
A LARGE DEVIATIONS VIEW OF ASYMPTOTIC EFFICIENCY
FOR SIMULATION ESTIMATORS

Peter W. Glynn

Department of Management Science and Engineering
Stanford University

Stanford, CA 94305, U.S.A.

Sandeep Juneja

School of Technology and Computer Science
Tata Institute of Fundamental Research

Colaba, Mumbai 400005, INDIA

ABSTRACT

Consider a simulation estimator α(c) based on expend-
ing c units of computer time, to estimate a quantity
α. One measure of efficiency is to attempt to minimize
P (|α(c)−α| > ε) for large c. This helps identify estima-
tors with less likelihood of witnessing large deviations.
In this article we establish an exact asymptotic for this
probability when the underlying samples are indepen-
dent and a weaker large deviations result under more
general dependencies amongst the underlying samples.

1 INTRODUCTION

Consider the problem of numerically computing the
quantity α which can be expressed as the expectation
of a random variable X . Assuming that independent
copies of the random variable X can be generated, α
can be computed via simulation.

In many problem contexts there may be more than
one means of expressing α as an expectation. In par-
ticular, suppose that α = EX = EY . There are then
two obvious alternative approaches to computing α, one
based on independent replication of X and the other
based on on independent replication of Y . Given two
such competing estimators for α, one then wishes to
choose the estimator with maximum computational ef-
ficiency. Such a selection requires a concrete notion of
computational efficiency for simulation estimators.

This problem has been previously addressed by
Glynn and Whitt (1992), based on ideas going back
at least as far as Hammersley and Handcomb (1964).
The idea is to choose the estimator which maximizes
the asymptotic convergence rate. The convergence rate
of the estimator can be studied using the central limit
theorem (CLT). Such a CLT needs to take into account
the fact that efficiency is a function both of the vari-
ance of the estimator and the computer time required
to generate the estimator.

Specifically, for a given computer budget c, let α(c)
be the estimator for α based on independently replicat-
ing the random variable X . Note that the number of
replications of X completed in c units of computer time
is itself a random variable having a distribution that de-
pends on the chracteristics of the random quantity τX ,
where τX is the time required to generate a single copy
of X . Glynn and Whitt (1992) prove that if EτX <∞
and var(X) <∞, then

c1/2(α(c) − α)→
√
EτXvar(X)N(0, 1),

as c → ∞, where N(0, 1) denotes the standard Gaus-
sian random variable. Based on this CLT, it is natural
to choose the estimator which maximizes the ‘figure of
merit’ given by the reciprocal of the product of the mean
time to generate each replication with the variance per
replication. Glynn and Whitt (1992) also examine con-
vergence rates for a number of more complex simulation
estimators.

In this article, we introduce a new measure of com-
putational efficiency for a simulation estimator. Suppose
that our goal is to compute the quantity α to a given
absolute precision ε (ε > 0). It is then natural to se-
lect the estimator α(c) based on expending c units of
computer time that maximizes P (|α(c) − α| ≤ ε). We
will prove, in Section 2, that under certain regularity
conditions on the estimator,

1
c
logP (|α(c)− α| > ε)→ −β (1)

as c → ∞, for some positive finite constant β. Hence,
if we wish to maximize the ‘probability concentration’
of the estimator around α, we should seek to find an
estimator thatmaximizes the value ofβ. As in our earlier
discussion, the parameter β depends not just on the
distribution of the random variables being replicated,
but also the random quantity τX that describes the
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computer time required to generate X . For example,
if τX is heavy tailed so that its positive exponential
moments do not exist, then it is easy to see that β = 0
for ε < α, making the estimator unattractive based on
(1). The use of probability concentration criteria to
study estimator efficiency has a substantial history in
the statistics literature; for example, see Serfling (1980).

From a mathematical standpoint, the most novel
feature of our analysis is that our ‘large deviations’ result
(1) describes the behavior of α(c) based on expending c
units of computer time (rather than the more traditional
sample mean estimator associated with averaging the
first n replications of X). Thus our large deviations re-
sult takes into account the additional variability induced
by the fact that the number of replications completed
in c units of computer time is itself random.

Section 2 provides a complete mathematical de-
scription of our main result and includes some of the
key proofs. Here we develop an exact asymptotic for
the probability that α(c) has a large deviation from
its mean as c→ ∞, in the settings where independent
identically distributed samples of (X, τX) are generated.
Under more general dependence structure we develop
large deviations results as in (1). It should be noted that
this large deviations result plays an important role in a
related analysis of ordinal optimization algorithms that
we have undertaken; see Glynn and Juneja (2004) for
details. The more technical proofs that are not central
to our analysis are relegated to the appendix in Section
3.

The exact asymptotics that we derive in the i.i.d.
settings can also be inferred as a special case of the results
in Chi (2007). Our analysis, focussed on a specialized
problem is simpler. Asmentioned earlier,we also develop
large deviations results under more general dependence
structure not considered in Chi (2007).

