‘sparse’ effects, the ‘parsimony’
or ‘Pareto’ principle, ‘Occam’s razor’, the ‘20-80 rule’, the
‘curse of dimensionality’, etc. Practitioners do not yet apply
screening methods; instead, they experiment with a few
intuitively selected factors only. The following case study
illustrates the need for screening. Bettonvil and Kleijnen
(1996) present a greenhouse deterministic simulation model
with 281 factors. The politicians wanted to take measures
to reduce the release of CO2 gasses; they realized that they
should start with legislation for a limited number of factors.
Another case study is presented by Kleijnen, Bettonvil,
and Persson (2006), concerning a discrete-event simulation
of a supply chain centered around an Ericsson company
in Sweden. This simulation has 92 factors; the authors
identify a shortlist with 10 factors after simulating only 19
combinations.

SB (like classic DOE) treats the simulation model as a
black box; i.e., the simulation model transforms observable
inputs into observable outputs, whereas the values of internal
variables and specific functions implied by the simulation’s
computer modules are unobservable. The importance of
factors depends on the experimental domain, so the users
should supply information on this domain—including re-
alistic ranges of the individual factors and limits on the
admissible factor combinations; e.g., some factor values
must add up to 100% in each combination.

SB uses the following metamodel assumptions.

1. A first-order polynomial augmented with two-
factor interactions is a valid metamodel.

2. All first-order effects have known signs and are
non-negative (so these effects cannot cancel each
other out, when aggregated; see below).

3. There is ‘strong heredity’; i.e., if a factor has no
important main effect, then this factor does not
interact with any other factor; also see Wu and
Hamada (2000).

The SB procedure may be described roughly as follows.
Its first step aggregates all factors into a single group, and
runs the simulation model with that group at its low and
high value respectively. SB compares these two simulation
outputs; i.e. SB tests whether or not that group of factors has
an important effect. If that group indeed has an important
effect—which is most likely in the first step—then the second
step splits the group into two subgroups— SB bifurcates.
To test each of these subgroups for importance, SB runs the
simulation with these subgroups as factors. In the next steps,
SB splits important subgroups into smaller subgroups, and
discards (freezes) unimportant subgroups. In the final step,
all individual factors that are not in subgroups identified as
unimportant, are estimated and tested.

This procedure may be interpreted though the following
metaphor. Imagine a lake that is controlled by a dam. The
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goal of the experiment is to identify the highest (most
important) rocks; actually, SB not only identifies but also
measures the height of these ‘rocks’. The dam is controlled
in such a way that the level of the murky water slowly drops.
Obviously, the highest rock first emerges from the water!
The most-important-but-one rock turns up next, etc. SB
stops when the analysts feel that all the ‘important’ factors
are identified; once SB stops, the analysts know that all
remaining (unidentified) factors have smaller effects than
the effects of the factors that have been identified. This
property of SB is important for its use in practice.

There is a need for more research:

• It is a challenge to derive the number of replicates
that control the overall probability of correctly
classifying the individual factors as important or
unimportant. So far, SB applies a statistical test to
each subgroup individually.

• After SB stops, the resulting shortlist of important
factors should be validated.

• Multivariate (instead of univariate) output should
be investigated.

• Software needs to be developed that implements
SB.

• A contest may be organized for different screening
methods and different simulation models. Such
‘testbeds’ are popular in MP.

4 KRIGING

This section reviews Kriging, and is based on Kleijnen
(008a) and Kleijnen (008d). It presents the basic Kriging
assumptions. This section also extends Kriging to ran-
dom simulation, and discusses bootstrapping to estimate
the variance of the Kriging predictor. Besides classic one-
shot statistical designs such as Latin Hypercube Sampling
(LHS), this section reviews sequentialized or customized
designs for SA and optimization. It ends with topics for
future research.

Typically, Kriging models are fitted to data that are
obtained for larger experimental areas than the areas used
in low-order polynomial regression; i.e., Kriging models
are global (not local). Kriging is used for prediction (not
explanation); its final goals are SA and optimization.

Kriging was originally developed in geostatistics—also
known as spatial statistics—by the South African mining
engineer Danie Krige. A classic geostatistics textbook is
Cressie (1993). Later on, Kriging was applied to the I/O
data of deterministic simulation models; see Sacks et al.
(1989). Only recently Van Beers and Kleijnen (2003) ap-
plied Kriging to random simulation models. Ankenman,
Nelson, and Staum (2008) present a detailed analysis of
Kriging in random simulation. Although Kriging in ran-
dom simulation is still rare, the track record of Kriging in

deterministic simulation holds great promise for Kriging in
random simulation.

