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ABSTRACT

We consider the ranking and selection of normal means
in a fully sequential Bayesian context. By considering
the sampling and stopping problems jointly rather than
separately, we derive a new composite stopping/sampling
rule. The sampling component of the derived composite
rule is the same as the previously introduced LL1 sampling
rule, but the stopping rule is new. This new stopping rule
significantly improves the performance of LL1 as compared
to its performance under the best other generally known
adaptive stopping rule, EOC Bonf, outperforming it in every
case tested.

1 INTRODUCTION

The problem of ranking and selection is ubiquitous in simu-
lation applications, arising whenever we must select which
of several options is the best. The essential content of
the problem is how to allocate simulation effort among
the options to most efficiently and accurately make this
selection. Intelligent ranking and selection techniques often
perform markedly better than naive allocation rules like
equal allocation.

The problem of ranking and selection has a long his-
tory, both within and apart from simulation, marked by
the seminal work Bechhofer, Kiefer, and Sobel (1968), the
comprehensive monograph Bechhofer, Santner, and Golds-
man (1995), and a great deal of more recent work. See
Swisher, Jacobson, and Yücesan (2003) for a review of its
application within simulation.

Within this body of work, a number of staged and
fully sequential Bayesian ranking and selection techniques
have been recently proposed including Chen, Dai, and Chen
(1996), Chen, Lin, Yücesan, and Chick (2000), Chick and
Inoue (2001b), Chick and Inoue (2001a), Chen, He, and
Fu (2006), He, Chick, and Chen (2007). These techniques
optimize average-case instead of worst-case performance,

and so are generally less conservative than techniques using
the indifference zone formulation.

Recently, Chick, Branke, and Schmidt (2007a) and
Chick, Branke, and Schmidt (2007b) introduced a new
myopic Bayesian rule, LL1, for ranking and selection with
independent normal rewards of unknown mean and variance.
This myopic rule looks a single measurement into the future
and chooses the measurement that would be best if this next
measurement were the last. The rule adopts the linear loss
function, which penalizes according to the difference in
value between the chosen option and the best, contrasting
it with another common choice, 0−1 loss, which penalizes
a constant 1 for failing to find the best alternative. Other
algorithms designed for the linear loss objective function
under independent normal samples include LL(S) (Chick
and Inoue 2001b) and OCBA for linear loss (He, Chick,
and Chen 2007).

The rules LL1 and LL(S) are derived similarly, except
that LL(S) considers the effect of a block of measurements
while LL1 considers the effect of only one single mea-
surement. Blocks of measurements are more difficult to
analyze and necessitate the introduction of the Bonferonni
inequality to approximate their effect, while the effect of
a single measurement may be computed analytically. Es-
sentially, LL1 allocates single measurements exactly while
LL(S) allocates multiple measurements approximately.

Extensive numerical comparisons were made in Chick,
Branke, and Schmidt (2007b) with these two procedures un-
der two different stopping rules: the naive or fixed stopping
rule, which simply stops after a fixed number of sam-
ples have been taken; and the EOC Bonf stopping rule,
introduced in Branke, Chick, and Schmidt (2005), which
more intelligently decides when to stop based on an ap-
proximation to the expected loss that would occur due to
remaining uncertainty. As shown in Branke, Chick, and
Schmidt (2005) and again in Branke, Chick, and Schmidt
(2007), using the EOC Bonf stopping rule instead of the
fixed one generally improves the performance of ranking
and selection procedures.
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These numerical comparisons in Chick, Branke, and
Schmidt (2007b) between LL(S) and LL1 revealed that LL(S)
outperforms LL1 in a broad class of problem configurations
when both operate under the EOC Bonf stopping rule. In
other situations, for example with the fixed stopping rule
taking a small number of samples, LL(S) performed better
but the great benefit provided by using an adaptive stopping
rule like EOC Bonf led the authors to conclude that LL1
may not be broadly applicable. Further, they supposed
that its myopic assumption was the culprit behind its poor
performance.