2 FRAMEWORK

2.1 Preliminaries

There exists a sequence (Xn : n ≥ 1) of simulatable
random variables (rv) for which

1
n

n∑
i=1

Xi ⇒ α. (2)

Let τi ≥ 0 denote the time to generate Xi. Let
Sn =

∑n
i=1Xi and Tn =

∑n
i=1 τi with (S0, T0) = (0, 0).

Let N(c) = sup{n : Tn ≤ c}. Thus, N(·) is a renewal
counting process and it denotes the number of observa-
tions generated in a unit computer time.

Put

α(c) = SN(c)/N(c) if N(c) ≥ 1
= 0, otherwise.

In Section 2.2 we develop exact asymptotics for the
probabilities P (α(c) > a). In Section 2.3 we compute
the large deviations efficiency

lim
c→∞

1
c
logP (α(c) > a)

under general dependency conditions for the process
((Xi, τi) : i ≥ 1). The logarithmic asymptotics
limc→∞ 1

c logP (|α(c)− α| > ε) are easily inferred from
these results.

Let ψn : �2 → � ∪ {∞} denote the log-moment
generating function of (Sn, Tn) so that

ψn(θ, η) =
1
n
logE[exp(θSn + ηTn)].

The following assumption is important in our analysis:
Assumption 1 For each (θ, η) ∈ �2, the loga-

rithmic moment generating function defined as the limit

ψ(θ, η) ≡ lim
n→∞

1
n
logE[exp(θSn + ηTn)]

exists as an extended real number. Further, it is twice
continuously differentiable and strictly convex in the
interior of

N = {(θ, η) : ψ(θ, η) <∞},

and there exist (θ∗, η∗) and (−θ∗, η∗) in the interior of
N such that

ψ(θ∗, η∗) = θ∗a (3)

and

∂

∂θ
ψ(θ∗, η∗) = a. (4)

The requirement that (−θ∗, η∗) belong to interior of
N , while not critical to our analysis, allows considerable
simplifications in some of the proofs.

Significant notational simplification occurs by re-
placing Xi − a by Xi. Then, without loss of generality,
we focus on developing the asymptotic for P (SN(c) > 0)
where now α in (2) is negative and (3) and (4) are
appropriately modified so that

ψ(θ∗, η∗) = 0, (5)
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Figure 1: Typical level curve ψ(θ, η(θ)) = 0

and

∂

∂θ
ψ(θ∗, η∗) = 0, (6)

respectively. In the remaining paper, Assumption 1
denotes (5) and (6) in place of (3) and (4).

Note that ∂
∂θψ(0, 0) = α < 0 and since each τi ≥ 0,

∂
∂ηψ(θ, η) > 0.

Proofs of Lemmas 1 and 2 are peripheral to our
analysis and are omitted.

Lemma 1 Under Assumption 1, θ∗ > 0 and
η∗ > 0.

Lemma 2 below suggests that Figure 1 depicts a
typical level curve

ψ(θ, η(θ)) = 0 (7)

when Assumption 1 holds.
Lemma 2 Under Assumption 1, η(θ), solution

to (7), is strictly concave for θ ∈ [0, θ∗]. In addition,
η′(0) > 0 and η′(θ∗) = 0.

Lemma 2 also implies that the solution to (5) and
(6) when it exists, is unique.

2.2 An Exact Asymptotic For Independent
Identically Distributed Random Vectors

Let ((Xi, τi) : i ≥ 1) denote a sequence of i.i.d. random
vectors under the probability P .

LetF (·, ·) denote the distribution function of (Xi, τi)
under P . Then,

ψ(θ, η) = log
∫

(x,t)∈�2
eθx+ηtdF (x, t).

Some notation is needed for further analysis.

• Let F̃ (·, ·) denote the distribution obtained by
exponentially twisting F (·, ·) with parameters
(θ∗, η∗), i.e., for (x, t) ∈ �2

dF̃ (x, t) = eθ
∗x+η∗tdF (x, t).

• Let P̃ denote the probability associatedwith the
independent random vectors ((Xi, τi) : i ≥ 1)
under F̃ (·, ·) and let Ẽ denote the associated
expectation operator under P̃ (E denotes the
expectation operator under P ). Let σ̃2(Z) de-
note the variance of rv Z under P̃ .

• For notational convenience let (X, τ) have the
same distribution as (Xi, τi). Note that ẼX =
0. Letλ = 1/Ẽτ and let ρ denote the correlation
between X and τ under P̃ .

The exact asymptotic result relies critically on the
local limit theorems for which the following assumption
is needed.

Assumption 2 Under P̃ , the rv (X, τ) have a
joint probability density function (pdf) f̃(·, ·). Suppose
that f̃n∗(·, ·) denotes the pdf obtained by convolution of
f̃(·, ·) with itself n times. Then, there exists an n > 0
such that f̃n∗(·, ·) is bounded.

