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ABSTRACT 

The use of simulation as a modeling and analysis tool is 
wide spread. Simulation is an enabling tool for experi-
menting virtually on a validated computer environment. 
Often the underlying function for the results of a comput-
er simulation experiment has too much curvature to be 
adequately modeled by a low order polynomial. In such 
cases finding an appropriate experimental design is not 
easy. This research uses prediction variance over the vo-
lume of the design region to evaluate computer simulation 
experiments assuming the modeler is interested in fitting a 
second order polynomial or a Gaussian Process model to 
the response data. Both space-filling and optimal designs 
are considered. 

1 INTRODUCTION 

Technology has had a tremendous impact on the way 
problems are viewed today. Computers have changed the 
way systems are analyzed. Prior to the use of computers, 
there was limited ability to study and analyze complex 
scientific problems which required intensive mathemati-
cal analysis or offered no closed form mathematical solu-
tion for the problem under investigation. Now, almost 
every field of science and engineering makes use of com-
puter programs and models that allow the simulation of a 
system.  
 Examples of applications of computer simulation 
models includes circuit simulation, stress analysis testing, 
hurricane tracking, turbulent flow studies, and manufac-
turing environments. An integrated circuit simulation is 
described in Currin et al. (1991). This circuit simulation 
was also presented and studied in Currin et al. (1988) and 
Sacks et al. (1989). Allen et al. (2003) describe a Finite 
Element Analysis (FEA) model used for designing an “in-
terference fit” plastic seal. Modeling weather patterns 
over the entire globe is another application of computer 
simulation. Several papers on the modeling and analysis 
of computer hurricane models include Watson and John-

son (2004) and Iman et al. (2006).  Simulation of turbu-
lent mixing in jet engines is presented in Xiao et al. 
(2006) who use computational fluid dynamics (CFD) 
models; these models predict turbulence properties in a 
physical experiment. The modeling of manufacturing en-
vironments is well published, especially in the semicon-
ductor manufacturing field, where queuing analysis is in-
adequate. Johnson et al. (2004a), Johnson et al. (2004b), 
and Johnson et al. (2005) described semiconductor manu-
facturing simulations.  
 Experiments carried out on simulation models are 
similar to physical experiments. The researcher performs 
a computer simulation experiment by making a number of 
systematic changes to the parameters (or inputs) of a 
computer simulation model. Computer simulation expe-
riments provide several advantages over physical experi-
mentation. First, computer simulation experiments only 
require the programming of the model and are limited on-
ly by the speed of the processor(s). Second, prototypes 
used for physical experimentation are generally expensive 
and require substantial time to model and build. Computer 
simulation experiments are comparatively cheap. They 
only involve the cost of a computer, the time duration to 
build the simulation, and the time duration to execute the 
runs. One disadvantage of the computer simulation expe-
riments is their questionable ability to accurately predict 
the real world. While physical experiments have empirical 
validity, the question of whether or not a computer model 
is an adequate surrogate for the real system is an impor-
tant consideration.  
 There are many studies in the literature that address 
the adequacy of computer simulation models. Three im-
portant topics dealing with this are the calibration, verifi-
cation, and validation of computer simulation experiments 
via sophisticated statistical techniques. These topics are 
critical to the delivery of adequate computer simulation 
models that will be used for predicting the behavior of 
real processes. This research assumes that the computer 
simulation has been calibrated, verified, and validated, 
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and that it can be used to make accurate predictions about 
the behavior of the physical system it models.  
 Once an adequate computer simulation model is ob-
tained, the next major consideration is to decide how ex-
periments will be designed and carried out. The use of de-
signed experiments is equally important when studying a 
computer simulation as it is for a physical system. The 
complexity of the underlying model necessitates a care-
fully designed experiment. Allen et al. (2003) point out 
that, “even though FEA is intended to reduce costs com-
pared with physical experimentation, finite element expe-
riments are often time consuming and costly.” Thus, 
computer simulations, while cheap compared to physical 
experiments, can often have very long run times, which 
requires additional planning on behalf of the experimen-
ter. Moreover, computer simulations often have numerous 
input variables. 
 Because of the complexity of computer simulation 
experiments and the time consumed in making runs, it can 
be very convenient to develop a simpler surrogate for the 
computer simulation model. A surrogate model (also 
known as a meta-model) is a closed form mathematical 
expression that relates the input variables to the output re-
sponse. Using a surrogate model of the computer simula-
tion, which is also then a surrogate for the physical sys-
tem, allows for very fast (microseconds) predictions of 
new responses at design points not yet tested. This is a 
very cheap alternative to running the computer code, 
which may take hours or days. The drawback to using a 
surrogate model is that it requires additional verification 
to demonstrate that it provides adequate approximations 
of the computer simulation model and the physical system 
of interest. 
 Computer simulation models used to create mathe-
matical relationship between the inputs and response va-
riables require the determination of an appropriate design 
and analysis techniques. The issues associated with the 
creation of designs and analysis of computer simulation 
experiments are sometimes different that those encoun-
tered in the physical domain.  
 Computer simulation models can be divided into 
many different categories. For instance, there are many 
different types of computer simulation models. Several 
were described earlier in the introduction. Discrete Event 
Simulation (DES) is frequently used to model manufac-
turing environments and Finite Element Analysis (FEA) 
is frequently used in engineering research and product de-
velopment. A broader categorization of computer simula-
tion experiments  labels them as either stochastic or de-
terministic as illustrated in Figure 1. The division between 
deterministic and stochastic simulations may require 
completely different design and analysis techniques.  
 