In this article, we show that the performance of the
LL1 procedure may be markedly improved by an adaptive
stopping rule other than EOC Bonf. This new stopping
rule is derived by including the cost of each sample into
the overall objective and then solving this new objective
using the same myopic assumption used by LL1. We call
this technique of making a myopic assumption in an infor-
mation acquisition problem the knowledge-gradient method
(Frazier, Powell, and Dayanik 2008b, Frazier, Powell, and
Dayanik 2008a), since it evaluates the expected change in
the value of knowledge that would result from a single mea-
surement, and chooses its measurements to maximize this
change or gradient. We call the stopping rule that results
the knowledge-gradient (KG) stopping rule.

The performance of LL1 when stopped using this new
stopping rule is commensurate with LL(S) when stopped
using the EOC Bonf stopping rule, and from this we infer
that the culprit behind LL1’s poor performance under the
EOC Bonf stopping rule may not have been myopia, but
instead a negative interaction between sampling and stopping
decisions which is alleviated by the KG stopping rule.

2 BAYESIAN FORMULATION

We briefly review the Bayesian formulation of the ranking
and selection problem with normal means, as well as the
decisions made by the LL(S) and LL1 rules.

Suppose we have M alternatives, and samples from
alternative x are iid normal with mean µx and precision βx.
We will denote the vector of means (µ1, . . . ,µM) by µ and
the corresponding vector of precisions by β .

We know neither the means nor variances, and so we
adopt a normal-gamma prior (see, e.g., DeGroot (1970))
in which βx is gamma distributed with precision a0

x and
scale b0

x , and µx is normally distributed with mean µ0
x and

precision βxρ0
x when conditioned on βx. Under this prior, we

assume that (µx,βx) is independent of (µx′ ,βx′) for x 6= x′.
The vectors a0, b0, ρ0, and µ0 composed of a0

x , b0
x , ρ0

x , and
µ0

x with x ranging from 1 to M then completely characterize
the prior.

Commonly we assume that the prior is noninformative,
so a0

x = −1/2, b0
x = 0, ρ0

x = 0 for each x. With these

parameters, µ0
x does not affect the posterior and so its value

is irrelevant.
We will then make a sequence of sampling decisions

x0,x1, . . . and from each observe a corresponding sample
W 1,W 2, . . ., where W n+1 ∼ Normal(µxn ,βxn) and is condi-
tionally independent of the previous (W k)k≤n given xn,µxn ,
and βxn .

As our prior is conjugate to our sampling distribution,
our samples result in a sequence of posterior distributions
on µ,β which are again normal-gamma distributed. We
will denote the parameter vectors of the posterior at time n
by an, bn, ρn, µn. More precisely, we have

βx | x0, . . . ,xn−1, W 1, . . . ,W n ∼ Gamma(an
x ,b

n
x)

µx | x0, . . . ,xn−1,W 1, . . . ,W n, βx ∼ Normal(µ
n
x ,1/ρ

n
x β

n
x ).

These posterior parameter vectors may be computed recur-
sively by the following update as in DeGroot (1970). For all
x 6= xn we leave the parameters unchanged, and for x = xn

we compute the new parameters via

an+1
x = an

x +1/2,

bn+1
x = bn

x +(W n+1−µ
n
x )2/2(ρn

x +1),

ρ
n+1
x = ρ

n
x +1,

µ
n+1
x =

(
ρ

n
x µ

n
x +W n+1)/2(ρn

x +1).

If the noninformative prior is taken, then these param-
eters may be interpreted further. In this case, ρn

x = 2an
x +1

is the number of times we have sampled alternative x by
time n, and µn

x and 2bn
x are respectively the sample mean

and sum of square deviations of these samples. In addition,
the maximum likelihood estimator of the sampling variance
1/βx given by the sum of square deviations divided by the
number of samples minus 1 is equal to bn

x/an
x .

