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ABSTRACT

We consider a Lévy process monitored at s (fixed) obser-
vation times. The goal is to estimate the expected value of
some function of these s observations by (randomized) quasi-
Monte Carlo. For the case where the process is a Brownian
motion, clever techniques such as Brownian bridge sam-
pling and PCA sampling have been proposed to reduce the
effective dimension of the problem. The PCA method uses
an eigen-decomposition of the covariance matrix of the vec-
tor of observations so that a larger fraction of the variance
depends on the first few (quasi)random numbers that are
generated. We show how this method can be applied to
other Lévy processes, and we examine its effectiveness in
improving the quasi-Monte Carlo efficiency on some ex-
amples. The basic idea is to simulate a Brownian motion
at s observation points using PCA, transform its increments
into independent uniforms over (0,1), then transform these
uniforms again by applying the inverse distribution function
of the increments of the Lévy process. This PCA sampling
technique is quite effective in improving the quasi-Monte
Carlo performance when the sampled increments of the Lévy
process have a distribution that is not too far from normal,
which typically happens when the process is observed at a
large time scale, but may turn out to be ineffective in cases
where the increments are far from normal.

1 INTRODUCTION

We are interested in the problem of estimating the mean µ

of a random variable X defined as a function of a stochastic
process monitored at a finite number of observation times.
This problem is encountered in many situations, notably in
computational finance (Glasserman 2004). The method we
will discuss is also applicable to closely related problems
such as estimating a quantile of X , or optimizing its mean

with respect to some parameters of the stochastic process
(Asmussen and Glynn 2007, Henderson and Nelson 2006).

The standard Monte Carlo (MC) method estimates µ

by simulating n independent realizations of X and taking
the average. Randomized quasi-Monte Carlo (RQMC) tries
to obtain a more accurate estimator by inducing a negative
dependence between the n copies of X (Owen 1998, L’Ecuyer
and Lemieux 2002, L’Ecuyer 2008a). One of the important
ingredients for the effectiveness of this technique is a low
effective dimension of X viewed as a function of the uniform
random numbers that drive the simulation. That is, the
realization of X should be determined mainly by the first
few random numbers of the simulation, or (at least) one
should be able to closely approximate X by a sum of functions
that depend only on a few random numbers (i.e., a sum
of low-dimensional functions). A given random variable X
can indeed be defined in many different ways as a function
of the underlying uniforms. While the choice of definition
has no impact on the mean and MC variance, it can have
a large impact on the RQMC variance (and effectiveness).
We will give examples of this later on.

In this paper, we focus on the case where the stochastic
process that determines X is a Lévy process, i.e., a station-
ary process with independent increments. To simulate the
Lévy process at the specified monitoring times, we simu-
late a Brownian motion at a set of monitoring times of the
same cardinality (either the same times or different ones),
transform the increments of this Brownian motion into in-
dependent U(0,1) random variates (i.e., uniform over the
interval (0,1)) by applying the normal distribution function,
then transform back these uniforms to the increments of
the Lévy process by applying the inverse distribution func-
tion of these increments. The motivation for this sampling
scheme is that it permits one to apply well-known effective
dimension reduction techniques to the Brownian motion,
hoping that the Lévy process will inherit (at least some of)
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this dimension reduction. The vector of observations of the
Brownian motion has a multivariate normal distribution. It
can be generated in particular via an eigen-decomposition
of its covariance matrix, also called PCA sampling; this
concentrates most of its variance on the first few generated
uniforms and reduces the effective dimension of most well-
behaved functions of these observations. The aim of this
paper is to explore the effectiveness of this PCA sampling
technique for Lévy processes.

The main idea exploited here could in fact apply more
generally. For any simulation whose output is a random
variate X function of s independent random variatesY1, . . . ,Ys
with known distribution functions, one can generate an
arbitrary Brownian motion at s observation times using
some effective dimension reduction technique, transform
its increments into s independent uniforms, then apply the
inverse distribution function of Yj to the jth uniform to
generate Yj, for each j. It remains to be seen in which
situations this technique is really effective, and how to
optimize (or select) the s observation times of the Brownian
motion. More generally, one could try to optimize the
decomposition of the covariance matrix of the Brownian
motion in order to minimize the RQMC variance for the
given random variable X of interest. We will not pursue
these generalizations in the present paper.

