
MONOTONICITY AND STRATIFICATION

Gang Zhao

Division of Systems Engineering
& Center for Information and Systems Engineering

Boston University
15 Saint Mary Street

Brookline, MA 02446, U.S.A.

Pirooz Vakili

Division of Systems Engineering
& Mechanical Engineering Department

Boston University
15 Saint Mary Street

Brookline, MA 02446, U.S.A.

ABSTRACT

In utilizing the technique of stratification, the user needs to
first partition/stratify the sample space; the next task is to
determine how to allocate samples to strata. How to best
perform the second task is well understood and analyzed and
there are effective and generic recipes for sample allocation.
Performing the first task, on the other hand, is generally left
to the user who has limited guidelines at her/his disposal.
We review explicit and implicit stratification approaches
considered in the literature and discuss their relevance to
simulation studies. We then discuss the different ways in
which monotonicity plays a role in optimal stratification.

1 INTRODUCTION

To use stratification, the user needs to first partition/stratify
the sample space; given such a stratification, the next
task is to determine how to allocate samples to strata.
The second task is well understood and analyzed where
effective and generic recipes have been available for a
very long time (for a general discussion see, (Cochran
1977); for applications in the simulation context, see e.g.,
(Glasserman 2004), (Asmussen and Glynn 2007)). On
the other hand, the issue of optimal strata definition has
received less attention in the simulation literature. In what
follows, we begin with considering three different settings
where explicitly or implicitly the issue of strata definition is
addressed. They all turn out to be relevant to our discussion.

A. Consider the following problem. Assume that we wish
to estimate the average income of wage earners in the US
as reported on their tax returns in 2007. Assume this is to
be done based on a fixed sample size k. Crude sampling
selects k random draws of tax returns and uses the sample
average as the estimator. Alternatively, state averages can
be estimated for each of the 50 states separately using
crude sampling and then assembled into a single estimate.
This approach corresponds to the method of Stratified

Sampling using 50 strata (stratum = state). To reduce the
variance of the overall estimator, more samples may be
allocated to states that are more populated and/or where
the income variability is higher. This is clearly not the
only stratification possible. Alternatively, one can consider
the stratification of the returns based on income: Assume
returns are ordered in increasing order of income and
then partitioned into 50 strata by selecting 49 interim
strata boundaries. This problem has been considered and
analyzed as the stratification of a frequency distribution
See, e.g., (Cochran 1961) for a comparison of a number
of methods for stratifying uni-dimensional frequency
distributions; one of the examples in this paper relates
to stratification applied to adjusted gross income per tax
return for 1951 data. It is worth noting that, as observed in
(Cochran 1961), one expects that an effective stratification
based on 2007 data (or 1951 data) to remain effective
in subsequent years (the economic/social stratification,
unfortunately for those in the lower strata, is fairly stable
over years!).

B. Consider the problem of evaluating the one dimensional
integral

µ =
∫ 1

0
g(u)du.

where g is an increasing function on [0,1] (increasing=non-
decreasing). Without loss of generality we can assume
g(0) = 0 and g(1) = 1. This problem has been considered
and analyzed in the literature on Information Based Com-
plexity (for a general discussion see (Traub, Wozniakowski,
and Wasilkowski 1988); for a discussion of the above prob-
lem see (Kiefer 1957) Section 5, (Sukharev 1987), and
(Novak 1992)). Consider the worst case setting where one
is to provide deterministic or stochastic error bounds for the
estimation problem. Let G denote the set of all increasing
functions g on [0,1] where g(0) = 0 and g(1) = 1. Assume
further that some information, say I(k), in the form of k
function evaluations has been gathered. Given this informa-
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tion it is not difficult to obtain integral estimates (denoted
by S(g)) that minimize the worst case estimation error given
I(k) (denoted by e(S(g),µ|I(k)) for both deterministic and
stochastic cases). In other words, one needs to solve the
following “min-max”problem.

infS(g)supg∈G {e(S(g),µ|I(k))}.

Given the above one can turn to the question of determining
how to sample the function (gather information) in order
to find the tightest possible error bound. One may consider
on the one hand a non-adaptive or an adaptive approach,
or on the other a deterministic or a random sampling
approach. (Novak 1992) shows that adaptation in the
deterministic case does not improve the rate of convergence
(the optimal convergence rate is O(n−1) in both cases)
while it is beneficial in random sampling, improving the
convergence rate from O(n−1) for the non-adaptive case
to O(n−3/2) for the adaptive case. He also shows that this
rate of convergence is optimal for all random sampling
schemes. For our purposes, it is noteworthy that the
optimal adaptive algorithm provided in (Novak 1992) is
essentially a stratified sampling algorithm.