Together with this information collection process we
define a filtration (F n)∞

n=0, where F n is the sigma-algebra
generated by x0,W 1, . . . ,xn−1,W n, so that the posterior at
time n is the prior conditioned on F n.

We will suppose that we take samples until some stop-
ping time τ , and then choose the alternative that appears to
be the best based on the accumulated evidence. The chosen
alternative is any from the set argmaxx µτ

x . We then receive
a reward equal to the true value of the selected alternative.
Conditioned on F τ , which is the information acquired by
time τ , this reward has expected value maxx µτ

x .
For now we will suppose that we have no control over

this stopping rule τ , and that it is simply a given stopping
time of the filtration. For example, it could be a constant,
or it could be the EOC Bonf stopping rule. With τ given,
we would like to choose a sequence of sampling decisions
π = (x0,x1, . . .) so as to maximize the expected value of
our reward, with our only requirement being that xn must
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be adapted to F n for each n. Then the optimal Bayesian
sampling rule would be given by the solution to

sup
π

Eπ

[
max

x
µ

τ
x

]
, (1)

where again the supremum is over all policies adapted to the
filtration. Note that maximizing this reward is equivalent
to minimizing the expected opportunity cost, where oppor-
tunity cost is defined to be µx∗−µi∗ , with x∗ ∈ argmaxx µx
and i∗ ∈ argmaxx µτ

x . This opportunity cost is the difference
in value between the best alternative and the one that we
have chosen. This corresponds to the linear loss function
discussed above.

We have assumed in (1) that τ is given. Indeed, the
derivations of most existing sampling rules do not explicitly
consider the role that the choice of stopping rule plays
in overall performance. A common assumption for the
purposes of analysis (see, for example, (Frazier, Powell,
and Dayanik 2008b)) is that τ is some fixed constant. Our
goal in this article, however, is to show that there is value
in deriving the sampling and stopping rules together, and
so later, in Section 3, we will consider the optimization
problem in which we control both the sampling rule π and
the stopping rule τ .

Although (1) can in principle be solved through dynamic
programming, the computational challenges are prohibitive.
Instead, a number of heuristic approaches have been pre-
sented. We briefly review two of these approaches: LL1,
and LL(S).

LL1, introduced in Chick, Branke, and Schmidt (2007a),
allocates its measurements one-at-a-time by supposing at
time n that τ will equal n + 1 and allocating xn in a way
that would be optimal were this assumption true. There,
the optimization problem is solved explicitly by noting first
that µ

n+1
x′ = µn

x′ for all x′ 6= xn, and the marginal distribution
of µ

n+1
xn is student-t. From this, we can define a quantity

νn
x as the marginal value of measuring x and calculate it as,

ν
n
x := E

[
max

x′
µ

n+1
x′ |F

n,xn = x
]
−max

x′
µ

n
x′

= λ
−1/2
{x·} Ψρn

x

(
λ

1/2
{x·}|µ

n
x −max

x′ 6=x
µ

n
x′ |
)

. (2)

Here λ{x·} and Ψd are defined by

λ{x·} := ρ
n
x (ρn

x +1)an
x/bn

x ,

Ψd(s) :=
∫

∞

u=s
φd(u) du =

d + s2

d−1
φd(s)− sΦd(−s),

where Φd and φd are respectively the cdf and pdf of the
student-t distribution with d degrees of freedom.

The LL1 policy is then given by

xn ∈ argmax
x

ν
n
x (3)

The LL(S) rule, introduced in Chick and Inoue (2001b),
considers the effect of blocks of measurements. It is pa-
rameterized by the block size, which is commonly denoted
by τ , but which we will refer to as B to avoid confusing it
with our stopping time τ . At the beginning of each stage,
the LL(S) allocation considers the marginal benefit of the
next B measurements,

E
[

max
x′

µ
n+B
x′ |F n,xn, . . . ,xn+B−1

]
−max

x′
µ

n
x′ , (4)

as a function of the alternatives sampled, xn, . . . ,xn+B−1.
Ideally, the LL(S) algorithm would like to optimize (4)

over xn, . . . ,xn+B−1, but since computing (4) is computation-
ally intensive and optimizing over it is even more so, LL(S)
uses the Bonferonni inequality to approximate the optimal
allocation and allocates according to that approximation. A
full description of the LL(S) algorithm may be found in
Chick and Inoue (2001b).