The remainder of the paper is organized as follows. In
Section 2, we briefly recall the RQMC methodology and
the motivation for a low effective dimension. In Section 3,
we describe Lévy processes and how they can be simulated
by PCA.

2 RANDOMIZED QUASI-MONTE CARLO AND
EFFECTIVE DIMENSION

Suppose we want to estimate an integral of the form

µ = E[ f (U)] =
∫

[0,1)s
f (u)du (1)

where U has the uniform distribution over [0,1)s. RQMC
estimates µ by

µ̂n,rqmc =
1
n

n−1

∑
i=0

f (Ui),

where Pn = {U0, . . . ,Un−1} is a set of n points in [0,1)s

with the following properties: (a) each Ui is a random
vector with the uniform distribution over [0,1)s, and (b)
with probability one, the point set U0, . . . ,Un−1 covers the
unit cube [0,1)s very evenly, in some sense; see Niederreiter
(1992), L’Ecuyer and Lemieux (2002), Glasserman (2004),
L’Ecuyer (2008a) for how to construct such point sets.
From another viewpoint, we can say that there is a negative
dependence between the points Ui.

When s is large, covering the unit cube [0,1)s very
uniformly seems to require a number of points that increases
at least exponentially with s (e.g., because the number of
corners to cover increases exponentially). On the other
hand, the function f can sometimes be well-approximated
by a sum of low-dimensional functions, in which case it
suffices that these low-dimensional functions are integrated
with high accuracy. This requires high uniformity of the
RQMC point set only for its projections on the subspaces
in which these low-dimensional functions are defined, High
uniformity of these projections is much easier to achieve
than high uniformity in the entire (large-dimensional) unit
cube, especially if these important projections are those
that corresponds to the first few coordinates of the points
Ui. Changes of variables can be applied to transform the
integrand (i.e., the definition of X as a function of u) so
that more of the variance depends on the first few uniforms
(Glasserman 2004, Imai and Tan 2006, L’Ecuyer 2008a).

To be more explicit, whenever X = f (U) has finite
variance σ2, where U is uniformly distributed over (0,1)s,
the function f can be decomposed uniquely as

f (u) = µ + ∑
u⊆S ,u6=φ

fu(u) (2)

where S = {1, . . . ,s}, each fu : [0,1)s→ R depends only
on {ui, i ∈ u}, the fu’s integrate to zero and are orthogonal,
and the variance decomposes as σ2 = ∑u⊆S σ2

u where σ2
u =

Var[ fu(U)] (with fφ = µ). If

∑
u∈J

σ
2
u ≥ ρσ

2 (3)

for a class J of small subsets of S and some ρ close to
1, and if we can construct the RQMC point set so that the
projection Pn(u) of Pn over the subspace determined by u
is highly uniform for all u ∈J , then the RQMC variance
can be much smaller than the MC variance for this function
f . In particular, if (3) holds for J = {u : |u| ≤ d} for
some small d, we say that f has low effective dimension
in the superposition sense (Owen 1998). If it holds for
J = {u⊆ {1, . . . ,d}} for some small d, we say that f has
low effective dimension in the truncation sense (Caflisch,
Morokoff, and Owen 1997). The effective dimension in
the truncation sense can often be reduced by redefining
f without changing the expectation µ , via a change of
variables, in a way that the first few uniforms account for
most of the variance in f (Acworth, Broadie, and Glasserman
1998, Avramidis and L’Ecuyer 2006, Caflisch, Morokoff,
and Owen 1997, Glasserman 2004, Imai and Tan 2006,
L’Ecuyer 2004, Moskowitz and Caflisch 1996, Morokoff
1998, Wang and Sloan 2007). In other words, we change
the way the uniforms are used to generate the estimator X
in the simulation.
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3 SIMULATING LÉVY PROCESSES

A Lévy process {Y (t), t ≥ 0} is a continuous-time stochas-
tic process with stationary and independent increments, and
with Y (0) = 0 (Bertoin 1996, Asmussen and Glynn 2007).
That is, for arbitrary ts > ts−1 > · · ·> t1 > t0 = 0, the incre-
ments Y (t j)−Y (t j−1), j = 1, . . . ,s, are independent random
variables and the distribution of Y (t j)−Y (t j−1) depends
only on the length t j− t j−1. Lévy processes are infinitely
divisible, which means that for any fixed t > 0, Y (t)−Y (0)
can be written as a sum of n i.i.d. random variables for
any positive integer n (arbitrarily large). Conversely, every
process having this property is a Lévy process. The sta-
tionary Poisson process, the Brownian motion, the inverse
Gaussian process, and the gamma process are prominent
examples of Lévy processes.