 
Figure 1: Computer simulation subcategories 

 
 If one is interested in the design and analysis for 
computer simulation models that are deterministic in na-
ture, the designs prescribed in the current literature would 
fall under the category known as space filling designs. 
Analysis strategies for deterministic computer output in-
clude a host of model fitting techniques ranging from 
Kriging to Fourier regression. Space filling designs are a 
logical choice because they provide properties that are de-
sirable for deterministic models. One desirable property is 
that each design point is unique. Another desirable prop-
erty is that the uniqueness is held even if input variables 
are eliminated from the analysis. In other words, if the de-
sign reduces in dimension, each design will remain 
unique. This is an attractive property because a repeated 
design point would provide no additional information to 
the analyst. Note the properties required by deterministic 
simulation render traditional design strategies – replica-
tion, randomization, and blocking – useless. The choice of 
modeling fitting technique is another interesting topic due 
to the complexity of the response surface in a determinis-
tic model. The design problem, the goal of the model, and 
the knowledge of the analyst all help guide in the model 
fitting technique selection.  
 Stochastic computer simulations, which contain ran-
domness unlike deterministic models, are connected to a 
separate body of literature. The literature for design and 
analysis techniques rarely overlaps the deterministic com-
puter simulation model literature. Design techniques as-
sociated with these models are often generated using tra-
ditional experimental design techniques such as factorial 
designs or using sequential design methods. Traditional 
methods of design are based on physical experimentation 
in which the response is a stochastic variable, which war-
rants the assumption that these methods can also apply to 
stochastic simulation. Randomization, replication, and 
blocking – techniques used in the physical experimental 
domain – were developed to increase the validity of the 
experiment and can be somewhat applicable. There are 
still slight differences between the stochastic computer 
model and the physical domain. One difference is the 
ability for the simulation to have some control over the 
randomization in the experiment. Another difference is 



Johnson, Montgomery, Jones and Fowler 
 

465 

the lack of noise variables or the ability to control them 
via random distributions. Because of the similarities be-
tween physical and stochastic systems, designs such as 
factorial designs are often used on the stochastic model. 
Additionally, design optimality (alphabetic optimality cri-
terion) is used in the creation of designs for stochastic 
computer simulation models.  Modeling the response va-
riables for stochastic simulation is also similar to the 
modeling of responses from a physical experiment. There 
are numerous techniques recommended for the analysis of 
the stochastic model outputs. Some examples include po-
lynomial regression models, nonlinear regression models, 
and knowledge driven metamodels.   
 While both deterministic and stochastic computer si-
mulation models have a wide variety of designs and mod-
el fitting techniques to choose from, there is little known 
about which designs or models should be chosen given 
specific situations. Measuring “goodness” or “quality” of 
the design is important in determining which design 
should be used to carry out the experiments. This research 
introduces a method known as Fraction of Design Space 
(FDS) plots to evaluate experimental designs for comput-
er simulations. Section 2 introduces FDS plots. Section 3 
presents a number of designs of interest for computer si-
mulation models. Section 4 contains comparative plots 
and a discussion of general findings. This is followed by 
the conclusions in Section 5, which summarize the find-
ings.   