Note that in this formulation the decision of which
alternatives to measure between times n and n+B−1 may
depend only with the information available at time n, while
under LL1 each measurement decision is made with the
full information available. Also note that when B = 1
the objective function (4) from which LL(S)’s allocation is
derived is identical to (1), but LL1 optimizes this expression
exactly while LL(S)’s use of the Bonferonni inequality
results in an approximation to the optimal.

3 OPTIMAL STOPPING RULE

We have formulated the objective function that would result
from having an externally imposed stopping rule τ . In most
applications, however, we may control our measurement
budget in order to trade measurement cost against the value
of obtaining more information. To model this trade-off, we
will suppose that the total cost of measurement is some
convex non-decreasing function C : N→ R of the number
of measurements taken.

We will call our sampling rule π and our stopping rule
τ . The sampling rule must be adapted to the filtration, as
before, and the stopping rule τ will again be required to be a
stopping time of the filtration generated by π , by which we
mean that the event {τ ≤ n} is F n measurable for each n.
This is a non-anticipativity requirement and simply prevents
basing the decision to stop on information that would be
obtained in the future. Further details on stopping times
may be found, for example, in Kallenberg (1997).
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Our objective function is then,

sup
π,τ

Eπ

[
max

x
µ

τ
x −C(τ)

]
. (5)

The form of the cost function assumed is a generalization
of that used in the sequential probability ratio test in Wald
and Wolfowitz (1948), which assumes that the cost function
C is linear in the amount of reward obtained. Since we
assume that C is convex, but not necessarily strictly so, this
allows linear costs. Requiring only that C is convex and
non-decreasing also allows the choice C(n) = ∞ 1{n≥N}, by
which we mean that C(n) is 0 for n < N and infinite for
n≥ N. If we take this choice we recover the fixed-budget
objective function, which allows free measurements up to
time N, and no subsequent measurements.

Note the contrast between this formulation and that
in Chick and Gans (2008), which assumed the cost of
measurement was implicit in a discounting of the final
reward obtained, giving a net final reward of e−rτ maxx µτ

x .
In that formulation, the cost of measurement depends on
the final reward obtained, and in the formulation proposed
here it does not. Each objective function is appropriate for
its own applications.

4 KNOWLEDGE-GRADIENT STOPPING RULE

Just as solving the Bayesian ranking and selection problem
with a given stopping rule τ is computationally intractable,
so is solving the more difficult problem (5) in which we
also optimize over τ . This justifies the introduction of a
heuristic, which we derive using a method that we refer to
as the knowledge-gradient (KG) method.

To apply the KG method, we fix a time n and suppose
that we have not yet stopped by this time. We further
suppose that if we continue, then we will still be required to
stop at the next time n+1. This is the same assumption used
to derive the LL1 policy, and what we call the knowledge-
gradient method is referred to as the myopic or greedy
assumption in Chick, Branke, and Schmidt (2007a). The
name “knowledge-gradient” refers to the fact that the single-
sample assumption induces a direct measure of the value of
our knowledge before and after a measurement, and that the
difference in these values can be regarded as something like
the gradient in knowledge achieved by a measurement. The
policy induced by the KG assumption may be understood as
greedily maximizing the net value of information gained and
measurement cost paid on each measurement. We argue
later that, in this problem, this myopia does not hinder
the efficient acquisition of information over longer periods,
justifying the KG policy as a reasonable and interpretable
heuristic.

We now apply the KG method by computing what the
optimal decision would be if the KG assumption were true.