A natural way to generate the trajectory of a Lévy pro-
cess at the discrete monitoring times 0 = t0 < t1 < · · ·< ts
is by generating the independent increments Y (t j)−Y (t j−1)
successively, for j = 1, . . . ,c. This is the sequential sam-
pling or random walk approach (Glasserman 2004). For a
stationary Brownian motion, for example, these increments
are independent normal random variables whose mean and
variance are given explicitly by the parameters of the pro-
cess and are proportional to t j − t j−1. They are easy to
generate. Generating random variates from the distribution
of the increments is not easy for all Lévy processes, but it is
often at least feasible. In this paper, we consider only Lévy
processes whose increments can be generated by inversion.

Suppose that we want to estimate an integral of the
form µ = E[g(Y)] for some function g : Rs → R, where
Y = (Y (t1), . . . ,Y (ts)), by randomized quasi-Monte Carlo
(RQMC). We assume that the increments Y (t j)−Y (t j−1)
are generated by inversion from independent U(0,1) ran-
dom variables U1, . . . ,Us. One can also write µ =
E[ f (U1, . . . ,Us)] =

∫
[0,1)s f (u)du for some function f that

incorporates all the transformations from the U j to g(Y).
Then we can apply RQMC as outlined earlier. Here, the
dimension is s and the effective dimensions in the trunca-
tion sense is likely to be large when s is large, because all
increments play a non-negligible role in determining the
sample path.

For certain types of Lévy processes, we also know
how to generate random variates from the distribution of
Y (t) conditional on {Y (t1) = y1, Y (t2) = y2} for arbitrary
values of y1, y2, and t1 < t < t2. Then, a second approach
to generate Y (t1), . . . ,Y (ts) is by the following Lévy bridge
sampling approach. To keep the notation simple, we as-
sume here that s is a power of 2. We first generate the
final value Y (ts), then we generate Y (ts/2) from its con-
ditional distribution given (Y (t0),Y (ts)), and we apply the
same technique recursively to generateY (ts/4) conditional on
(Y (t0),Y (ts/2)), then Y (t3s/4) conditional on (Y (ts/2),Y (ts)),
then Y (ts/8) conditional on (Y (t0),Y (ts/4)), and so on, until

all s values have been determined. This technique is con-
venient to approximate the trajectory of Y up to a certain
accuracy, and where the required value of s is not neces-
sarily known in advance. It also provides a powerful tool
to improve the effectiveness of quasi-Monte Carlo (QMC)
methods by reducing the effective dimension of the prob-
lem. The idea is that the first few random numbers that
are generated have larger impact on the trajectory under
this technique than with sequential sampling. This method
was proposed in combination with QMC by Moskowitz and
Caflisch (1996) for the case of a Brownian motion; it is then
called Brownian bridge sampling. It was further studied by
Caflisch, Morokoff, and Owen (1997), Glasserman (2004),
and Avramidis and L’Ecuyer (2006), among others.

In the case of a Brownian motion, a much more gen-
eral method to sample the vector Y = (Y (t1), . . . ,Y (ts)) is
as follows (Devroye 1986, Glasserman 2004). Let Φ be
the standard normal distribution function. Decompose the
covariance matrix Σ of Y as Σ = AAt for some matrix A
(where t means “transposed”), generate Z = (Z1, . . . ,Zs)t