C. Consider the problem of evaluating an integral on the
d-dimensional unit cube Id = [0,1]d .

µ =
∫

Id
f (u)du.

where u ∈ Id . As is well known, this problem can be
reformulated as evaluating

µ = E[ f (U)]

where U is uniformly distributed over Id and it can be
viewed as a general model of a class of estimation via
simulation problems where U = (U1, · · · ,Ud) is the vector
of uninform simulation inputs.

(Cheng and Davenport 1989) provides an insightful
discussion of stratification in this setting where the issue of
strata selection is explicitly and extensively discussed. Strat-
ification can focus on ways of dissecting the d-dimensional
cube (and taking its geometry into account) where the prob-
lem becomes more challenging as the dimension increases.
Or it can rely on dissecting the range space, f (Id), a single-
dimensional space for all d, and use the pull-back of the
stratification of the range to obtain a stratification of the
domain Id . Cheng and Davenport (Cheng and Davenport
1989) note that the second approach represents an ideal case
providing the best possible rate of convergence. For prac-
tical stratification they propose using one or more shadow
responses as a way to stratify Id using values of the shadow
responses.

In this paper, we revisit random estimation of µ for
example C from the point of stratification and analyze
optimal stratification in this setting where the optimality
criterion is defined as the optimal rate of convergence as
in (Novak 1992). We then briefly consider a parametric
version of example C, namely estimating

µ(θ) =
∫

Id
f (u;θ)du = E[ f (U;θ)]. (1)

To turn the insight obtained from our discussion of op-
timal stratification into a practical stratification strategy,
we consider a “large” sample from Id , denoted by DB =
{U1, · · · ,UN}, that we refer to as the database and consider
the estimation problem

µ(θ |DB) = E[ f (U;θ)|DB]. (2)

Estimation problem (2) can be viewed as an approximation
to the original parametric estimation problem (1). The finite
sample estimation problem (2) is similar to example A and
the optimal stratification applied to problem B has direct
implications for this problem.

The rest of the paper is organized as follows. Prelimi-
naries are given in Section 2. Section 3 describes some of
the implications of monotonicity for stratification. We give
our optimal stratification result in section 4 and briefly de-
scribe its connection with the method of Structured Database
Monte Carlo (SDMC) in section 5. Some concluding results
are given in Section 6.

2 PRELIMINARIES

We begin by specifying an estimation problem and giving
a brief description of the stratification method.

2.1 The Estimation Problem

To simplify the discussion and to make the connection with
problem C in the introduction more explicit we consider
the problem of estimating

µ =
∫

Id
f (u)du = E[ f (U)] = E[Y ] (3)

where Y = f (U) and f is a real-valued function. The
discussion to follow applies to more general settings as
well.

Let Y ∼ F , i.e., let F denote the cumulative distribution
of (simulation output) Y . Let

g(u) = inf{y; u ≤ F(y)} for u ∈ (0,1)
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be the inverse of F . Then we have

µ =
∫ 1

0
g(u)du = E[g(U)] = E[Y ] (4)

where U ∼U(0,1). Note that g is a monotone increasing
(nondecreasing) function.

Therefore estimation problem (3) can be reformulated
as estimating the integral of a monotone function, i.e., a
problem of type (4).

We now turn to a brief discussion of the stratification
method.

2.2 Stratification

The stratification method involves partitioning the proba-
bility space into a finite number, say k, of strata. Then, the
original estimation problem turns into that of k estimation
subproblems. If the “size” of the strata (their probabilities)
is known then one can to assemble the subproblem esti-
mators to construct an estimator for the original problem
without introducing additional variance. If the resources
(i.e., total number of samples) are appropriately allocated
to the estimation subproblems, this approach is guaranteed
to reduce the variance (compared to crude MC).

More precisely, let {A1, · · ·Ak} denote a partition of
Ω = [0,1]d . Let pi = P(Ai), µi = E[Yi] = E[Y |U ∈ Ai] and
σ2

i = Var[Yi] = Var[Y |U ∈ Ai]. Let µ̂i be an estimator of µi
for i = 1, · · ·k. Then the stratified estimator of µ is

µ̂st = p1µ̂1 + · · ·+ pk µ̂k.