The optimal decision is the best among either stopping
now at n, or measuring any alternative x, incurring the
measurement cost, and stopping at time n + 1. Stopping
now by taking τ = n has value maxx′ µ

n
x′ −C(n), while

measuring alternative x and then stopping has value

E
[

max
x′

µ
n+1
x′ −C(n+1) |F n,xn = x

]
=
(

max
x′

µ
n
x′

)
+ν

n
x −C(n+1), (6)

as can be seen directly from (2). The x that maximizes (6)
is exactly the xn maximizing (2), and is thus the same as
the decision of the LL1 sampling rule. Thus, the decision
we face in our sampling and stopping problem is between
sampling the alternative suggested by the LL1 sampling rule,
or stopping. Furthermore, the difference in value between
sampling this best x and stopping now is equal to

− (C(n+1)−C(n))+max
x

ν
n
x , (7)

and so we should sample if this difference is positive, and
stop if it is negative. This gives us the composite KG
sampling/stopping rule as

1. If C(n+1)−C(n)≥maxx νn
x , then stop sampling.

2. Otherwise, sample xn ∈ argmaxx νn
x .

This derivation shares much with that of LL1, with the
crucial difference being that it applies the KG method to the
sampling and stopping problem together, rather than simply
applying it to the sampling problem and then imposing
another stopping rule.

We show in the following proposition that the τ chosen
by the KG stopping rule bounds from below the τ chosen
by the best stopping rule for the LL1 sampling rule. Note
that the value of the KG stopping rule is also (trivially) a
lower bound on the value of the best policy, but that this
proposition bounds the decision made by the optimal policy.

Proposition 1. Let τKG be the stopping rule defined by
the KG stopping rule and let τ∗ be a stopping rule that is
optimal for the problem

sup
τ

Eπ=LL1
[
max

x
µ

τ
x −C(τ)

]
. (8)

Then τ∗ ≥ τKG almost surely.

Another way to understand this proposition is as telling
us that, if the KG stopping rule suggests continuing at a given
time n, then so would the optimal stopping rule. The only
mistake that the KG rule makes is in sometimes stopping too
soon. We provide a formal proof of the proposition in the
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appendix, but the essential intuition is that the KG stopping
rule uses the exact value of stopping but underestimates the
value of continuing. Thus, when comparing these values,
it errs on the side of stopping too soon.

Although the KG stopping rule can stop too soon, there
is numerical evidence to suggest that the cost of this early
stopping is low. We present this evidence in Section 5.
Further evidence comes from the tendency of the net value
of continued measurement to decrease. Consider the case
when the expected net marginal value of continuing given by
(7) is negative. This is the situation in which the KG stopping
rule stops, and is the only case in which it can err. The only
reason an optimal stopping rule τ∗ would continue in this
situation would be an expectation that net marginal values
of continuing will be positive in the future, compensating
for the net loss incurred by the current measurement. Thus
continuing in this situation incurs an immediate loss with
the possibility of future profit. But if we expect future net
marginal values of continuing to be even more negative than
they are now, there is little possibility of future profit and
the KG assumption is reasonable.

In Figure 1, the marginal value (maxx µn+1
x )−(maxx µn

x )
of the information obtained from the sample taken at time
n is plotted against n for one particular simulation from the
slippage configuration described in Section 5.1. Samples
are taken according to the LL1 sampling rule. In this
simulation the marginal value indeed tended to decrease.
Other sampling rules also display this tendency.
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Figure 1: The logarithm of the marginal value of mea-
surement xn, log((maxx µn+1

x )− (maxx µn
x )), plotted vs. n.

Sampling decisions were made by LL1, and the slippage
configuration described in Section 5.1 was used.

Finally, we note the KG stopping rule will better approx-
imate the optimal stopping rule τ∗ of Proposition 1 as the
function C becomes more strictly convex. This is because
the possibility of continuing after n + 1 becomes increas-
ingly remote as the marginal cost of continued measurement
increases, better justifying the heuristic’s single-sample as-
sumption. The KG stopping rule is perfect, for example,
in the case when C(n) = ∞ 1{n≥N} because it correctly
continues for n < N, and stops at time N.