where the Z j = Φ−1(U j) are independent standard normal
random variables, and return Y = AZ. The Z j’s are easily
generated by inversion (Devroye 1986, L’Ecuyer 2008b).
The decomposition Σ = AAt is not unique; there are in fact
(in general) an infinite number of matrices A that satisfy
this condition. A first possibility, the Cholesky factorization,
takes A to be lower triangular and is equivalent to sequen-
tial sampling. Brownian bridge sampling corresponds to a
second way of decomposing Σ. A third possibility takes
A = PD1/2 where D is a diagonal matrix that contains the
eigenvalues of Σ in decreasing order and P is an orthogo-
nal matrix whose columns are the corresponding unit-length
eigenvectors. This is the classical eigen-decomposition used
in standard principal component analysis (PCA). It selects
A so that the maximum amount of variance of Y comes
from Z1, then the maximum amount of variance conditional
on Z1 comes from Z2, and so on. In other words, this PCA
sampling scheme concentrates the variance in the first co-
ordinates of Z as much as possible, i.e., in the first uniform
random numbers if the components of Z are generated by
inversion. Its use for reducing the effective dimension in the
context of QMC was first proposed by Acworth, Broadie,
and Glasserman (1998).

It should be underlined that PCA sampling does not
take into account the function g. Even with PCA, one can
construct functions g for which g(Y) depends more on Zd
than on Z1, for example. Perhaps a better formulation of
the problem is to find a decomposition AAt that maximizes
the fraction of Var[g(Y)] coming from Z1, then maximize
the fraction that comes from Z2 given Z1, and so on. For
nonlinear functions g, this is a difficult problem. Imai and
Tan (2002), Imai and Tan (2004), Imai and Tan (2006)
propose an approximate solution via a linear approximation
of g obtained by a first-order Taylor expansion around an
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arbitrary point in the unit cube, to compute the jth column
of A so that the corresponding Z j accounts for the maximal
amount of residual variance of the linear approximation.
This technique is generally difficult to implement (especially
when g is highly nonlinear) and may involve high overhead.
We will not use it in this paper.

To simulate a Lévy process at times t1, . . . , ts by PCA
sampling, we first simulate a Brownian process {W (t), t ≥ 0}
with mean zero and variance parameter σ2 (so W (t) is
normal with mean 0 and variance σ2t), at the observations
times 0 = τ0 < τ1 < · · ·< τd by PCA sampling, as described
earlier. Let W = (W (τ1), . . . ,W (τs))t. We then transform
the independent increments W (τ j)−W (τ j−1) of this process
into independent U(0,1) random variates Vj via

Vj = Φ

(
W (τ j)−W (τ j−1)

σ
√

τ j− τ j−1

)
, j = 1, . . . ,s.

Finally, we compute the increments of the Lévy process
as Y (t j)−Y (t j−1) = G−1

j (Vj), where G j is the distribution
function of the jth increment, for j = 1, . . . ,s. The rationale
is to have more of the variance of (Y (t1), . . . ,Y (ts)) coming
from the first uniforms U j, to help RQMC. We call this
PCA sampling with sequential transformation (PCAS).

Another way of constructing the Lévy process trajec-
tory (Y (t1), . . . ,Y (ts)) from the Brownian process trajectory
(W (τ1), . . . ,W (τs)) is as follows. It works under the as-
sumption that we know how to generate Y (t) conditional
on {Y (ta) = ya, Y (tb) = yb} by inversion, for arbitrary ya,
yb, and ta < t < tb. Let Gta,ya,tb,yb,t denote the distribution
function of Y (t) conditional on {Y (ta) = ya, Y (tb) = yb},
let Ψτa,wa,τb,wb,τ denote the distribution function of W (τ)
conditional on {W (τa) = wa, W (τb) = wb}, and let Gs be
the (unconditional) distribution function of Y (ts). Start by
defining

Y (ts) = G−1
s (Φ(W (τs)/(στ

1/2
s ))),

then let

Y (ts/2) = G−1
t0,0,ts,Y (ts),ts/2

(Ψτ0,0,τs,W (τs),τs/2
(W (τs/2))),

Y (ts/4) = G−1
t0,0,ts/2,Y (ts/2),ts/4

(Ψτ0,0,τs/2,W (τs/2),τs/4
(W (τs/4))),

Y (t3s/4) = G−1
ts/2,Y (ts/2),ts,Y (ts),t3s/4

(Ψτs/2,W (τs/2),τs,W (τs),τ3s/4
(W (τ3s/4))),

and so on, in the same order as for the Lévy bridge sampling.
We call this second construction PCA sampling with bridge
transformation (PCAB). It can be more appropriate than
PCAS in the case where computing the inverse conditional
distribution is less expensive than computing the inverse

distribution of an increment. This happens, for example,
for a gamma process sampled at equidistant monitoring
times (Avramidis and L’Ecuyer 2006, L’Ecuyer and Simard
2006).