Theorem 1 states the main result of this section:
Theorem 1 Consider ((Xi, τi) : i ≥ 1) a se-

quence of i.i.d. random vectors so that EXi < 0, and
Assumptions 1 and 2 hold. Then,

lim
c→∞

√
c exp(η∗c)P (SN(c) > 0)

equals

√
λ

2π
1

σ̃(X)θ∗η∗
(exp(ψ(0, η∗))− 1). (8)

Note that N(c) + 1 is a stopping time w.r.t. the
process ((Xi, τi) : i ≥ 1). Thus, P (SN(c) > 0) =
E(I(SN(c) > 0)) may be re-expressed under the measure
P̃ as

Ẽ(exp(−θ∗SN(c)+1 − η∗TN(c)+1)I(SN(c) > 0)).

This equals exp(−η∗c) times

Ẽ(exp(−Wc − θ∗SN(c))I(SN(c) > 0)). (9)

whereWc = θ∗XN(c)+1+η∗(TN(c)+1−c). Thus, proving
Theorem 1 amounts to showing that in the limit, c1/2

times (9) equals (8).
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Let β(c) = �λc−c5/8
. Let T̃β(c) denote the centered
and normalized rv

1
β(c)1/2σ̃(τ)

[Tβ(c) − λ−1β(c)].

Note that |T̃β(c)| <
√
log(c) implies that

Tβ(c) ≤ λ−1β(c) +
√
log(c)β(c)1/2σ̃(τ)

= c− λ−1c5/8 + o(c5/8).

Hence, Tβ(c) < c and N(c) ≥ β(c) for all c suffi-
ciently large. In our asymptotic analysis, we henceforth
consider c sufficiently large so that |T̃β(c)| <

√
log(c)

implies N(c) ≥ β(c).
Also consider the centered and scaled rv S̃β(c) =
Sβ(c)

σ̃(X)β(c)1/2 and

Ỹβ(c) =
SN(c) − Sβ(c)

σ̃(X)β(c)1/2
I(N(c) > β(c)).

Therefore, when Tβ(c) < c, Ỹβ(c) is distributed as

SN(c−Tβ(c))

σ̃(X)β(c)1/2
.

Then, along the set Tβ(c) < c,

SN(c) =
(
S̃β(c) + Ỹβ(c)

)
σ̃(X)β(c)1/2.

Define, Bc to equal

{|T̃β(c)| < ν
√
log β(c),Wc < ν log β(c),

|Ỹβ(c)| < β(c)−1/16}

where ν ≥ 1 is a constant sufficiently large so as to
satisfy the conditions that we mention later. For any
set A, let AC denote the complement.

Lemma 3 is proved in the appendix.
Lemma 3 Under conditions of Theorem 1,

Ẽ(exp(−Wc − θ∗SN(c))I(SN(c) > 0), BCc ) = o(c−1/2).
(10)

In view of our discussion and Lemma 3 , Theorem 1
follows from Lemma 4 below.

Lemma 4 Under conditions of Theorem 1,

lim
c→∞

√
β(c)Ẽ(exp(−Wc − θ∗SN(c))I(SN(c) > 0), Bc)

(11)

equals

λ

√
1
2π

1
σ̃(X)θ∗η∗

(exp(ψ(0, η∗))− 1).

To see (11), note that

exp(−Wc − θ∗SN(c))

=
∫ ∞

−∞
exp(−u)I(θ∗SN(c) +Wc < u)du.

Hence, we may re-express Ẽ(exp(−Wc −
θ∗SN(c))I(SN(c) > 0), Bc) as

Ẽ

[∫ ∞

Wc

e−uI(0 < SN(c) <
u−Wc

θ∗
, Bc)du

]
. (12)

Since,
∫∞
(ν+1) log β(c)

exp(−u)du = 1/β(c)ν+1 =

o(1/c1/2), β(c)1/2 times

Ẽ

[∫ (ν+1) log β(c)

Wc

e−uI(0 < SN(c) <
u−Wc

θ∗
, Bc)du

]
.

(13)
has the same limiting value as β(c)1/2 times (12).

LetAc denote the σ algebra associated with random
variables

(Tβ(c)I(Tβ(c) < c), . . . , TN(c)+1I(Tβ(c) < c))

and

(Xβ(c)+1I(Tβ(c) < c), . . . , XN(c)+1I(Tβ(c) < c)).