2 COMPARISON METHODOLOGY 

Comparing designs based on their prediction variance is 
one way of evaluating the performance of designs. If the 
results will be used to make prediction about untried de-
sign point locations, it is important to understand how 
well a given design will perform at these untried location. 
This method is often used when comparing designs in-
tended for use in a physical experiment, but not often em-
ployed for the study of designs for computer simulation 
experiments. The value of comparing designs based on 
their predictive capabilities is further enhanced when 
comparisons can be based on a graphical representation. 
Three powerful graphical comparison techniques are pre-
sented in the literature. Giovannitti-Jensen and Myers 
(1989) introduced variance dispersion graphs (VDGs), 
which plot the prediction variance at increasing distances 
from the center of the design. VDGs are used to assess the 
prediction capability of a response surface design. Khuri 
et al. (1996) illustrate the use of quantile plots for describ-
ing the distribution of the scaled prediction variance. Za-
hran et al. (2003) introduce fraction of design space plots 
that detail the scaled prediction variance (SPV) over in-
creasing fractions of the design. These FDS plots are also 
used in the assessment of prediction capability for re-
sponse surface designs, where the form of the model is 

assumed to be a linear polynomial model. FDS plots are 
the most powerful graphical technique of the three be-
cause they allow a single graphical representation for each 
design, where the VDGs and quantile plots require mul-
tiple graphs to analyze the performance of a single design.  
 This research utilizes FDS plots, which plot the esti-
mation of scaled prediction variance on the y-axis by in-
creasing fractions of the design space on the x-axis. This 
is accomplished by generating 10,000 uniformly selected 
points within the design region and calculating the scaled 
prediction variance for each of these points. The variances 
are then sorted smallest to largest and plotted against the 
design volume, [0,1], where 1 represents the entire design 
region.  Figure 2 illustrates an example of an eight run I-
optimal design created for a second order linear regres-
sion model in two variables.  
 

 
Figure 2: Fraction of Design Space Plot for an eight run  

I-optimal design. 

 To obtain an estimate of the scaled prediction va-
riance, the assumption of a meta-model is required. We 
assume the analyst is interested in fitting either a second 
order linear regression meta-model or a Gasussian 
Process (GASP) meta-model. Subsections 2.1 and 2.2 will 
describe the prediction variance calculations for the poly-
nomial and GASP meta-models, respectively.  

2.1 Prediction Variance for the Linear Regression 
Model 

The general from of the linear regression model is  
 
࢟     ൌ ࢼࢄ   (1)    ,ࢿ 

 
where  ࢿ ~ ܰሺ0,  ሻ. Thus the errors are uncorrelatedࡵଶߪ
with zero mean and variance, ߪଶ. In equation (1), X 
represents the design matrix and β represents the vector of 
unknown model parameters. The scaled prediction va-
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riance for the linear regression model given in (1) is cal-
culated as  
 
   ே ሾ௬ොሺ௫ሻሿ

ఙమ ൌ  ሺሻ,  (2)࢞ሻିଵࢄᇱࢄሺሻᇱሺ࢞ܰ
 

where x(m) is the prediction location in design variable 
space. The vectors represents the model of interest. The 
division by the variance, ߪଶ, makes the quantity scale-
free. The multiplication by N, the number of runs in the 
design, allows the comparison of designs with unequal 
number of design runs. The prediction variance quantity 
is penalized for having a larger sample size. The multipli-
cation by N can be left out of the equation as well. Doing 
this can give insight into the behavior of the prediction 
variance with respect to adding additional design points 
(Myers and Montgomery (2002)).  