This section focuses on the simplest type of Krig-
ing called Ordinary Kriging, which assumes w(d) = µ +
δ (d)where w(d) denotes the simulation output for input
combination d, µ is the simulation output averaged over
the whole experimental area, and δ (d) is the additive noise
that forms a stationary covariance process with zero mean.

Kriging uses the following linear predictor y(d) = λλλ
′w

where the weights λλλ are not constants—whereas the regres-
sion parameters (say) βββ are—but decrease with the distance
between the ‘new’ input d to be predicted and the ‘old’
combinations, which are collected in the n×k design matrix
D.

The optimal weights can be proven to depend on ΓΓΓ =
(cov(wi,wi′)) with i, i′ = 1, . . . ,n is the n×n matrix with the
covariances between the ‘old’ outputs; γγγ = (cov(wi,w0)) is
the n-dimensional vector with the covariances between the
n old outputs wi and w0, the output of the combination to be
predicted; w0 may be either new or old. These covariances
are often based on the correlation function

ρ = exp[−
k

∑
j=1

θ jh
p j
j ] = ∏

k
j=1 exp[−θ jh

p j
j ] (1)

where h j denotes the distance between the input d j of the
new and the old combinations, θ j denotes the importance
of input j (the higher θ j is, the less effect input j has),
and p j denotes the smoothness of the correlation function
(e.g., p j = 2 implies an infinitely differentiable function).
Exponential and Gaussian correlation functions have p j = 1
and p j = 2 respectively.

This correlation function implies that the weights are
relatively high for inputs close to the input to be predicted.
Furthermore, some of the weights may be negative. Finally,
the weights imply that for an old input the predictor equals
the observed simulation output at that input: y(di) = w(di)
with di ∈D, so all weights are zero except the weight of the
observed output, which is one; i.e., the Kriging predictor
is an exact interpolator. Note that the OLS regression
predictor minimizes the Sum of Squared Residuals (SSR),
so it is not an exact interpolator—unless n = q (saturated
design).

A major problem is that the optimal weights in (??)
depend on the correlation function of the underlying sim-
ulation model (e.g., (1))—but this correlation function is
unknown. Therefore both the type and the parameter values
must be estimated. To estimate the parameters of such a
correlation function, the standard software and literature
uses Maximum Likelihood Estimators (MLEs). The esti-
mation of the correlation functions and the corresponding
optimal weights in (??) can be done through DACE, which
is software that is well documented and free of charge; see
Lophaven, Nielsen, and Sondergaard (2002).
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The interpolation property is attractive in deterministic
simulation, because the observed simulation output is un-
ambiguous. In random simulation, however, the observed
output is only one of the many possible values. For random
simulations, Van Beers and Kleijnen (2003) replaces w(di)
by the average observed output wi. Those authors give
examples in which the Kriging predictions are much better
than the regression predictions (regression metamodels may
be useful for other goals; e.g., understanding, screening,
and V & V). Ankenman, Nelson, and Staum (2008) present
a Kriging predictor that is no longer an interpolator in ran-
dom simulation. Kleijnen (008a) also discusses Kriging in
random simulation.

The literature virtually ignores problems caused by
replacing the weights λλλ in (??) by the estimated optimal
weights (say) λ̂λλ 0. Nevertheless, this replacement makes the
Kriging predictor a nonlinear estimator. The literature uses
the predictor variance—given the Kriging weights. This
variance implies a zero variance in case the new point w0
equals an old point wi. Furthermore this equation tends to
underestimate the true variance. Finally, this conditional
variance and the true variance do not reach their maxima for
the same input combination, which is important in sequential
designs. See Den Hertog, Kleijnen, and Siem (2006) for
details.

In random simulation, each input combination is repli-
cated a number of times so a simple method for estimating
the true predictor variance is distribution-free bootstrap-
ping. To estimate the predictor variance, Van Beers and
Kleijnen (2008) resample—with replacement—the (say) mi
replicates for combination i (i = 1, . . . ,n). This sampling
results in the bootstrapped average w∗i where the superscript
∗ is the usual symbol to denote a bootstrapped observation.
From these n bootstrapped averages w∗i , the bootstrapped

estimated optimal weights λ̂λλ
∗
0 and the corresponding boot-

strapped Kriging predictor y∗ are computed. To decrease
sampling effects, this whole procedure is repeated B times
(e.g., B = 100), which gives y∗b with b = 1, . . . ,B. The
variance of the Kriging predictor is estimated from these
y∗b.