Then, (13) equals

Ẽ

[∫ (ν+1) log β(c)

Wc

e−uP̃ (0 < SN(c)

<
u−Wc

θ∗
, Bc|Ac)du

]
,

or

Ẽ[
∫ (ν+1) log β(c)

Wc

e−u×

P̃
(
−Ỹβ(c) < S̃β(c) < −Ỹβ(c)+ (14)

u−Wc

θ∗σ̃(X)β(c)1/2
, Bc|Ac

)
du].
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Let

γn(y, w, u, t) = P̃ (−y < S̃n < −y + u− w
θ∗σ̃(X)

√
n
|T̃n = t)

Then, (14) equals

Ẽ

[∫ (ν+1) log β(c)

Wc

e−uγβ(c)(Ỹβ(c),Wc, u, T̃β(c))I(Bc)du

]
.

(15)
Lemma 5 relies on local central limit theorems and

is useful to our analysis. Some notation is needed for its
statement and proof. Due to the central limit theorem,
(S̃n, T̃n) converge to a zero mean, unit variance bivariate
Gaussian random vector (S̃, T̃ ) with correlation ρ, i.e.,
the correlation between X and τ under P̃ . Let f̃n(·, ·)
denote the joint pdf of (S̃n, T̃n) under P̃ . Let φρ(·, ·)
denote the bivariate Gaussian density function of (S̃, T̃ ).
Let f̃S̃n|T̃n=t(·) denote the probability density of S̃n
conditioned on T̃n = t and let φS̃|T̃=t(·) denote the
probability density of S̃ conditioned on T̃ = t. Note
that φS̃|T̃=t(·) is simply a pdf of a Gaussian rv with
mean ρt and variance (1− ρ2).

Proof of Lemma 5 is given in the appendix.
Lemma 5 Under Assumptions 1 and 2,

sup
u<(ν+1) logn,|y|<n−1/16,|w|<ν logn,|t|<ν√logn

(√
nγn(y, w, u, t)− u− w

θ∗σ̃(X)
φS̃|T̃=t(0)

)

converges to zero as n→∞.
Proof.[Lemma 4]

From Lemma 5, it follows that

lim
c→∞ Ẽ[

∫ (ν+1) log β(c)

Wβ(c)

e−u×

(
β(c)1/2γβ(c)(Ỹβ(c),Wc, u, T̃β(c))−

− u−Wc

θ∗σ̃(X)
φS̃|T̃=T̃β(c)

(0)
)
×

I(Bc)du] = 0 (16)

To see (16), note that for ε > 0 and c sufficiently
large

[
β(c)1/2γβ(c)(Ỹβ(c),Wc, u, T̃β(c))−

− u−Wc

θ∗σ̃(X)
φS̃|T̃=T̃β(c)

(0)
]
I(Bc)

is less than ε a.s. for all u < (ν+1) logβ(c). Therefore,

Ẽ[
∫ (ν+1) log β(c)

Wc

e−u×

(
β(c)1/2γβ(c)(Ỹβ(c),Wc, u, T̃β(c))−

− u−Wc

θ∗σ̃(X)
φS̃|T̃=T̃β(c)

(0)
)
×

I(Bc)du] ≤ εẼ[e−Wc ].

We show later in the appendix (see Lemma 6) that

lim
c→∞ Ẽ[e

−Wc ] = Ẽ[e−W∞ ] <∞.

Since, ε is arbitrary, (16) follows.
Therefore, (11) equals

lim
c→∞ Ẽ

[∫ (ν+1) log β(c)

Wc

e−u
u−Wc

θ∗σ̃(X)
−

φS̃|T̃=T̃β(c)
(0)I(Bc)du

]
(17)

Since,

∫ (ν+1) log β(c)

Wc

e−u(u −Wc)du

equals

e−Wc

∫ (ν+1) log β(c)−Wc

0

ye−ydy,

the term inside the limit in (17) may be re-expressed as
1

θ∗σ̃(X) times

Ẽ
[
φS̃|T̃=T̃β(c)

(0)e−WcI(Bc)−(∫ (ν+1) log β(c)−Wc

0

ye−ydy

)]
.
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Define,

Dc = {Wc < ν log β(c), |Ỹβ(c)| < β(c)−1/16},

and

Fc = {|T̃β(c)| < ν
√
log β(c)}.

Then I(Bc) = I(Dc) ∗ I(Fc). Observe that

lim
c→∞ Ẽ[φS̃|T̃=T̃β(c)

(0)e−WcI(Fc)×

(I(Dc)
∫ (ν+1) log β(c)−Wc

0

ye−ydy − 1)] = 0. (18)

To see this, note that φS̃|T̃=T̃β(c)
(0) is bounded from

above. Apply theCauchySchwartz inequality to random
variables e−WcI(Fc) and(

I(Dc)
∫ (ν+1) log β(c)−Wc

0

ye−ydy − 1

)
, (19)

and observe that

Ẽ[e−2Wc ] ≤ Ẽ[e−2θ∗XN(c)+1 ]→ Ẽ[e−2θ∗X∞ ] <∞

(the last inequality is shown in the appendix). The fact
that the second moment of (19) converges to zero can
be seen by direct computation, noting that P̃ (DC

c )→ 0
(this follows from the proof of Lemma 3), and that

I(Dc)
∫ (ν+1) log β(c)−ν log c

0

ye−ydy

is less than or equal to

I(Dc)
∫ (ν+1) log β(c)−Wc

0

ye−ydy

≤
∫ (ν+1) log β(c)

0

ye−ydy.