2.2 Prediction Variance for the GASP Model  

The Gaussian process (GASP) model treats the response, 
y(x), as a realization of a multivariate normal distribution. 
Interestingly, this model is applied mostly to deterministic 
simulation model outputs, where there is no random error. 
The  appeal for its use in deterministic model fitting is its 
ability to act as an interpolator and fit through each point 
perfectly. The GASP model has been shown to do an ex-
cellent job with fitting the response data from a simula-
tion – both deterministic and stochastic – and providing 
fits with excellent prediction capabilities (Sacks et al. 
(1989) and van Beers and Kleijnen (2008)).   
 The GASP output response is represented as an n x 1 
data vector y(x), where y(x) ~ N(μ1n, ߪଶܴሺࢄ,  ሻ). The n xࣂ
n correlation matrix,  R(X, θ), can be represented by one 
of several forms (see Sacks et al., 1989). The form of the 
correlation function used throughout this paper is  

 
ܴሺࢄ, ሻࣂ ൌ  exp ሺെ ∑ ݔ ൫ߠ െ ൯ଶݔ

ୀଵ ሻ  
 
where ߠ ≥ 0. If ߠ  corresponds to the correlation in the 
kth factor. When this number is close to 0 the fitted sur-
face in the kth direction will be relatively flat, whereas a 
large value for ߠ corresponds to low correlation in the kth 

factor and the fitted surface will be rough (or bumpy) in 
the direction of the kth variable.  
 The fitted GASP equation is  

 
ሻ࢞ොሺݕ ൌ ߤ̂   ,࢞ᇱ൫ݎ ,ࢄ൯ܴିଵ൫ࣂ ࢟൯ሺࣂ െ ̂ߤሻ  

 
where ̂ߤ, ,ොߪ and ߠ represent the fitted mean, variance, and 
theta values, respectively. Maximum likelihood is used to 
fit these parameters. In the fitted equation, ݎ൫࢞,  ൯ is an nࣂ
x 1 vector of estimated correlations of the unobserved 
y(x) at a new value of the explanatory variables with the 

observations in the data, y(x). The form used for ݎ൫࢞,  ൯ࣂ
in this paper is  
 

,࢞൫ݎ ൯ࣂ ൌ ൛െݔ݁  ∑ ݔሺߠ െ ሻଶݔ
ୀଵ ൟ  

 
Thus ݕොሺ࢞ሻ interpolates the data. Under this model, the 
scaled prediction variance  is calculated as  

 
 ሺ௬ොሺ࢞ሻሻ

ఙమ ൌ 1 െ ,࢞ᇱ൫ݎ ,ࢄ൯ܴିଵ൫ࣂ ,࢞൫ݎ൯ࣂ ൯ࣂ 

                              
ቀଵିᇲோషభ൫ࣂ,ࢄ൯൫ࣂ,࢞൯ቁ

మ

ᇲோషభ൫ࣂ,ࢄ൯
              (3) 

 

3 DESIGN OF EXPERIMENTS 

The introduction of this paper briefly described the differ-
ences in experimental design strategies for deterministic 
and stochastic simulation models. From our survey of the 
literature, we have discovered that when experimenting 
on a deterministic model, space-filling designs are pre-
ferred and when using a stochastic model RSM designs 
such as central composite designs, factorial designs, or 
optimal designs are preferred. In this paper we explore the 
performance of space-filling designs and optimal designs 
for linear regression models (specifically high order poly-
nomial models) and space-filling designs for GASP mod-
els. Comparisons of these designs can be made with re-
spect to the model used and later we will discuss potential 
uses for the combinations of the designs and models to a 
particular simulation type (deterministic or stochastic).  
 In this section, we present the designs that will be 
used in the comparison. Note that while we use only sev-
eral designs, the technique can be applied to any design of 
interest to the reader. Section 3.1 presents the space-
filling designs and section 3.2 present the optimal designs.  