Another issue in Kriging is how to select the input
combinations that result in the I/O simulation data to which
the Kriging model is fitted. Simulation analysts often use
LHS (LHS was not invented for Kriging but for risk analysis;
see Kleijnen (008a)). LHS assumes that a valid metamodel
is more complicated than a low-order polynomial, which
is assumed by classic designs. LHS does not assume a
specific metamodel. Instead, LHS focuses on the design
space formed by the k-dimensional unit cube defined by
the k standardized simulation inputs. LHS is one of the
space filling types of design (other designs are discussed in
(Kleijnen 008a) and (Kleijnen 008d)).

Instead of a one-shot space-filling design such as a LHS
design, a sequentialized design may be used. In general,
sequential statistical procedures are known to require fewer
observations than fixed-sample (one-shot) procedures; see
Park et al. (2002). Sequential designs imply that observa-
tions are analyzed—so the data generating process is better
understood—before the next input combination is selected.
This property implies that the design depends on the spe-
cific underlying process (simulation model); i.e., the design
is customized (tailored or application-driven, not generic).
Furthermore, such a design is attractive in simulation be-
cause computer experiments (unlike real-life experiments)
proceed sequentially.

A sequential design for Kriging in SA is developed in
Van Beers and Kleijnen (2008); it has the following steps.

1. Start with a pilot experiment, using some small
generic space-filling design; e.g., a LHS design.

2. Fit a Kriging model to the I/O simulation data that
are available at this step (in the first pass of this
procedure, these I/O data are the data resulting
from Step 1).

3. Consider (but do not yet simulate) a set of candidate
input combinations that have not yet been simulated
and that are selected through some space-filling
design; select as the next combination to be actually
simulated, the candidate combination that has the
highest predictor variance.

4. Use the combination selected in Step 3 as the input
combination to the (expensive) simulation model,
and obtain the corresponding simulation output.

5. Return to Step 2, unless the Kriging metamodel is
acceptable for its goal (SA).

The resulting design is indeed customized; i.e., which
combination has the highest predictor variance is determined
by the underlying simulation model; e.g., for the classic
M/M/1 this design selects relatively few low traffic rates
that give a less steep I/O function. A sequential design for
constrained optimization (instead of SA) will be presented
in Section 5.2.

I see a need for more research on Kriging in simulation:

• For random simulation, Kriging software needs
further improvement; e.g., allow predictors that do
not equal the average outputs at the input com-
binations already observed; see Ankenman et al.
(2008) and Kleijnen (008a).

• Sequential designs may benefit from asymptotic
proofs of their performance; e.g., does the design
approximate the optimal design?

• More experimentation and analyses may be done
to derive rules of thumb for the sequential design’s
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parameters, such as the size of the pilot design and
the initial number of replicates.

• Stopping rules for sequential designs based on a
measure of accuracy may be investigated.

• Nearly all Kriging publications assume univariate
output, whereas in practice simulation models have
multivariate output.

• Often the analysts know that the simulation’s I/O
function has certain properties, e.g., monotonicity.
Most metamodels (such as Kriging and regression)
do not preserve these properties.

5 OPTIMIZATION

The importance of the optimization of engineered systems
is emphasized in a 2006 NSF panel; see Oden (2006).
That report also points out the crucial role of simulation
in engineering science. There are many methods for sim-
ulation optimization; see Kleijnen (008a) and the WSC
proceedings. Section 5.1 reviews RSM; Section 5.2 re-
views Kriging combined with MP; and Section 5.3 reviews
robust simulation-optimization.

5.1 RSM

This subsection is based on Kleijnen (008e), which summa-
rizes Generalized RSM (GRSM), extending Box and Wil-
son’s RSM originally developed for real-life systems (that
RSM is also covered in (Myers and Montgomery 1995)).
GRSM allows multiple (multivariate) random responses,
selecting one response as goal and the other responses as
constrained variables. Both GRSM and RSM estimate lo-
cal gradients to search for the optimum. These gradients
are based on local first-order polynomial approximations.
GRSM combines these gradients with MP findings to es-
timate a better search direction than the Steepest Descent
(SD) direction used by RSM; see (2) below. Moreover,
GRSM uses these gradients in a bootstrap procedure for
testing the Karush-Kuhn-Tucker (KKT) conditions for the
estimated optimum.

Classic RSM has the following characteristics.