Therefore, (11) equals

lim
c→∞

1
θ∗σ̃(X)

Ẽ
[
φS̃|T̃=T̃β(c)

(0)e−WcI(Fc)
]
, (20)

or,

lim
c→∞

1
θ∗σ̃(X)

Ẽ
[
φS̃|T̃=T̃β(c)

(0)I(Fc)Ẽ[e−Wc |T̃β(c)]
]
.

(21)

Recall that |T̃β(c)| < ν
√
log β(c), implies that c −

Tβ(c) = Θ(c5/8). Therefore, (11) equals

lim
c→∞

1
θ∗σ̃(X)

Ẽ
[
Ẽ[e−Wc−Tβ(c) |Tβ(c)]I(Fc)φS̃|T̃=T̃β(c)

(0)
]
.

Now,

lim
c→∞

(
Ẽ[e−Wc−Tβ(c) |Tβ(c)]− Ẽ[e−W∞ ]

)
I(Fc) = 0.

Furthermore, the term above inside the limit is arbi-
trarily small a.s. for all c sufficiently large. Therefore,
(11) equals

1
θ∗σ̃(X)

Ẽ[e−W∞ ] lim
c→∞ Ẽ[φS̃|T̃=T̃β(c)

(0)I(Fc)].

In the appendix in Lemma 6 we show that

Ẽ[e−W∞ ] =
λ

η∗
(exp(ψ(0, η∗))− 1).

Since, T̃β(c) converges to a standard Gaussian random
variable, and

φS̃|T̃=T̃β(c)
(0) =

1
(2π(1 − ρ2))1/2

e
−

ρ2T̃2
β(c)

2(1−ρ2) ,

it is easy to see that

lim
c→∞ Ẽ[φS̃|T̃=T̃β(c)

(0)I(Fc)] = 1/(2π)1/2.

The result then follows.

2.3 Large Deviations in General Settings

Again consider the sequence ((Xi, τi) : i ≥ 1). We make
the following additional assumption to aid in making
the analysis easier and transparent:

Assumption 3 The rv’s (Xi : i ≥ 1) and (τi :
i ≥ 1) are bounded in the sense that there exists an ã such
that P (|Xi|+τi ≤ ã) = 1 for i ≥ 1 and P (τi ≥ 1/ã) = 1.

Theorem 2 Under Assumptions 1 and 3

1
c
logP (SN(c) > 0)→ −η∗

as c→∞.
Let λ−1 = ∂

∂ηψ(θ
∗, η∗).
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Proof. For the upper bound, note that for 0 < η < η∗,
P (SN(c) > 0)

=
∞∑
n=1

P (Sn > 0, Tn ≤ c < Tn+1),

≤
∞∑
n=1

P (Sn > 0, Tn+1 > c),

≤
∞∑
n=1

P (Sn > 0, Tn > c− ã),

=
∞∑
n=1

E[I(Sn > 0, Tn > c− ã)],

≤
∞∑
n=1

E[I(Sn > 0) exp(θ∗Sn)I(Tn > c− ã)×

exp((η∗ − η)(Tn − c+ ã))],
≤ exp(−(η∗ − η)(c− ã))×

∞∑
n=1

E[exp(θ∗Sn + (η∗ − η)Tn)].

To complete the proof of the upper bound, it suffices
to show that

∞∑
n=1

E[exp(θ∗Sn + (η∗ − η)Tn)] <∞. (22)

Then,

lim sup
c→∞

1
c
logP (SN(c) > 0) ≤ −η∗ + η.

Since the η > 0 is arbitrary, the desired upper bound
follows. To see (22), note that ∂

∂ηψ(θ
∗, η∗) ≥ 1/ã (since

τi ≥ 1/ã) and

ψ(θ∗, η∗ − η) = ψ(θ∗, η∗)− η ∂
∂η
ψ(θ∗, η∗) + o(η).

Hence, for η sufficiently small and positive,

ψ(θ∗, η∗ − η) ≤ −η
2
∂

∂η
ψ(θ∗, η∗). (23)

Fixing η sufficiently small so that (23) holds, Assump-
tion 1, part 1 implies the existence of n0 <∞ for which

E[exp(θ∗Sn + (η∗ − η)Tn)]

is less than equal to

exp[n(ψ(θ∗, η∗ − η) + η

4
∂

∂η
ψ(θ∗, η∗))]

for n ≥ n0. So, using the boundedness of the X ′is and
the τ ′is we find that

E[exp(θ∗Sn + (η∗ − η)Tn)] ≤ n0 exp(θ∗ãn0

+η∗ãn0) +
∞∑

j=n0

exp(− j
4
η
∂

∂η
ψ(θ∗, η∗)) <∞.