It is easy to see that the variance of this estimator is

Var(µ̂st) =
k

∑
i=1

piVar(µ̂i) = E[Var(Y |X ∈ Ai)]≤Var(Y ).

In other words, if the effort to generate a stratified estimator
is the same as that of a crude MC estimator then stratification
is always beneficial. The magnitude of the benefit depends
on the choice of stratification.

Given a fixed partition, it is well known that the optimal
allocation of samples is according to quantities qi

qi =
piσi

∑
k
j=1 p jσ j

,

i.e., the number of samples out of n allocated to stratum
Ai, denoted by ni, is given by ni = bn∗qic. The minimum
variance is given by

σ
∗2 = (

k

∑
i=1

piσi)2.

Once a partition is selected, optimal sampling within
strata requires knowing σi’s or estimating them. In most
cases, these values are not known in advance and need to
be estimated via pilot runs.

3 MONOTONICITY

In this section we consider different implications of mono-
tonicity for strata construction.

3.1 Monotone partitioning

The intuition behind stratification is that it eliminates across
strata variation. Within strata variation is reduced via sam-
pling. This suggests creating strata in such a way that ele-
ments of each stratum lead to “similar” output values and
hence to small variance. An implication of this observation
is that it is desirable to consider partitions {A1,A2, · · · ,Ak}
that are monotone in the sense that

A1 ≤ A2 ≤ ·· · ≤ Ak

where

Ai ≤ A j ⇔ f (U)≤ f (V ) for all U ∈ Ai & V ∈ A j.

In this case

A1 ≤ A2 ≤ ·· · ≤ Ak ⇔ f (A1)≤ f (A2)≤ ...≤ f (Ak)

where f (Ai) are subsets of the real line and the monotonicity
of such subsets is defined naturally as follows: one subset
is smaller than another if all its elements are smaller than
the elements of the other.

Recall the setting of problem A in the introduction in
which the question of optimal boundary selection for optimal
partitioning of frequency tables was posed. That question is
essentially the same as the problem of optimal selection of
a partition of the form f (A1)≤ f (A2)≤ ...≤ f (Ak) for the
range of values of f , i.e., the “frequency table” of Y . Our
discussion above implies that the latter problem is closely
related to the optimal stratification of Ω = [0,1]d .

Let’s go one step further. The pull-back of a monotone
partition of the range of Y ,i.e., f (U), via the monotone
function g as defined in (4) is itself a monotone partition
of (0,1). Such a partition corresponds to the selection of
a finite number of subintervals of (0,1). In other words,
monotonicity of g implies a correspondence between parti-
tioning of (0,1) into subintervals and those of range of Y into
subintervals. Therefore, optimal partitioning of Ω = [0,1]
can be reformulated as a problem of optimal partitioning
of (0,1) given the monotone function g.
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This brings us to the question of using stratification to
solve problem (4),namely integrating a monotone function
on (0,1)

3.2 Integration of a Monotone Function

The formulation of problem A in the introduction, namely the
problem of optimal stratification of a frequency table, does
not take into account the cost of creating the stratification
which may require sampling g at many points. To include
this cost we consider the formulation of information based
complexity for the estimation problem (4). We modify
problem (4) to be able to call on results available in this
setting. Assume f is a bounded function. Therefor Y is a
bounded random variable. This allows us to extend the range
of g to the closed interval [0,1]. Therefore, we consider the
following integration problem.

µ =
∫ 1

0
g(u)du = E[g(U)] = E[Y ] (5)

where U ∼U [0,1]. Note that g is a monotone increasing
(nondecreasing) function on [0,1].

The only known information about g is that it is in-
creasing and no other regularity properties are assumed
about g. This is the a priori information. Let G =
{g : [0,1] → R;g increasing} be the set of increasing
functions on [0,1]. Additional information can be ob-
tained by sampling g, i.e., by evaluating g at points in
[0,1]. Let x1, · · · ,xn be n distinct points in [0,1]. Let
I(g;x1, · · · ,xn) = ((x1,g(x1)), · · · ,(xn,g(xn))) represent the
new information about g based on sampling. To simplify
notation, we use the above notation for non-adaptive or
adaptive and deterministic or stochastic sampling. In other
words, xi may be random variables and the choice of xi may
depend on previous samples. Moreover, to further simplify
the notation, we often write I(g;n) or simply I to denote
this information.

