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ABSTRACT

This paper summarizes new analytical and empirical results
for the economic approach to simulation selection problems
that we introduced two years ago. The approach seeks to
help managers to maximize the expected net present value
(NPV) of system design decisions that are informed by
simulation. It considers the time value of money, the cost
of simulation sampling, and the time and cost of develop-
ing simulation tools. This economic approach to decision
making with simulation is therefore an alternative to the
statistical guarantees or probabilistic convergence results of
other commonly-used approaches to simulation optimiza-
tion. Empirical results are promising. This paper also
retracts a claim that was made regarding the existence of
Gittins’ indices for these problems – their existence remains
an open question.

1 INTRODUCTION

Selecting the best of a finite set of simulated alternatives
is a common goal in simulation. There is a great deal of
literature in the area of simulation optimization that attempts
to address that goal. Much of that literature proposes
statistical sampling procedures that provide probability of
correct selection guarantees (such as a 95% probability that
the correct system is selected, assuming the best is at least
$10K better than the next best, see Kim and Nelson 2006 for
an overview), or asymptotic convergence guarantees (such
as ensuring the best system is identified with probability
one, assuming an infinite number of replications, see Fu,
Glover, and April 2005 for an overview). These sampling
procedures can be useful for optimizing for a wide variety of
metrics, as long as the objective is to maximize or minimize
the expected value of the simulation output.

A very different approach to the problem of selecting the
best of a finite set of simulated alternatives was presented
in Chick and Gans (2006). That approach assumes that
managers are concerned about the expected net present

value (NPV) of their decisions. We presume that either
the simulation output is itself a measure of the economic
merits of the alternative or that the output can be converted
to an implied NPV. The manager is motivated to simulate
more to reduce uncertainty about the expected NPV of each
alternative system, but the manager is motivated to simulate
less to avoid the costs of running simulations, as well as
to avoid the effect of discounting the expected NPV due to
analysis delays.

Before the simulation is built, the manager must decide
whether or not to invest in simulation at all. The key issue
is whether the simulations will bring enough clarity about
which alternative is best, and what expected NPV it will
likely bring, to justify the investment in time and money
that is required to develop the simulation tool.

Once a simulation tool that can simulate k different
alternative systems is built, the decisions include which
system or systems to simulate, for how long, and which
alternative to select for implementation. Since the manager
is concerned with the expected NPV of her decisions. The
expected reward of the ability to simulate each alternative
is an input to the decision of whether or not to develop a
simulation tool in the first place.

Our approach treats the ability to simulate as a real
option, where the alternatives include either simulating, to
obtain more information, or stopping and implementing
one of the simulated alternatives. We frame the problem
in the context of dynamic programming context and seek
to provide economically-justified answers to the following
managerial questions:

• Should a manager invest the time and money that
is required to develop simulation tools?

• If so, for how long should the simulation analysis
continue, and which systems should be simulated
before stopping to implement an alternative?

This framework therefore links two distinct areas of sim-
ulation: (1) The simulation optimization literature, which
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presumes that simulation tools already exist, and which
focuses on the second question, and (2) the literature on
good modeling practice (as in Law and Kelton 2000, §1.7),
which assumes that the answer to the first question is yes,
and describes how to develop the tools effectively, but does
not link the choice to simulate to the economic value that
simulation can bring to the firm that uses simulation.

Our formulation is Bayesian: we assume that the man-
ager has prior beliefs concerning the distribution of the NPV
of each of the alternatives and that she uses simulation out-
put to update these beliefs. The system which the manager
ultimately chooses to implement maximizes expected NPV
with respect to the posterior distributions of her beliefs, as
well as analysis costs and discounting costs.

Chick and Gans (2006) summarized the problem formu-
lation and outlined how the problem, when there is only one
alternative that is assessed with simulation, can be solved
using a dynamic programming formulation and an optimal
stopping time for a Brownian motion. It also claimed that,
when there is more than one alternative that is being assessed
with simulation, that a special solution structure called a
‘Gittins index’ can be used to solve the second managerial
question. Since the writing of Chick and Gans (2006), we
determined a subtle lapse in our proof of the Gittins’ index
result. We can neither prove nor disprove the existence of
a Gittins-index result at present, so the existence of such
a policy is an open question. In Chick and Gans (2008),
we construct a simple counterexample that shows that the
few existing and relevant results that would guarantee the
existence of a Gittins’ index result do not apply.

Nonetheless, Chick and Gans (2008) also provide al-
ternative methods to address the second of the managerial
questions above by extending procedures that minimize the
(undiscounted) expected opportunity cost selection (Chick
and Inoue 2001) to the current context. Further, Chick and
Gans (2008) indicate how to approach the first question,
given the answer to this second question.