For both PCAS and PCAB, we have the choice of
the observation times τ1, . . . ,τs and of σ2. Their choice
determines the covariance matrix Σ of W. The τ j do not
have to be the same as the t j. We note that multiplying all
the τ j by some factor κ is equivalent to multiplying σ2 by
κ , which means that without loss of generality we could
restrict ourselves to σ2 = 1.

Another important observation is that for a general Lévy
process whose increment over a given time interval has finite
and nonzero variance, the variance of the increment is always
proportional to the length of the interval: Var[Y (t)] = νt for
some positive constant ν < ∞. This follows from the fact
that Var[Y (κt)] = κVar[Y (t)] for any constant κ > 0, due to
the stationary and independent increments. Moreover, for
0≤ ti < t j, we always have Cov[Y (ti),Y (t j)] = Var[Y (ti)] =
νti.

It seems natural, then, to take σ2 = ν and τ j = t j for
all j, so that the covariance matrix Σ of (W (τ1), . . . ,W (τs))
matches exactly the covariance matrix of the vector
(Y (t1), . . . ,Y (ts)). That is, we define our Brownian mo-
tion {W (t), t ≥ 0} with the same volatility parameter as
the Lévy process, σ2 = ν , and we take the same observa-
tion times. We shall adopt this heuristic for our numerical
examples.

4 EXAMPLES

4.1 A Gamma Process

A gamma process {G(t), t ≥ 0} with drift parameter µ =
α/λ and volatility (or variance) parameter σ2 = ν = α/λ 2

is a Lévy process whose increment over a time interval of
length t has a gamma distribution with parameters (tα,λ ) =
(tµ2/ν ,µ/ν), i.e., with mean tµ and variance tν . (Note
that µ here has a different meaning than earlier.) For
ta < t < tb, the distribution of (G(t)−G(ta))/(G(ta),G(tb))
conditional on (G(ta),G(tb)) is a beta distribution with
parameters ((t− ta)α, (tb− t)α) (Avramidis and L’Ecuyer
2006).

The gamma process G can be simulated by both PCAS
and PCAB, with σ2 = ν and τ j = t j as explained earlier.
When the observation times are equally spaced, PCAB runs
faster than PCAS (by a factor of about 3 or 4) because it
can exploit the fast inversion algorithm of L’Ecuyer and
Simard (2006) for the symmetric beta distribution, whereas
PCAS requires inversion of the gamma distribution, which
is much slower. For comparison, we also simulate the
gamma process via sequential sampling and gamma bridge
sampling, using inversion in both cases. Again, gamma
bridge sampling runs faster than sequential sampling (by
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a factor of 3 or 4), thanks to the availability of the fast
beta inversion. We insist on alway using inversion for
compatibility with RQMC.

For a numerical illustration, we take t j = j/s for j =
1, . . . ,s, with s = 32, µ = 1, and we vary ν : we try ν = 0.1,
0.01, 0.001 and 0.0001. Smaller values of ν give increments
whose distribution is closer to normal. We start with the
rather simplistic cost function g defined by g(Y) = (G(t1)+
· · ·+G(ts))/s. The exact value of the expectation is easy to
compute in this case: E[g(Y)]= ∑

s
j=1 µt j/s = µ(s+1)/(2s).

For RQMC, we take a Sobol’ net with n = 216 points,
randomized by a left matrix scramble followed by a random
digital shift in base 2 (Owen 2003, L’Ecuyer 2008b, L’Ecuyer
2008a). The following sampling methods are considered for
RQMC: sequential sampling (Seq), gamma bridge sampling
(Bridge), PCAS, and PCAB. Table 1 gives the variance
reduction factors of RQMC compared with MC, defined as
the MC variance divided by the RQMC variance for the same
number n of simulation runs. To estimate the variance, we
made 300 independent replications of the RQMC estimator
for all examples. These variance estimators are noisy; the
standard errors on the reported variance reduction factors
can be 20 percent or more.