5 NUMERICAL RESULTS

We now explore the relative quality of KG and other stopping
rules through numerical simulation on several test cases.
The selection of test cases owes a great deal to the work
in Chick, Branke, and Schmidt (2007a) and Chick, Branke,
and Schmidt (2007b). We concentrated our effort on the
test cases used in that work, since that is where the LL1
policy was first presented, and the test cases presented
there show that LL1 with the EOC Bonf stopping rule
underperforms. In particular, we provide results here for
LL1 and LL(S) sampling rules under KG, EOC Bonf, and
fixed stopping rules. This makes for a total of six choices
of sampling and stopping rules. We explore these choices
on three configurations: the slippage configuration (SC);
the monotone decreasing means configuration (MDM); and
random problem instances (RPI). These configurations are
described in more detail below.

In each case we simulated the sampling and stopping
rules on the configuration 105 times in order to obtain
the results pictured. We then varied the parameter of the
stopping rule used in order to obtain different trade-offs
between accuracy and sample size. At each such trade-
off we estimated the expected sample size E[τ] and the
expected opportunity cost denoted E[OC], where again by
opportunity cost we mean the difference in value between
the best alternative and the one that appears best based on
sampling. We used the noninformative prior in all cases.

When computing the KG stopping rule, we fixed the
function C to be a linear function so that C(n) = cn for
some constant c. We then varied the constant c in order to
obtain different trade-offs between sampling and opportunity
cost. This suggests one drawback of the KG stopping rule.
In many applications, we may have difficulty quantifying
our cost of measurement function C and instead we would
like our stopping rule to satisfy an upper bound α on the
expected opportunity cost upon stopping. Unlike the EOC
Bonf stopping rule, for which we could set its stopping
parameter to α and at least obtain an expected opportunity
cost upon stopping that is reasonably close to α , when using
the KG stopping rule it is not clear what value of c we
should choose. Further research is needed to relate values
of c to target expected opportunity costs upon stopping.

When computing the decisions of the LL(S) sampling
rule we set its block-size parameter B to 1. This decision
was based on a series of tuning experiments in which we
tested LL(S) at values of B between 1 and 10 on the slippage
configuration described below. These tuning experiments
revealed a small but significant difference between the per-
formance of the policies, with performance improving as
B decreased to 1. Note that except for the Bonferonni ap-
proximation, LL(S) with B = 1 is equivalent to LL1, and
that whenever LL(S) with this value of B outperforms LL1
it can only be because the approximation is helping the
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policy. Hence the fact that the performance of LL(S) im-
proves as B decreases, at least in the slippage configuration,
is interesting evidence that the single-sample assumption
made by LL1 is not a liability.

The results for LL1 and LL(S) on EOC Bonf and fixed
stopping rules replicate results originally presented in Chick,
Branke, and Schmidt (2007b), while the results for the KG
stopping rule are new. We will see from these experiments
that the KG stopping rule improves the performance of LL1
to the point where it is comparable to LL(S) with the EOC
Bonf stopping rule.

5.1 Slippage Configuration

Under the slippage configuration (SC), the best alternative is
given a sampling mean δ > 0, and the remaining alternatives
all have sample mean 0. We chose δ = 0.5. Some flexibility
is generally given to the sampling variances as well, but
we set them all equal to each other at a value of 1. The
configuration had M = 5 alternatives.

The slippage configuration draws its name from the
indifference zone formulation of the ranking and selection
problem, where it is the configuration that marks the tran-
sition from the preference to the indifference zone. In this
sense, it is the most difficult configuration that we should
be able to identify. Since we are dealing with a Bayesian
formulation of the problem in which linear loss in the ob-
jective function, the slippage configuration loses some of
this meaning, but nevertheless it is an important test case.