For the lower bound we use a ‘change-of-measure’
argument. Two observations are useful in this: First,
on the set

{(1− 2ε)c ≤ T (�λ(1− ε)c
) ≤ c}, (24)

�λ(1− ε)c
 ≤ N(c) ≤ λ(1 − ε)c+ 2εãc+ 1, (25)

for ε > 0 and small. To see this, note from (24)
that N(c) ≥ �λ(1− ε)c
 and N((1−2ε)c) ≤ �λ(1− ε)c
.
Since τi ≥ 1/ã, N(c) − N((1 − 2ε)c) ≤ 2εãc + 1, and
hence (25) holds.

Second, if S	λ(1−ε)c
 ≥ 3εã2c and (25) holds, then

SN(c) ≥ ã2εc− 2ã > 0 (26)

for c sufficiently large.
To see this, note that SN(c) = S	λ(1−ε)c
 +∑N(c)

	λ(1−ε)c
Xi when (25) holds. Since, |Xi| ≤ ã, SN(c)

is greater than or equal to

S	λ(1−ε)c
 − (N(c)− �λ(1 − ε)c
)ã
≥ S	λ(1−ε)c
 − (2εãc+ 2)ã,

and thus (26) holds.
Formthese observationswe conclude thatP (SN(c) >

0) i s greater than or equal to

P (S	λ(1−ε)c
 > 3εã2c, (1− 2ε)c ≤ T (�λ(1− ε)c
) ≤ c)

which in turn is greater than or equal to

P (4εã2c ≥ S	λ(1−ε)c
 ≥ 3εã2c, (1− 2ε)c
≤ T (�λ(1− ε)c
) ≤ c).

Let P (Ac) denote the above probability.
We are now in a position to apply the change-of-

measure arguments. Let

ψn(θ, η) =
1
n
logE exp(θSn + ηTn),
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n(c) = �λ(1 − ε)c
, P̂c(dω) =

exp((θ∗ + θ)Sn(c) + (η∗ + η)Tn(c)−
−n(c)ψn(c)(θ∗ + θ, η∗ + η)) × P (dω)

and let Êc(·) be the corresponding expectation operator.
Then, if |θ| < θ∗, |η| < η∗, P (SN(c) > 0) ≥ P (Ac) and
P (Ac) equals

Êc[exp(−(θ∗ + θ)Sn(c) − (η∗ + η)Tn(c)

−n(c)ψn(c)(θ∗ + θ, η∗ + η))I(Ac)].

This is greater than or equal to

exp(−(θ∗ + θ)(4εã2c)−
− (η∗ + η)c− n(c)ψn(c)(θ∗ + θ, η∗ + η))× P̂c(Ac).

Since, ψ is strictly convex at (θ∗, η∗) and twice-
continuously differentiable there, it follows that

(
∂2

∂θ2ψ(θ
∗, η∗) ∂2

∂θ∂ηψ(θ
∗, η∗)

∂2

∂θ∂ηψ(θ
∗, η∗) ∂2

∂η2ψ(θ∗, η∗)

)

is non-singular at (θ∗, η∗). Hence, for ε small, we may
find θ and η so that

∂

∂θ
ψ(θ∗ + θ, η∗ + η) =

7
2
εã2 (27)

∂

∂η
ψ(θ∗ + θ, η∗ + η) =

∂

∂η
ψ(θ∗, η∗)(= λ−1) (28)

For this choice of (θ, η), one may replicate the proof
from Bucklew (1990) to conclude that

P̃c(Ac)→ 1

as c→∞. Consequently lim infc→∞ 1
c logP (SN(c) > 0)

is greater than or equal to

−(θ∗ + θ)(4εã2)− (η∗ + η) + ψ(θ∗ + θ, η∗ + η).

The solutions θ = θ(ε) and η = η(ε) to (27) and
(28) may be chosen so that θ(ε) → 0 and η(ε) → 0 as
ε→ 0. Hence, we conclude that

lim inf
c→∞

1
c
logP (SN(c) > 0) ≥ −η∗,

completing the proof.

3 APPENDIX

3.1 Proofs for Section 2.2

Some notation is needed to aid in proving the results in
this section. Let

Γc(θ, η) = Ẽ[exp(−θXN(c)+1 − η(TN(c)+1 − c))].

Let Fθ,η(·, ·) denote the distribution obtained by expo-
nentially twisting F (·, ·) with parameters (θ, η), i.e.,

dFθ,η(x, t) = eθx+ηt−ψ(θ,η)dF (x, t).

Let Pθ,η denote the probability of events associated with
the collection of independent random vectors ((Xi, τi) :
i ≥ 1) when each (Xi, τi) has the distribution Fθ,η(·, ·).