• RSM is an optimization heuristic that tries to esti-
mate the input combination that minimizes a given
univariate goal function.

• RSM is a stepwise (multi-stage) method.
• In these steps, RSM uses local first-order and

second-order polynomial metamodels (response
surfaces). RSM assumes that these models have
white noise in the local experimental area; when
moving to a new local area in a next step, the
variance may change.

• To fit these first-order polynomials, RSM uses clas-
sic R-III designs; for second-order polynomials,
RSM usually applies a CCD.

• To determine in which direction the inputs will be
changed in a next step, RSM uses SD based on
the estimated gradient β̂ββ−0 = (β̂1, . . . , β̂k)′ implied
by the first-order polynomial fitted in the current
step; the subscript −0 means that the intercept β̂0
vanishes in the estimated gradient.

• In the final step, RSM takes the derivatives of the
locally fitted second-order polynomial to estimate
the optimum input combination. RSM may also
apply canonical analysis to examine the shape of
the optimal (sub)region: unique minimum, saddle
point, ridge?

Kleijnen, den Hertog, and Angün (2006) derive Adapted

Steepest Descent (ASD), which uses [cov(β̂ββ−0)]
−1

β̂ββ−0; e.g.,
the higher the variance of a factor effect is, the less the
search moves into the direction of that factor. ASD gives a
scale-independent search direction, and in general performs
better than SD.

In practice, simulation models have multiple outputs
so GRSM is more relevant than RSM. GRSM generalizes
SD (applied in RSM) through ideas from interior point
methods in MP. This search direction moves faster to the
optimum than SD, since the GRSM avoids creeping along the
boundary of the feasible area determined by the constraints
on the random outputs and the deterministic inputs. GRSM’s
search direction is scale independent. More specifically, this
search direction is

d =−
(

B
′
S−2B+R−2 +V−2

)−1
β̂ββ 0;−0 (2)

where B is the matrix with the gradients of the constrained
outputs, S, R, and V are diagonal matrixes with the current
estimated slack values for the constrained outputs, and the
lower and upper limits for the deterministic inputs, and
β̂ββ 0;−0 is the classic estimated SD direction for the goal
output.

Analogously to RSM, GRSM proceeds stepwise; i.e.,
after each step along the search path (2), the following
hypotheses are tested:

1. The simulated goal output of the new combina-
tion is no improvement over the old combination
(pessimistic null-hypothesis).

2. This new combination is feasible; i.e., the other
simulation outputs satisfy the constraints.

To test these hypotheses, we may apply the classic Stu-
dent t statistic (a paired t statistic if CRN are used). Because
multiple hypotheses are tested, Bonferroni’s inequality may
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be used; i.e., divide the classic α value by the number of
tests.

Actually, a better combination may lie in between the
old and the new combinations. GRSM uses binary search;
i.e., it simulates a combination that lies halfway these two
combinations (and is still on the search path). This halving
of the stepsize may be applied a number of times.

Next, GRSM proceeds analogously to RSM. So around
the best combination found so far, it selects a new local
area. Again a R-III design selects new simulation input
combinations. And first-order polynomials are fitted for
each type of simulation output, which gives a new search
direction. And so on.

In random simulation the gradients and the slacks of
the constraints must be estimated. This estimation turns
the KKT first-order optimality conditions into a problem of
nonlinear statistics. Angün and Kleijnen (2008) present an
asymptotic test; Bettonvil, del Castillo, and Kleijnen (2008)
derive a small-sample bootstrap test.

5.2 Kriging and MP

This subsection summarizes Kleijnen, van Beers, and van
Nieuwenhuyse (2008), presenting a heuristic for constrained
simulation-optimization (so it is an alternative for GRSM).
There are additional constraints: the inputs must be integers,
and they must satisfy non-box constraints The heuristic
combines (i) sequential designs to specify the simulation
inputs, (ii) Kriging metamodels to analyze the global I/O
(whereas GRSM uses local metamodels), and (iii) Integer
Non-Linear Programming (INLP) to estimate the optimal
solution from the Kriging metamodels. The heuristic is
applied to an (s, S) inventory system with a service (fill
rate) constraint, and a realistic call-center simulation with a
service constraint; the heuristic is compared with a popular
commercial heuristic, namely OptQuest.

The heuristic is summarized in Figure 1. Some details
are as follows.

1. The pilot design uses a standard maximin LHS
design, which is a LHS design that maximizes the
minimum distance between input points, and ac-
counts for box constraints for the inputs. Moreover,
the heuristic accounts for non-box input constraints;
e.g., the sum of some inputs must meet a budget
constraint.