3.1 Space-Filling Designs 

These inherent differences between computer and physi-
cal experiments have led to the development of a series of 
experimental designs for use in computer modeling. We 
refer to these designs as space-filling designs. There are 
numerous space-filling designs that have been proposed 
in the last 30 years. The space-filling designs compared in 
this paper are the sphere packing design, the Latin Hyper-
cube design, the uniform design, the maximum entropy 
design, and the GASP Integrated Mean Square Error 
(IMSE) design. These designs were chosen because of 
their popularity in the literature and because they can be 
created with commercially available software packages. 
Two dimensional plots of these five space-filling designs 
can be found in Johnson et al. (2008) and Jones and John-
son (2008). The space-filling designs can be created using 
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several commercial software packages. A brief descrip-
tion of each design follows.  
 The sphere packing design, also known as the maxi-
min design, was developed in Johnson et al. (1990). This 
design maximizes the minimum distance between pairs of 
designs points. The Latin hypercube design was devel-
oped by McKay et al. (1979) and this design, represented 
as an n x s matrix consists of a random permutation of the 
columns {1,…n}. In this paper we use the maximin LHD. 
The uniform design was created by Fang (1980) and 
Wang and Fang (1981) and the goal of this design is to 
generate a set of point in the design space to be uniformly 
scattered, as in the uniform distribution. Shewry and 
Wynn (1987) developed the maximum entropy design, 
which uses entropy as the optimality criterion where en-
tropy is a measure of the amount of information contained 
in the distribution of a data set. This design is the GASP 
models equivalent to the D – optimal design for the linear 
regression model. The GASP IMSE, created by Sacks et 
al. (1989) is the GASP models corresponding design to 
the I–optimal design for linear regression models.  

3.2  Optimal Designs 

Optimal designs seek to optimize a specific criterion. 
They were developed originally for the linear model, but 
as seen in the space-filling design section, there are also 
optimal designs (such as the GASP IMSE design) that are 
developed for nonlinear or nonparametric models. The 
optimal designs explore in this paper are I-optimal de-
signs and D-optimal designs. I-optimal designs, or inte-
grated variance designs, minimize the average scaled pre-
diction variance over the design region. That is, the I- 
optimality criteria seeks to minimize the average value of 
equation (2).  D-optimal designs are ones that minimize 
the generalized variance of the model coefficients. This is 
done by creating a design that maximizes |X’X| (Myers 
and Montgomery (2002).  

4 RESULTS 

The goal of this research is to measure the “goodness” of 
several designs with respect to the second order linear re-
gression model and the GASP model. The next two sub-
sections will present results for experimental de-
sign/model fitting combinations.  
 

4.1 Comparing Designs for the Second Order 
Linear Regression Model 

In order to test the predictive capabilities of space-filling 
designs and optimal designs when fitting a second order 
polynomial, designs ranging from 2 – 5 factors were gen-
erated. When generating a space-filling design there is no 

model specification is necessary and only the number of 
runs is needed. To generate an optimal design, a model is 
specified as well as the number of design points. For the 
second order linear regression model we compared the 
following designs: sphere packing, Latin hypercube, uni-
form, maximum entropy, I-optimal and D- optimal. Table 
1 illustrates the number of parameters in a second order 
polynomial for  designs with 2 – 5 factors.  

Table 1: Number of model parameters for a second order 
linear regression model with various factors. 

Factors Number of Parameters (p) 

2 6 

3 10 

4 15 

5 21 

 
 For each case, 2 – 5 factors, we tested four separate 
designs with increasing number of runs. This allowed us 
to not only compare the design, but also study the effect 
sample size has on the results. We tested four different 
run scenarios: one design contained a minimum number 
of design points (shown in Table 1), the second design 
contained the minimum design points plus two additional 
points, the third design contained the minimum design 
points plus four additional points, and finally the fourth 
design contained double the number of minimum points 
needed. Table 2 illustrates all of the designs generated 
with their respective number of runs (p is equal to the 
number of parameters in the design as shown in Table 1).  

 

Table 2: Number of runs required for each tested scenario. 