Let

Γ(θ, η) =
1

ηẼ(τ)
(exp(ψ(θ∗ − θ, η∗))− exp(ψ(θ∗ − θ, η∗ − η))).

Let D denote the domain of finiteness of Γ(·, ·). Note
that under Assumption 1 it includes a neigbhorhood
around (0, 0).

Lemma 6 Under Assumption 1 for (θ, η) ∈ D,

lim
c→∞Γc(θ, η) = Γ(θ, η).

Proof.
The following renewal equation holds:

Γc(θ, η) = hc(θ, η) +
∫
s≤c

Γc−s(θ, η)dF̃τ (s),

where

hc(θ, η) = Ẽ[exp(−θX1 − η(τ1 − c))I(τ1 ≥ c)]. (29)

This in turn equals

exp(ηc)×

E[exp((θ∗ − θ)X1 + (η∗ − η)τ1)I(τ1 ≥ c)], (30)

and F̃τ (·) is the marginal distribution of τ under P̃ .
Note that

∫
c∈�+ hc(θ, η)dc equals

∫
c∈�+

∫
x∈�,t∈(c,∞)

exp(−θx− η(t− c)dF̃ (x, t)dc. (31)
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Now, by simply changing the order of integration, re-
calling that dF̃ (x, t) = exp(θ∗x+ η∗t)dF (x, t), (31) can
be seen to equal

1
η
(exp(ψ(θ∗ − θ, η∗))− exp(ψ(θ∗ − θ, η∗ − η))).

For (θ, η) ∈ D, η ≤ 0, hc(θ, η) is a non-increasing
function (from (30)) and integrable function of c and
hence is directly Reiman integrable (see, e.g., Asmussen
2003). For (θ, η) ∈ D, η > 0, it is a bounded con-
tinuous function of c upper bounded by (from (29))
Ẽ[exp(−θX1)I(τ1 ≥ c)] equals

exp(ψ(θ∗ − θ, η∗))P(θ∗−θ,η∗)(τ1 ≥ c)

Since the upper bound is non-increasing and integrable,
it follows that hc(θ, η) is directly Reimann integrable.
The result follows from the key renewal theorem as τ is
spread-out under Assumption 2.

It follows from Lemma 6 that Wc = θ∗XN(c)+1 +
η∗(TN(c)+1 − c) converges to a rv W∞ such that

Ẽ(exp(−W∞)) = Γ(θ∗, η∗) =
λ

η∗
(exp(ψ(0, η∗))− 1).

Proof.[Lemma 3] To see (10), note that, its left hand
side is bounded above by

Ẽ[e−θ
∗XN(c)+1×

(I(|T̃β(c)| ≥ ν
√
log β(c)) + I(|Wc| ≥ νβ(c))

+I(|Ỹβ(c)| ≥ β(c)−1/16, |T̃β(c)| < ν
√
log β(c)))].

Using Cauchy-Shwartz, we see that this in turn is
bounded above by the sum of

Ẽ(e−2θ∗XN(c)+1)
1/2
P̃ (|T̃β(c)| ≥ ν

√
log β(c))

1/2
, (32)

Ẽ(e−2θ∗XN(c)+1)
1/2
P̃ (Wc ≤ −ν log β(c))1/2, (33)

and

Ẽ(e−2θ∗XN(c)+1)
1/2

P̃ (|Ỹβ(c)| ≥ β(c)−1/16, |T̃β(c)| < ν
√
log β(c))

1/2
. (34)

Since,

e−2θ∗XN(c)+1 ≤
N(c)+1∑
i=1

e−2θ∗Xi ,

it follows that

Ẽ(e−2θ∗XN(c)+1) ≤ Ẽ(N(c) + 1)Ẽ[e−2θ∗X1 ]

is finite. Using renewal theory arguments, we showed
in the previous section that Ẽ(e−2θ∗XN(c)+1) converges
to a constant as c → ∞. To see that (32) is o(c−1/2),
note the well known fact that (see, e.g., Feller Vol. 2
1971)

P̃ (|T̃n| ≥ x) = Φ̄(x) +
φ(x)Q(x)
n1/2

+ o(n−1/2),

where Φ̄(·) denotes the tail cumulative distribution func-
tion of standard Gaussian random variable, φ(·) de-
notes its density and Q(x) is a polynomial in x. Since
Φ̄(x) ∼ 1√

2πx
exp(−x2

2 ), it follows that

Φ̄(ν
√
log β(c))

1/2 ∼ 1
ν1/2(2π log β(c))1/4

β(c)−ν
2/4.

Therefore (32) is o(c−1/2) for ν ≥ √2.
To see that (33) is o(c−1/2), first note that

P̃ (Wc ≤ −ν log β(c)) ≤ P̃ (θ∗XN(c)+1 ≤ −ν log β(c)).