2. The heuristic simulates all combinations of a design
with the number of replicates depending on the
signal/noise of the output.

3. To validate the Kriging metamodels, the heuris-
tic applies cross-validation; see Kleijnen (008a).To
estimate the variance of the Kriging predictor, the
heuristic applies distribution-free bootstrapping to

2. Input design into simulation model, and run

3. Fit Kriging metamodels to simulation I/O data

4. Valid metamodel?
6. Estimate optimum
via MP

7. New optimum point?

11. Stop

No

Yes

Yes

No

8. Add new optimum
point to design 

1. Select initial space-filling design

5. Add ‘worst’ point to design

9. Same optimum goal
a times?

No

10. Find next best point

Yes

Figure 1: Kriging and MP flowchart.

the replicates (accounting for a non-constant num-
ber of replicates per input combination, and CRN).

4. Some new combinations are selected to improve
the fit of the global Kriging metamodel, whereas
some other combinations are added because they
seem to be close to the local optimum.

5.3 Taguchian Robust Optimization

Whereas most simulation-optimization methods assume
known environments, this subsection develops a ‘robust’
methodology for uncertain environments. This methodol-
ogy uses Taguchi’s view of the uncertain world, but replaces
his statistical techniques by either RSM or Kriging com-
bined with MP. Myers and Montgomery (1995) extend RSM
to robust optimization of real-life systems. This subsection
is based on Dellino, Kleijnen, and Meloni (2008), adapting
robust RSM for simulated systems, including bootstrapping
of the estimated Pareto frontier. Dellino et al. apply this
method to a classic Economic Order Quantity (EOQ) in-
ventory model, which demonstrates that a robust optimal
order quantity may differ from the classic EOQ.

Taguchi originally developed his approach to help Toy-
ota design ‘robust’ cars; i.e., cars that perform reasonably
well in many circumstances (from the snows in Alaska to
the sands in the Sahara); see Taguchi (1987) and Wu and
Hamada (2000). Taguchi distinguishes between two types
of variables:

• Decision (or control) factors (say) d j ( j = 1, . . . ,k)
• Environmental (or noise) factors, eg (g = 1, . . . ,c).

Taguchi assumes a single output (say) w. He focuses
on the mean and the variance of this output.

Dellino et al. do not use Taguchi’s statistical methods,
because simulation enables the exploration of many more
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factors, factor levels, and factor combinations. Moreover,
Taguchi uses a scalar output such as the signal-to-noise or
mean-to-variance ratio; Dellino et al. allow each output to
have a statistical distribution characterized through its mean
and standard deviation; also see Myers and Montgomery
(1995, p. 491). Dellino et al. solve the resulting bi-objective
problem through the estimation of the Pareto frontier.

In the spirit of RSM, Myers and Montgomery (1995,
p. 218, 492) assume:

• a second-order polynomial for the decision factors
d j;

• a first-order polynomial for the environmental fac-
tors eg;

• Control-by-noise two-factor interactions (say) δ j;g,

resulting in

y = β0 +
k

∑
j=1

β jd j +
k

∑
j=1

k

∑
j′≥ j

β j; j′d jd j′+

+
c

∑
g=1

γ je j +
k

∑
j=1

c

∑
g=1

δ j;gd jeg + ε

= β0 +βββ
′d+d′Bd+ γγγ ′e+d′∆∆∆e+ ε.

(3)

Whereas Myers and Montgomery (1995, p. 493-494)
assume that the environmental variables e satisfy E(e) = 0
and cov(e) = σ2

e I, Dellino assume E(e) = µµµe and cov(e) =
ΩΩΩe and derive from (3)

E(y) = β0 +βββ
′d+d′Bd+ γγγ

′
µµµe +d′∆∆∆µµµe (4)

and

var(y) = (γγγ ′+d′∆∆∆)ΩΩΩe(γγγ +∆∆∆
′d)+σ

2
ε = l′ΩΩΩel+σ

2
ε . (5)

where l = (γγγ + ∆∆∆
′d) = (∂y/∂e1, . . . ,∂y/∂ec)′; i.e., l is the

gradient with respect to the environmental factors—which
follows directly from (3). So, the larger the gradient’s
components are, the larger the variance of the predicted
simulation output is. Furthermore, if ∆∆∆ = 0 (no control-by-
noise interactions), then var(y) cannot be controlled through
the control variables d.