We picture the relative performance of LL(S) and LL1
under KG, EOC Bonf, and fixed stopping rules in Figure 2.
We see in these results that LL1 performs better under the
KG sampling rule than it does under EOC Bonf, and that
both adaptive stopping rules perform better than their fixed
counterparts under both sampling rules. We also see that
LL1 under KG stopping performs better than does LL(S)
with EOC Bonf stopping in this problem setting.

-3

-2.5
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0(
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O
C
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LL1, KG
LL1, Fixed N

LL1, EOC Bonf
LL, KG

LL, Fixed N
LL, EOC Bonf

Figure 2: Slippage configuration with δ = 0.5, 5 alternatives,
and sampling variance 1.

5.2 Monotone Decreasing Means

As the name implies, under the monotone decreasing means
configuration (MDM) the alternatives are arranged in mono-
tonically decreasing order. In particular, the sampling mean
of alternative i is equal to δ i. We chose δ = 0.5. The sam-
pling variances were all 1 and the number of alternatives
was M = 10.

We picture the relative performance of our sampling
and stopping rules for the MDM configuration in Figure 3.
We see again in these results that LL1 performs better
under the KG sampling rule than it does under EOC Bonf,
and that both adaptive stopping rules outperform better
their fixed counterparts. Unlike in the SC configuration,
however, we see in this configuration that LL1 under KG
stopping performs is outperformed by LL(S) with EOC Bonf
stopping.

-3

-2.5

-2

-1.5

-1

 50  100  150  200  250

lo
g 1

0(
E[

O
C

])

E[τ]

LL1, KG
LL1, Fixed N

LL1, EOC Bonf
LL, KG

LL, Fixed N
LL, EOC Bonf

Figure 3: Monotone decreasing means configuration with
δ = 0.5, 10 alternatives, and sampling variance 1.

5.3 Random Problem Instances

Since SC and MDM configurations represent idealized spe-
cial cases and are not necessarily typical of problems that
might be met in application, we attempted to replicate more
naturalistic configurations by randomly generating them
from a normal-gamma prior. Specifically, we generated the
sampling precision βx independently for each alternative
from a gamma prior with shape parameter 99 and scale
parameter 100. We then generated the sampling mean µx
independently for each alternative from a normal distribu-
tion with mean 0 and variance 1/(βxη). We chose η = 1/2.
Configurations had M = 5 alternatives.

We randomly generated 20 problem configurations ac-
cording to this prior, paying special attention to the relative
performance of LL1 with KG stopping, LL1 with EOC
Bonf stopping, and LL(S) with EOC Bonf stopping. We
found that KG stopping outperformed EOC Bonf stopping
under LL1 sampling in every situation. LL1 with KG
stopping performed comparably to LL(S) with EOC Bonf
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stopping, sometimes outperforming it and sometimes being
outperformed, but always by a small margin.

In Figure 4 we see results from a typical randomly
generated problem configuration. Again, these results are
typical in the particular sense that LL1 performed better
with KG stopping than with EOC Bonf stopping, and that
LL1 with KG stopping performed similarly to LL(S) with
EOC Bonf stopping. In this particular case LL1 with KG
stopping performed better, but this advantage was reversed
in other configurations not pictured.

-1.8

-1.7

-1.6

-1.5

-1.4

-1.3

-1.2

 50  100  150  200  250  300  350

lo
g 1

0(
E[

O
C

])

E[τ]

LL1, KG
LL1, Fixed N

LL1, EOC Bonf
LL, KG

LL, Fixed N
LL, EOC Bonf

Figure 4: Random problem instance generated according to
a normal-gamma prior with 5 alternatives. The sampling dis-
tribution had means µ = [0.16,0.21,−1.40,−1.20,−0.16]
and precisions β = [1.07,1.04,0.89,1.05,0.97].