We observe that RQMC provides a huge variance reduc-
tion (by a factor of around 600,000) with all four sampling
methods when ν is small. This is good news. On the other
hand, the sequential and bridge sampling methods are doing
better than the PCA methods when ν is large. The good
performance of sequential sampling may seem surprising.
It can be explained by the fact that the performance measure
g(Y) in this particular example can be written as a sum of
one-dimensional functions:

g(Y) = G(t0)+
s

∑
j=1

(G(t j)−G(t j−1))(s− j +1)/s,

and the sequential method turns out to be equivalent to
integrating each term of this sum by a one-dimensional
RQMC rule (with inversion) and summing up. For more
complicated (nonlinear) functions g, this simplification no
longer happens in general (we will see an example of this in
Section 4.3). With the bridge sampling, the performance is
even better and the explanation is similar, with the difference
that the first random numbers have a more important role.
We also recall that the bridge and PCAB methods run faster
than the other two for this example.

The poor performance of PCA (especially PCAS) for
large ν may be linked to the fact that the normal distribution
is a very poor approximation of the gamma distribution (the
distribution of the increments of the gamma process) when
ν is large.

We also tried s = 64 and s = 128, and the results were
similar, except that the performance of PCAS and Seq
deteriorates when we increase s, especially for large ν .

PCAS and PCAB were also getting a little better than Seq
for small ν .

Table 1: Variance Reduction Factors for the Simulation of
a Gamma Process with RQMC vs MC, with a randomized
Sobol’ net with n = 216.

ν 0.1 0.01 0.001 0.0001
Seq 20000 140000 450000 600000
Bridge 109000 420000 600000 650000
PCAS 200 14000 250000 570000
PCAB 1900 160000 600000 670000

4.2 A Variance-Gamma Process

A variance-gamma (VG) process {Y (t), t ≥ 0} can be de-
fined by

Y (t) = W (G(t)),

where W is a Brownian motion with drift and variance
parameters θ and σ2, G is a gamma process with drift and
variance parameters 1 and ν , and W and G are independent
(Madan, Carr, and Chang 1998, Avramidis, L’Ecuyer, and
Tremblay 2003). Madan, Carr, and Chang (1998) argue
that replacing the Brownian motion by a VG process in the
Black-Scholes option pricing model improves realism.

One way to simulate the VG process by PCA is to
first simulate the gamma process by PCA at the s given
observation times, then simulate the Brownian motion at the
s times specified by the gamma process, again by PCA. If
done by inversion, this requires 2s uniform random variates;
the first s are used for the gamma process and the next s for
the Brownian motion. A major drawback of this approach
is that the second PCA decomposition must be redone for
each simulation run, because the observation times of the
Brownian motion are always different.

A second (faster) approach exploits the fact that the VG
process can be written as the difference of two independent
gamma processes (Madan, Carr, and Chang 1998, Avramidis
and L’Ecuyer 2006, Asmussen and Glynn 2007):

G(t) = G+(t)−G−(t)

where G+ and G− are independent gamma processes with
parameters (µ+,ν+) and (µ−,ν−), respectively, with

µ
+ = (

√
θ 2 +2σ2/ν +θ)/2,

µ
− = (

√
θ 2 +2σ2/ν−θ)/2,

ν
+ = (µ

+)2
ν , and

ν
− = (µ

−)2
ν .
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The VG process can then be simulated by simulating G+

and G− by PCA sampling, one after the other.
An improvement, it seems, would be to apply PCA

simultaneously to the two gamma processes. We define
a pair of independent Brownian processes W+ and W−

with the same volatility parameters as G+ and G−, and
the same observation times t1, . . . , ts. Because these two
processes are independent, the joint covariance matrix of
(W+(t1), . . . ,W+(ts),W−(t1), . . . ,W−(ts))t is block diagonal
with two s× s blocks, so its PCA decomposition can be
obtained by doing a PCA decomposition of each of the two
blocks and reordering the eigenvectors by decreasing order
of the eigenvalues. We will use this implementation in our
experiments.