Myers and Montgomery (1995, p. 495) discuss con-
strained optimization, which minimizes (e.g.) the variance
subject to a constraint on the mean; see (4) and (5). They
often simply superimpose contour plots for the mean and
variance, to select an appropriate compromise or ‘robust’
solution. Dellino et al., however, use MP—which is more
general and flexible.

To construct confidence intervals for the robust op-
timum, Myers and Montgomery (1995, p. 498) assume
normality. Myers and Montgomery (1995, p. 504) notice
that the analysis becomes complicated when the noise fac-

tors do not have constant variances. Dellino et al. therefore
use parametric bootstrapping, which assumes that the dis-
tribution of the relevant random variable is known (in the
EOQ example, the distribution is Gaussian).

OLS may be used to estimate the parameters in (4) and
(5). The final goal of robust optimization is to minimize
the resulting estimated mean ŷ, while keeping the esti-
mated standard deviation σ̂y below a given threshold. This
constrained minimization problem may be solved through
Matlab’s ‘fmincon’, which gives the values of the ‘estimated
robust decision variables’ (say) d̂+ and its corresponding
mean ŷ and standard deviation σ̂y. Next, varying the thresh-
old value (say) 100 times may give up to 100 different
solutions d̂+ with corresponding ŷ and σ̂y. These 100 pairs
(ŷ, σ̂y) give the estimated Pareto frontier. To estimate the
variability of this frontier, bootstrapping may be used.

Dellino et al. demonstrate robust optimization through
an EOQ simulation, which is deterministic. They copy the
EOQ parameter values from Hillier and Lieberman (2001),
pp. 936–937, 942–943.

Dellino et al. assume that the demand per time unit
is constant, but this constant (say) a is unknown. More
specifically, a has a Gaussian distribution with mean µa and
standard deviation σa where µa is the ‘base’ or ‘nominal’
value (used in the RSM optimization of the EOQ model) and
σa quantifies the uncertainty about the true input parameter.
Myers and Montgomery (1995, pp. 463–534) use only two
values per environmental factor, which suffices to estimate
its main effect and its interactions with the decision factors.
Dellino et al., however, use LHS to select five values for
the environmental factor a, because LHS is popular in risk
analysis. These values are crossed with five values for the
decision variable Q, as is usual in a Taguchian approach;
Q has five values if a CCD is used. (Dellino et al. and
Myers and Montgomery (1995, p. 487) discuss designs
more efficient than crossed designs.)

The ‘estimated robust optimal’ order quantity (say) Q̂+

is the quantity that minimizes the estimated mean cost Ĉ
while keeping the estimated standard deviation σ̂C below a
given threshold T . This constrained minimization problem is
solved through Matlab’s fmincon. For example, T = 42500
gives Q̂+ = 28568, but T = 41500 gives Q̂+ = 35222; the
classic EOQ is Q̂o = 28636 so the difference between the
two order quantities is nearly 25% if the managers are
risk-averse (low threshold T ). Because management cannot
give a single, fixed value for the threshold, the threshold
is varied—which gives the estimated Pareto frontier. This
frontier demonstrates that if management prefers low costs
variability, then they must pay a price; i.e., the expected
cost increases; also see Figure 2.

Future research may address the following issues.
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Figure 2: Bootstrapped Pareto frontiers.

• A better type of metamodel may be a Kriging
model.

• The methodology needs adjustment for random
simulation models, with scalar output or vector
output.

• Integer constraints on some input variables may
be needed.

6 CONCLUSIONS

DOE for random simulation borrows many techniques from
DOE for real-life experiments—such as R-III designs and
CCDs with low-order polynomial metamodels—and deter-
ministic simulation—such as LHS and Kriging. Random
simulation, however, uses PRN (and CRN) so it involves
(possibly correlated) internal noise—besides errors caused
by lack-of-fit. Simulation allows experimentation with many
factors, so screening designs such as SB are very impor-
tant and deserve more research and application. Kriging is
already popular in deterministic simulation, but Kriging in
random simulation deserves additional research and more
applications. Moreover, Kriging may be combined with
sequential designs, for either SA or optimization. Most op-
timization literature has focused on simulation with a single
output, whereas practical simulation generates multiple out-
puts. These multiple outputs may be handled by methods
such as GRSM and MP combined with Kriging—which
also deserve more research and application. Finally, robust
optimization in random simulation has only started—even
though it is a very important topic in practice. For all these
different types of design and analysis, it is urgent to develop
software that is easily combined with software for random
simulation modeling and analysis; also see Schruben (2008).
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