Consider the stochastic sampling case. In other words,
we assume xi’s are stochastically selected. Let

N(I) = N(I;n) = {g′ ∈ G ; I(g′;n) = I(g;n)}.

N(I) represents the “uncertainty” associated with the infor-
mation I and it is the set of functions that are indistinguishable
from g given the information I. Let S : G → R be the inte-
gration operator, i.e., S(g) =

∫ 1
0 g(u)du. Let c(I)∈ R denote

an estimate of µ based on I (note that c(I) is a random
variable). Then for any g′ ∈N(I), e(g′;c(I)) = |s(g′)−c(I)|
be the magnitude of the error. The optimal estimate of µ ,
denoted by φ(I), is defined in the following worst case
sense

φ(I) = argminc(I){sup{e(g′;c(I))];g′ ∈ N(I)}}.

e(I;n) = sup{e(g′;c(I))];φ(I));g′ ∈ N(I)} is the worst case
error given I. Let

e(n) = sup{E[e(I;n)];g ∈ G }

where expectation is with respect to the measure induced
by the stochastic (Monte Carlo) sampling algorithm. Note
that e(n) depends on the stochastic algorithm used even
though this fact is not explicitly indicated in the notation.
The value n is a crude yet relevant stand in for the cost of
computation.

4 OPTIMAL STRATIFICATION

We are now ready to consider the issue of optimal Monte
Carlo algorithms where optimality is interpreted as the
asymptotic rate of convergence. We then show consider
optimal stratification in this setting.

4.1 Optimal asymptotic rate of convergence

The following results (and their proofs) are provided in
(Novak 1992) in the context of the integration of a monotone
function g on [0,1], i.e., the problem described in the previous
section.

Theorem 1. For each nonadaptive Monte Carlo method

e(n)≥ 1
8

n−1.

In other words, the optimal rate of convergence of
non-adaptive Monte Carlo algorithms cannot be faster than
O(n−1).

Theorem 2. For each adaptive Monte Carlo method

e(n)≥
√

2
32

n−3/2.

In other words, the optimal rate of convergence of adap-
tive Monte Carlo algorithms cannot be faster than O(n−3/2).
(Novak 1992) provides a specific adaptive algorithm that
achieved the O(n−3/2) rate of convergence and hence can be
viewed as an optimal algorithm in this sense. The algorithm
can be considered a stratification algorithm.

We now turn to directly consider optimal stratification
algorithms where optimality is defined in terms of rate
of convergence. In other words, algorithms with rate of
convergence O(n−3/2) will be considered optimal.

4.2 Optimal stratification

We first establish some notation. Let x0 = 0 < x1 < · · · <
xk = 1 denote the boundaries of a partition of [0,1] into k
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subintervals. Let δi = xi − xi−1 and δgi = g(xi)− g(xi−1)
for i = 1, · · · ,k. Finally, let δg = g(1)−g(0).

Let V ∼U(xi−1,xi) and assume g(xi−1) and g(xi) are
given. Then for all h monotone on [xi−1,xi] where h(xi−1) =
g(xi−1) and h(xi) = g(xi), one can easily show that

Lemma 3.

Var(h(V ))≤ 1
4
(g(xi)−g(xi−1))2 =

1
4
(δgi)2.

Consider the above partition of [0,1]. Let, qi, the
proportion of samples allocated to stratum i be given by

qi =
δi ·δgi

∑
k
j=1 δ j ·δg j

(6)

and let ni = nqi. Consider a stratified sampling algorithm
where ni samples are randomly allocated to stratum i (in
what follows we disregard the minor issue that ni is not
necessarily an integer in which case the integer part of ni
needs to be allocated + a scheme for allocating the remaining
samples). Let µ̂st denote the resulting stratified estimator
based on n samples. Then we have

Var(µ̂st) =
1
n
[

k

∑
i=1

(δi)2

qi
σ

2
i ]

where σ2
i is the variance of a g(V ) for V ∼U(xi−1,xi).

Given σ2
i ≤ 1/4(δgi)2 from above lemma, we have

Var(µ̂st)≤
1
4n

(
k

∑
i=1

δi ·δgi)2

Now consider the stratification (Strat I) algorithm
given by Figure1.

1. Partition [0,1] into k equal length subinter-
vals/strata. Let x0, · · · ,xk be the strata boundaries
as defined above. Sample the function g at xi’s
i = 1, · · · ,k.