For a numerical illustration, we take again t j = j/s for
j = 1, . . . ,32, with s = 32, and we vary ν . As a cost function
g, we simply take g(Y) = (Y (t1)+ · · ·+Y (ts))/s. The exact
value of its expectation is 0.515625 for all values of ν .
For RQMC, we take the same randomized Sobol’ points as
before. Table 2 summarizes the results of this numerical
experiment. The Seq, Bridge, PCAS, and PCAB methods
are defined as in the previous section. For each of them, we
try each of the two approaches described above, denoted
W (G(t)) and G+−G− in the table. We recall that the Seq
and PCAS methods are slower than the other ones, because
they require inversion of the gamma distribution, and that
PCAB with W (G(t)) is also slow because it requires too
many PCA decompositions.

The Bridge method with G+−G− is the best performer
empirically, but PCAB is competitive and can permit RQMC
to reduce the variance by a very large factor when ν is
small. With W (G(t)), the PCA methods provide more
variance reduction than the Seq and Bridge methods, but
this advantage is diminished by larger running times.

Table 2: Variance Reduction Factors for the Simulation of a
VG Process with RQMC vs MC, with a randomized Sobol’
net with n = 216.

ν 0.1 0.01 0.001 0.0001
W (G(t))
Seq 1000 6500 60000 350000
Bridge 300 5700 70000 390000
PCAS 400 22000 460000 620000
PCAB 1500 40000 470000 630000

G+−G−

Seq 20000 150000 520000 730000
Bridge 70000 300000 580000 650000
PCAS 130 7000 190000 490000
PCAB 1600 100000 500000 590000

4.3 Option Pricing Under a Geometric Variance-
Gamma Process

We now consider an option pricing problem for an asset
whose price evolves according to a geometric VG process
S defined by

S(t) = S(0)exp [(r +ω)t +Y (t)] ,

where Y is a VG process with parameters θ , σ , and ν . and
ω = ln(1−θν−σ2ν/2)/ν (Madan, Carr, and Chang 1998,
Avramidis and L’Ecuyer 2006). We want to estimate the
price of an Asian call option, given by E[e−rT max(S̄−K, 0)],
where S̄ = (1/s)∑

s
j=1 S(t j) and t j = jT/s for 0≤ j≤ s. We

try the following parameters: s = 32, θ = −0.2, σ = 0.3,
ν = 0.1, r = 0.1, T = 10, K = 101, and S(0) = 100. The
exact option value is µ ≈ 29.916 and the MC variance is
σ2 ≈ 1900.

Table 3: Variance Reduction Factors for the Simulation
of an Asian option with a geometric VG Process, with a
randomized Sobol’ net with n = 216.

W (G(t))
Seq 31
Bridge 28
PCAS 2100
PCAB 2200

G+−G−

Seq 50
Bridge 1600
PCAS 300
PCAB 2000

Table 3 gives the variance reduction factors of QMC
compared with MC. Regarding the speed, the same com-
ments as in the previous section apply here as well. With the
W (G(t)) approach, the two PCA methods largely dominate
the sequential and bridge methods in terms of variance reduc-
tion. With the difference of gammas (G+−G−), PCAB and
the bridge method give the best improvement with RQMC.
They are also the fastest methods. We tried other experi-
ments with smaller values of ν , and PCAS was performing
better (similar to PCAB) in terms of variance reduction.

5 CONCLUSION

We proposed generalizations of PCA sampling for a Brow-
nian motion to an arbitrary Lévy process, under the assump-
tion that the increments can be generated by inversion. We
showed empirically that this PCA methodology in conjunc-
tion with RQMC can provide significant variance reductions
in some cases. On the other hand, in our experiments with
the gamma and variance gamma processes, the PCA methods
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did not really do better than the gamma bridge sampling.
Further experiments with these new PCA methods may
(or may not) unveil situations where they provide better
improvements than the other existing methods.

A more promising direction, it seems, would be to try
to find (approximately) a matrix A such that Σ = AAt and
which minimizes the variance of the estimator g(Y). This
stochastic nonlinear optimization problem is hard to solve in
general, but it could be solved very approximately in a first
stage of a simulation experiment. Alternatively, one could
use some stochastic approximation procedure to modify A
adaptively during the simulation. This offers ground for
future research.
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