This paper recalls the economic framework to the sim-
ulation selection problem in Section 2 and presents a subset
of our recent work on this problem.

2 PROBLEM DESCRIPTION

A manager seeks to develop one of k projects, labelled
i = 1, . . . ,k. The net present value (NPV) of each of the k
projects is not known with certainty, however. The manager
wishes to develop the project which maximizes her expected
NPV, or to do nothing if the expected present value of all
projects is negative. We represent the “do nothing” option
as i = 0 with a sure NPV of zero.

2.1 Uncertain Project NPV’s

Let Xi be the random variable representing the NPV of
project i, where X0 ≡ 0. If the manager is risk neutral
and the distributions of all Xi’s are known to her, then
she will select the project with the largest expected NPV,
i∗ = argmaxi{E[Xi]}. Although we model NPVs as simple
random variables, the systems that generate them may be
quite complex in practice.

It may also be the case that the distributions of the
Xi’s are not known with certainty by the manager. Rather,
she may believe that a given Xi may come from one of
a family of probability distributions, PXi|θi , indexed by pa-
rameter θi. We model her belief as taking the form of
a probability distribution on θi, which we call PΘi . For
example, the manager may believe that Xi is normally dis-
tributed with a known variance, σ2

i , but unknown mean.
Then PΘi represents a probability distribution for the mean.
To ease notation, we will sometimes refer to the distribu-
tion as Θi. In this case, the expected NPV of project i > 0
is E[Xi] = E[X(Θi)]

∆=
∫∫

X(θi)dPXi|θidPΘi . We denote the
vector of distributions for the projects by ~Θ = (Θ1, . . . ,Θk).

2.2 Simulation to Select the Best Project

If the distributions of the Xi’s are not known, then the
manager may be able to use simulation as a tool to reduce
distributional uncertainty, before having to decide which
project to develop. She may decide to simulate the outcome
of project i a number of times, and she views the result of
each run as a sample of Xi. She uses Bayes’ rule to update
her beliefs concerning Θi.

We model the running of simulations as occurring at
sequence of discrete stages t = 0,1,2, . . ., and we represent
Bayesian updating of prior beliefs and sample outcomes,
{(~Θt ,~Xt) | t = 0,1, . . .} as follows. If project i > 0 is sim-
ulated at stage t with sample outcome xi,t , then Xi,t = xi,t
and X j,t = 0 for all j 6= i. In turn, Bayes’ rule is used to
determine ~Θt+1:

dPΘi,t+1(θi |xi,t ,Θi,t) =
dPXi |θi(xi,t |θi)dPΘi,t (θi)∫
θi

dPXi |θi(xi,t |θi)dPΘi,t (θi)

for θi ∈ ΩΘi , while Θ j,t+1 = Θ j,t for all j 6= i. So the
evolution of the manager’s beliefs regarding the distribution
of outcomes of each project is Markovian. We also assume
that simulation results, hence the evolution of the manager’s
beliefs, are independent from one project to the next.

If, in theory, simulation runs could be performed at zero
cost and in no time, then the manager might simulate each
of the k systems infinitely, until all uncertainty regarding the
θi’s was resolved. At this point the problem would revert
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to the original case in which the distributions and means of
the Xi are known.

But simulation runs do take time and cost money. We
assume that each run of system i costs $ci and takes ηi
units of time to complete. Thus, given a continuous-time
discount rate of δ > 0, the decision to simulate system i
costs the manager ci plus a reduction of ∆i =

∫ ηi
0 e−δ sds < 1

times the expected NPV of the (unknown) project that is
eventually chosen.

There may also be associated up-front costs associated
with the development of the simulation tool, itself. For
example it may cost time and money to develop the under-
lying simulation platform, independent of which projects
end up being evaluated. Additional costs may be required to
be able to simulate particular projects. Furthermore, these
project-specific costs may be inter-related.

For the moment, we make two simplifying assumptions
regarding the costs of simulation. First, we ignore all
up-front costs for the simulation tool, assuming that the
necessary facilities exist to simulate all k projects. Second,
we assume that ηi ≡ η for all k projects. This allows us to
define a common ∆≡ ∆i for the projects as well. Section 4
will show how the first assumption might be relaxed. Chick
and Gans (2008) relaxes the second assumption, with some
loss of optimality.

Even with these simplifications, the availability of a
simulation tool to sample project outcomes makes the man-
ager’s problem much more complex. Rather than simply
choosing the project that maximizes expected NPV, she
must choose a sequence of simulation runs and, ultimately
select a project, so that the discounted stream of costs and
terminal expected value, together, maximize expected NPV.