Note that XN(c)+1 has an exponentially decaying left
tail. This ensures that ν can be selected to be sufficiently
large so that (33) is o(c−1/2).

To see that (34) is o(c−1/2) consider

P̃ (|Ỹβ(c)| ≥ β(c)−1/16, |T̃β(c)| < ν
√
log β(c)). (35)

As we mentioned earlier, T̃β(c) <
√
ν log β(c) implies

Tβ(c) < c and then Ỹβ(c) is distributed as

SN(c−Tβ(c))

σ̃(X)β(c)1/2
.

Hence, (35) equals

P̃ (|SN(c−Tβ(c))| ≥ σ̃(X)β(c)1/2β(c)−1/16,

|T̃β(c)| < ν
√
log β(c)).
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Note that |T̃β(c)| < ν
√
log β(c) implies that for ε > 0

and all c sufficiently large,

λ−1c5/8(1− ε) ≤ c− Tβ(c) ≤ λ−1c5/8(1 + ε).

Equation (34) now follows from Lemma 7 given below.

Lemma 7 For ε > 0 and K > 0, limc→∞ c1/2

times

P̃

(
sup

t∈(λ−1c5/8(1−ε),λ−1c5/8(1+ε))

|SN(t)| ≥ Kc7/16

)
= 0

Proof. It is easy to find constants 0 < α1 < α2 so that

lim
c→∞ c

1/2P̃ (N(�λ−1c5/8(1− ε)
) ≤ α1c
5/8) = 0

and

lim
c→∞ c

1/2P̃ (N(�λ−1c5/8(1 + ε)
) ≥ α2c
5/8) = 0

(see, e.g., Glynn and Whitt 1994). Therefore, it suffices
to show that

lim
c→∞ c

1/2P̃ ( sup
n∈[α1c5/8,α2c5/8]

|Sn| ≥ Kc7/16) = 0.

Note that P̃ (supn∈[α1c5/8,α2c5/8] |Sn| ≥ Kc7/16) is
bounded above by

�α2c
5/8
∑

n=	α1c5/8

P̃ (|Sn| ≥ Kc7/16). (36)

Frommoderate deviations theory it can be seen that
for a sequence an → ∞ and nan → ∞, for 0 < δ < 1,
and all n sufficiently large,

P̃ (|Sn|
√
an/n ≥ K) ≤ e

− K2

2anσ̃(X)2
(1−δ)

.

(See Dembo and Zeitouni Theorem 3.7.1). Therefore,
in our settings, for sufficiently large c,

P̃ (|S	α1c5/8
| ≥ Kc7/16) ≤ e
− K2c1/8

2α
1/2
1 σ̃(X)2

(1−δ)

so that (36) may be bounded from above by

(
(α2 − α1)c5/8 + 2

)
e
− K2c1/8

2α
1/2
1 σ̃(X)2

(1−δ)
.

The result follows.

Proof.[Lemma 5] The result follows immediately from
the following conditional local limit result:

sup
|s|,|t|<ν√logn

(
f̃S̃n|T̃n=t(s)

φS̃|T̃=t(s)
− 1

)
→ 0 (37)

as n→∞, for any ν > 0. To see (37), note that under
Assumption 2, and if all the joint moments of X1 and
τ1 exist, then the local limit theorems in Bhattacharya
and Rao (1976) imply that

f̃n(s, t) = φρ(s, t)+φρ(s, t)
∑d

k=3Qk(s, t)
n(k−2)/2

+o(
1

n(d−2)/2
),

(38)
where Qk(·, ·) are polynomials in s and t and o( 1

c(d−2)/2 )
term is independent of s and t.

Note that

φρ(s, t) =
1

2π
√
1− ρ2

e
− 1

2(1−ρ2)
[s2−2ρst+t2]

≥ 1

2π
√
1− ρ2

e
− 1

2(1−ρ2)
[s−t]2

.

Therefore, for |s|, |t| < ν
√
logn, φρ(s, t) is bounded from

below by an order n−2ν2/(1−ρ2) term. In (38), selecting
d sufficiently large, we get

sup
|s|,|t|<ν√logn

(
f̃n(s, t)
φ(s, t)

− 1

)
→ 0

as n→∞.
Let f̃n(·) denote the marginal pdf of T̃n under P̃

and φ(·) denote the standard Gaussian density function
with mean zero and unit variance. From Bhattacharya
and Rao (1976) we observe that

f̃n(t) = φ(t) + φ(t)
∑d

k=3 Q̃k(t)
n(k−2)/2

+ o(
1

n(d−2)/2
), (39)

where Q̃k(·) are polynomials in t and and o( 1
n(d−2)/2 )

term is independent of t. Therefore, by selecting d
appropriately large,

sup
t<ν

√
logn

(
f̃n(t)
φ(t)

− 1

)
→ 0

as n→∞.
Equation (37) follows from (38) and (39).
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