Runs 
Factors p p+2 p+4 2p 

2 6 8 10 12 
3 10 12 14 20 
4 15 17 19 30 
5 21 23 25 42 

 
 For each of the designs illustrated in Table 2, FDS 
plots were generated. Figure 3 illustrates FDS plots for 
each of the designs evaluated for a 2nd order model with 
two factors and 10 runs. Figure 3 shows that the I-optimal 
design dominates the other design by having the lowest 
prediction variance across 99.9% of the design region. 
The I-optimal design is followed by the D-optimal and 
sphere packing design which have equivalent prediction 
variance performance in this example. The worst design 
in the example is the maximum entropy design.  
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Figure 3: FDS plots for experimental designs used to fit a 

second order polynomial regression model. 

In addition to generating the FDS plots, percentile of pre-
diction variance for all of the designs were generated. 
This allowed for a tabular comparison of the designs. The 
results for all of these cases, as well as third order – fifth 
order models can be found in Johnson et al. (2008a). The 
results are summarized as follows:  

• The I-optimal design had the best prediction 
variance properties of any design 

• The Sphere packing designs were generally 
the best space-filling designs in terms of 
lowest prediction variance across the design 
region 

• The space-filling designs exhibited high va-
riability with respect to prediction variance 
performance  

4.2 Comparing Designs for the GASP Model 

For the GASP model fitting, we compared the following 
designs: sphere packing, Latin hypercube, uniform, max-
imum entropy, and Gaussian Process Integrated Mean 
Square Error (GASP IMSE). To compare design for 
GASP model based on the prediction variance requires 
the specification of the design, sample size, dimension 
(number of input variables or factors), and value of the 
unknown thetas (one theta for each dimension). This situ-
ation requires the use of a designed experiment to study 
the effect that these factors have on the prediction va-
riance. The design of experiments is currently being con-
ducted and will be presented in Johnson et al. (2008b).  
We will present some preliminary results here.  
 Initial findings indicate a clear ordering for most of 
the scenarios tested. That is, there seems to be a pattern 
for the dominating designs – design is a significant factor 
with respect to prediction variance. The design with the 
lowest prediction variance is generally the GASP IMSE 
design, followed in performance by the Latin hypercube 
and the uniform, which have similar performance. The 
sphere packing and maximum entropy designs seem to 

exhibit the worst performance. Figure 4 displays an ex-
ample of the FDS plots for each of the 5 designs. The 
plots in Figure 4 are based on a four variable, 100 run de-
sign, with all of the thetas equal to 2.75.  
 

 
Figure 4: FDS plots for each of 5 space-filling designs 

with 4 variables, 100 runs, and thetas equal to 2.75. 

 In addition to design being a significant factor, initial 
results also indicate that the value of theta has a signifi-
cant effect on the prediction variance properties of a de-
sign. Figure 5 illustrates three FDS plots based on three 
GASP IMSE designs. The designs used to create these 
FDS plots all had two variables and 20 runs. The differ-
ence between the designs is the estimate of the unknown 
theta parameter. The design with the lowest prediction va-
riance has theta estimate of 1, the middle plot has theta 
estimates of 5, and the plot with the highest prediction va-
riance across the design space has theta estimates equal to 
15. 

 
Figure 5: FDS plots for three GP IMSE designs with two 

variables, 20 runs, and varying estimates of theta. 

GASP IMSE 

Latin Hypercube

Uniform

Sphere Packing 

Maximum Entropy 
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5 CONCLUSIONS 

Deterministic and stochastic simulation models both re-
quire careful planning and execution of experimental de-
sign strategies. Based on the type of computer simulation 
– deterministic or stochastic – a researcher must make 
choices with respect to choice of design (i.e. space-filling 
or optimal) and choice of model fitting technique (i.e. li-
near model or GASP model). This research demonstrated 
a new way of comparing designs for computer simulation 
experiments. Theoretical prediction performance of 
space-filling and optimal designs with respect to the 
second order polynomial model and the GASP model 
were illustrated. The theoretical results showed that there 
was a dominate design in both cases. The I-optimal design 
dominated the linear model and the GASP IMSE design 
dominated the GASP model. These results are somewhat 
intuitive as both of these designs are intended to minimize 
the variance in the design region with respect to the spe-
cific model. While the FDS graphical strategy is useful 
for comparing design types, the FDS plotting capabilities 
also allow the assessment of the other effects on predic-
tion variance such as sample size, dimension, and un-
known theta parameters (in the case of the GASP model).  
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