We draw two conclusions from these numerical ex-
periments. First, LL1 performs much better with the KG
stopping rule than it does with EOC Bonf. Second, LL1
under KG stopping performs commensurately with LL(S)
under EOC Bonf stopping. On any given test case one might
outperform the other by a small margin, but the advantage
switches from test case to test case, and neither choice has
a clear overall advantage. We see from this that a careful
choice of stopping rule is critical to LL1’s performance.

6 CONCLUSION

We have shown that the LL1 procedure, introduced as a sam-
pling rule that can be derived exactly under the knowledge-
gradient assumption, can be understood in a broader context
as the sampling portion of a composite sampling and stop-
ping rule that can again be derived exactly under the same
knowledge-gradient assumption. Furthermore, we can ob-
tain significantly better efficiency by sampling and stopping
according to this composite rule as compared to sampling
with LL1 but using another adaptive stopping rule. The
resulting performance is commensurate with other well-
regarded sampling/stopping rules like LL(S) with EOC Bonf
stopping.

This is valuable first because it provides a new sam-
pling/stopping rule that works well overall and is likely to
work even better in small sample situations. Secondly, and

we believe more importantly, it provides a general frame-
work under which composite sampling/stopping rules may
be derived. The knowledge-gradient assumption, which is
that the current time-period is our last opportunity to sam-
ple, depended in no way on the normality of the sample
distributions, the particular form of the prior, or on the in-
dependence of the samples through time. As long as we can
evaluate the one-dimensional integral needed to compute
the marginal value of a single measurement, we can create
a knowledge-gradient based heuristic for the problem at
hand. The quality of the resulting heuristic must of course
be evaluated in each new situation to which it is applied, but
the results described here add to the evidence accumulated
in other problem settings (see Frazier, Powell, and Dayanik
(2008b), Frazier, Powell, and Dayanik (2008a)) suggesting
that the heuristic performs well in many important problems.

A APPENDIX

Proof of Proposition 1. We will show the result by con-
sidering the problem (8) as a dynamic program. Our state
space will consist of the current time n and the posterior
distribution at that time, which is parameterized by the
vectors an,bn,ρn,µn. For compactness we will use Sn to
denote this tuple of random vectors (an,bn,ρn,µn) and s
to denote one possible value that this tuple might take.

Let V denote the value function for this problem, which
is a function from our state space to the real numbers,

V (s,n) = sup
τ≥n

E
[
max

x
µ

τ
x −C(τ) | Sn = s

]
.

Now, fix n and let s be a state for which τKG would
continue sampling if Sn were equal to s. To show the
proposition, it is enough to show that τ∗ would also continue
if it found Sn equal to this s.

Since τKG would continue sampling on the event
{Sn = s}, we have on this event by the definition of τKG,

max
x

µ
n
x −C(n) < E

[
max

x
µ

n+1−C(n+1) | Sn = s
]
. (9)

The value of stopping at n is given by maxx µn
x −C(n)

while the value of continuing at n and subsequently following
an optimal policy is given by E

[
V (Sn+1,n+1) | Sn

]
. Any

optimal policy will always continue at n if Sn is such that
the value of continuing is strictly better than the value of
stopping. Hence, it is enough to show for our particular
value of s that, on the event {Sn = s},

max
x

µ
n
x −C(n) < E

[
V (Sn+1,n+1) | Sn = s

]
. (10)
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To see that this is indeed the case, we note that

E
[
V (Sn+1,n+1) | Sn = s

]
= E

[
sup

τ≥n+1
E
[
max

x
µ

τ
x −C(τ) | Sn+1

]
| Sn = n

]
≥ E

[
E
[
max

x
µ

n+1
x −C(n+1) | Sn+1

]
| Sn = n

]
= E

[
max

x
µ

n+1
x −C(n+1) | Sn = s

]
,

where the inequality in the penultimate line is a consequence
of the fact that the deterministic time n + 1 is a stopping
time contained in the set over which the supremum is taken,
and the final line is due to the tower property of conditional
expectation. Finally, this inequality with (9) shows (10).
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