We define a number of indices in order to track the
manager’s choices as they proceed. Let T ∈ {t = 0,1,2, . . .}
be the stage at which the manager selects a system to
implement. For t < T , define i(t)∈ {1, . . . ,k} to be the index
of the project simulated at time t, and define I(T )∈{0, . . . ,k}
to be the ultimate choice of project.

A selection policy is the choice of a sequence of simu-
lation runs, a stopping time, and a final project. Define Π to
be the set of all non-anticipating selection policies, whose
choice at time t = 0,1, . . . depends only on system history
up to t: {~Θ0,~X0, . . . ,~Θt−1,~Xt−1,~Θt}. Given prior distribu-
tions ~Θ = (Θ1, . . . ,Θk) and a policy π ∈ Π, the expected
discounted value of the future stream of rewards is

V π(~Θ) = Eπ

[
T−1

∑
t=0
−∆

tci(t) + ∆
T XI(T ),T |~Θ0 = ~Θ

]
, (1)

where XI(T ),T is the unknown NPV of the selected system,
I(T ), when a system is selected (at time T ).

Formally, we define the manager’s simulation selection
problem to be the to choice of a selection policy π∗ ∈ Π

that maximizes V π∗(~Θ) = supπ∈Π V π(~Θ).

3 OPTIMAL SIMULATION SELECTION POLICY

Given relatively mild technical conditions, the optimal se-
lection policy π∗ to the simulation selection problem in (1)
is known to exist, to be stationary, and to stop almost surely
at a time T such that E[XI(T ),T ]≥maxi=1,2,...,k−ci/(1−∆).

Chick and Gans (2006) noted that the simulation selec-
tion problem is what Glazebrook (1979) calls a stoppable
family of alternative bandit processes. Glazebrook (1979)
states one of the few known results that indicate when a
stoppable family of alternative bandit processes has an op-
timal policy that is an index policy. An index policy is a
policy that would, at each step: (a) assign a value to each
alternative that depends only on that alternative, and not on
the other alternatives, (b) pick the alternative with the highest
value and implement the optimal action for that alternative.
In the context of simulation selection, the action would be
to either simulate that alternative, or to stop simulation in
order to implement that alternative. Optimal index policies
are also call Gittins-index policies. We originally thought
that the optimal policy for the simulation selection problem
was a Gittins-index policy, and we developed an asymptotic
approximation that could approximate the relevant indices.
We have since found an error in the proposed proof and have
identified a simple example that shows that Glazebrook’s
sufficient condition does not apply. Therefore, the question
of the existence of a Gittins-index result for (1) remains an
open question.

Our asymptotic approximation remains a valid approx-
imation to the optimal expected discounted reward for the
simulation selection problem when there is a single sim-
ulated system, or when there is a comparison between a
single system with an unknown mean NPV and a single
alternative with a known NPV.

We have found a nearly optimal algorithm, when there
are k > 1 systems, that does not require a Gittins-index result.
This is summarized below in this paper, as are numerical
results for the special case of jointly independent and nor-
mally distributed simulation output with known variances
but unknown means. It will be convenient to introduce the
variables m and γ so that

m = known NPV of a known alternative, and
−ci/γ = continuous time approximation to discounted

NPV of simulating system i forever.

Further details, examples and theoretical results can be
found in Chick and Gans (2008).

4 SHOULD I DEVELOP A SIMULATION TOOL?

Suppose that a simulation platform can be developed with a
monetary cost of $g0 over u0 units of time. Further suppose
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that, once developed, each of k alternatives can be simulated
on this platform. This corresponds to the different system
designs being specified by different inputs to the simulation
platform. The choice of whether or not to implement the
simulation tools depends upon the cost and development
time of the tools, as well as the expected reward from
selecting a system based upon the simulation output. This
expected reward is a function of the simulation selection
policy.

The expected discounted reward for the optimal sim-
ulation selection policy, when k = 1, can be approximated
by solving a heat equation with a free boundary (Chick and
Gans 2008). When k > 1, however, the expected discounted
reward for the optimal policy is not known.

While we cannot explicitly assess the expected value
of the optimal simulation selection policy, we know that,
by definition, it is at least as large as that of any other
policy, including policies that allocate a fixed number of
samples in one stage of sampling. In fact, we can easily
develop bounds for the optimal expected discounted reward
(OEDR) of one-stage policies. Therefore, in a setting in
which we want to decide whether or not it is economical
to develop simulation tools at all, the economic value of
a one-stage allocation policy can be used to evaluate the
optimal policy: if the one-stage allocation policy is valuable,
then an optimal allocation will be as well. This subsection
describes how we evaluate the economic benefit of using
one-stage policy, as well as how we use one-stage policies
to decide whether or not to build a simulation tool.