2. Allocate ni = n · qi random samples to stratum i,
where qi is defined by identity 6.

3. Evaluate the stratified sampling estimator.

Figure 1: Strat I Algorithm

Then we have the following result.

Theorem 4. If Strat I algorithm is used with n strata to
estimate µ =

∫ 1
0 g(u)du then e(n) = O(n−3/2). In other

words, Strat I algorithm is an optimal algorithm in the
sense that it has an optimal asymptotic rate of convergence.

Proof. From our earlier discussion we have

Var(µ̂stI) ≤ 1
4n

(
n

∑
i=1

δi ·δgi)2

=
1

4n
(

1
n
)2(

n

∑
i=1

δgi)2 =
1

4n3 (δg)2.

If we limit ourselves, as in (Novak 1992), to increasing
functions such that δg = 1, the above implies

e(n) = O(n−3/2).

We make the following observations.

• Given our criterion for optimality it is sufficient
to adapt only at the level of sample allocation. In
other words, we note that the stratification is done
with no adaption to function g. The only adaptation
that uses the information about g is at the level
of sample allocation. It is important to emphasize
that our result is partially due to the fact that we
have a monotone stratification (equivalently g is
monotone). This conclusion, i.e., that adaptation
at the level of sample allocation is sufficient for
achieving optimality, is not valid in general.

• δgi’s, obtained via n+1 function evaluations, pro-
vide convenient guidelines for optimal sample al-
location.

• (Cheng and Davenport 1989) appropriately warn
against tailoring stratification to specific outputs of
the simulation. They argue that often the objective
of a simulation is to estimate several outputs si-
multaneously and designing stratifications that are
best suited for one output may not be appropriate
for another. This is a valid argument. We note that
for the particular outputs they specify i.e., second
moment of Y , E[Y 2], and probabilities of the form
E[I{Y ≤ y}], strat I algorithm remains optimal if
sample allocation is appropriately adjusted. These
outputs are monotone functions or the original out-
put Y and therefore can be viewed as monotone
function on [0,1] in their own right and strat I
algorithm can be easily adapted to them. (note
that additional sampling may be, and in general
will be needed.

The optimality results of this section may provide some
guidelines for effective stratification. The key message is
that to obtain optimal stratifications one needs to focus on the
range space of the random variable of interest rather than its
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domain (Ω = [0,1]d in our case). If such an approach were
practical, the problem of dimensionality (of the domain)
would be resolved. Stratifying the domain via a pull-back
of a stratification of the range space is in general not directly
applicable. But, as mentioned above, it may provides clues
for effective stratification. (Cheng and Davenport 1989)
consider one such approach by utilizing what they call
shadow responses. In the next section we briefly describe
another approach to make use of the insights obtained from
the results of this section.

5 STRUCTURED DATABSE MONTE CARLO
(SDMC)

In SDMC approach a finite population approximation to the
estimation/integration problem (3) is considered by generat-
ing N samples uniformly in ω = [0,1]d where N is assumed
to be large. By structuring, i.e., ordering, ωi’s according
to their functional value (ωi ≤ ω j iff g(ωi) ≤ g(ω j) one
obtains a finite population approximation to problem (4).

The ordered finite population is called the structured
database. Our analysis of stratification for problem (4)
now directly applies to, and has practical implications for,
the structures database. The stratification of the structured
database is also closely related to stratifying a frequency
table discussed in problem A of the introduction.

A key question in the SDMC setting (or more generally
in the Database Monte Carlo (DBMC) setting) is whether
the setup cost of the method justifies the benefits that it
can provide. In a way very similar to the stratification of
tax returns discussed in the introduction, where the effort
in obtaining an effective stratification for one calendar year
is expected to accrue estimation benefits in the subsequent
years, the SDMC method is intended for repeated use for
problem similar to one for which the database is structured.
For details, see, e.g., (Zhao, Zhou, and Vakili 2006) and
(Zhao, Borogovac, and Vakili 2007).

6 CONCLUSION

We considered the problem of obtaining effective stratifi-
cation for the variance reduction technique of stratification.
We reviewed some work that implicitly or explicitly have
addressed this issue. We show that monotonicity in one
way or another is intimately connected to designing effective
strata. For a particular notion of optimality, namely asymp-
totic rate of convergence, we provide a generic stratification
algorithm. For practice it is worth considering more strin-
gent finite sample optimality criteria and find stratifications
that are optimal or near optimal. This problem is a subject
of our future research.
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