Formally, a one-stage allocation r = (r1,r2, . . . ,rk) maps
a given sampling budget of ß ≥ 0 replications to the k
systems, with a total of ri = ri(ß) ≥ 0 replications to be
run for alternative i, so that ∑

k
i=1 ri = ß. For example, the

equal allocation sets ri = ß/k (relaxing the integer constraint
if needed). After observing those samples, the one-stage
allocation policy selects the alternative with the largest
posterior expected reward, if that reward exceeds

µ00
∆= max{m,−ci/γ : i = 1,2, . . . ,k}, (2)

and otherwise selects the alternative that maximizes the
right hand side of (2). (Recall that −ci/γ corresponds to
simulating alternative i forever and that m is the NPV of a
known alternative, such as ‘doing nothing’ for m = 0.)

Suppose further that samples are normally distributed
with known variance σ2

i , but unknown mean whose distri-
bution is Normal

(
µ0i,σ

2
i /t0i

)
, with µ0i = y0i/t0i. Then the

posterior mean that will be realized after the future sampling
is performed is the random variable (de Groot 1970)

Zi ∼ Normal

(
µ0i,

σ2
i ri

t0i(t0i + ri)

)
. (3)

If we consider the allocation to be a function of ß and
vary ß over all possible allocations, we obtain the following
lower bound.

Lemma 1. Let V π∗
(
~Θ
)

maximize (1) and r be a one-
stage allocation. Let Zi be the (random) posterior mean
given that ri replications for system i will be run. Then
V π∗

(
~Θ
)
≥ OEDR(~Θ), where

OEDR(~Θ) ∆= sup
ß≥0

e−γßE [max{µ00,Z1,Z2, . . . ,Zk}]− (4)

−
k

∑
i=1

rici.

The expectation on the right hand size of (4), in turn,
has some easy-to-compute bounds. The bound refers to
the order statistics (i) for i = 0,1, . . . ,k such that µ0(0) ≤
µ0(1) ≤ . . .≤ µ0(k).

Lemma 2. Let r be a one-stage allocation, assume that
output is jointly independent and normally distributed with a
known variance, and normal prior distribution so that (3) is
valid for each i, let Ψ[s] =

∫
∞

s (ξ −s)φ(ξ )dξ = φ(s)−s(1−
Φ(s)) be the Newsvendor loss function for a standard normal

distribution, let σ2
Z ,0 = 0, σ2

Z ,i =
σ2

i ri
t0i(t0i+ri)

, and σ2
Z ,i,(k) =

σ2
Z ,i +σ2

Z ,(k). Then
E [max{µ00,Z1,Z2, . . . ,Zk}]

≥ µ0(k) + max
i:i 6=(k)

σZ ,i,(k)Ψ

[
µ0(k)−µ0i)

σZ ,i,(k)

]
(5)

E [max{µ00,Z1,Z2, . . . ,Zk}]

≤ µ0(k) + ∑
i:i6=(k)

σZ ,i,(k)Ψ

[
µ0(k)−µ0i

σZ ,i,(k)

]
. (6)

With perfect information and no discounting or sampling
costs, the expected reward of r is

OEDR(~Θ) ∆= E [max{µ00,Z1,Z2, . . . ,Zk}] . (7)

If −g0 +e−γu0OEDR(~Θ) > µ0(k), then it would be op-
timal to invest in the simulation tools that are required
to simulate the k alternatives in question and to evaluate
those alternatives, before selecting a project (including the
0 arm). In this case the expected reward from developing
the simulation tool and using the allocation ri(ß), with the
choice of ß that determined OEDR(~Θ), would exceed 0.

If −g0 +e−γu0OEDR(~Θ) < µ0(k), however, it would be
better to not implement the simulation tools. In this case,
even a simulator that could run replications infinitely fast
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at no cost would not provide enough information about the
system performance, in expectation, to compensate for the
time and cost of developing the simulation tools. Rather
one should immediately implement project (k).

5 STOPPING RULES BASED ON ECONOMICS

We now presume that a platform used to simulate k systems
has been built. We seek an effective sequential simulation
selection policy and guidance for when to stop simulating
in favor of implementing a system. We appeal to another
class of one-stage policies to determine whether or not it is
valuable to continue simulating, and if so, which alternative
to simulate. Those one-stage policies seek to maximize the
expected (undiscounted) reward over a finite horizon.

In particular, we examine the one-stage L L allocation
(Chick and Inoue 2001), which minimizes a bound on the
expected opportunity cost (EOC) of a potentially incorrect
selection. Gupta and Miescke (1996) show that minimizing
the EOC is equivalent to maximizing the posterior mean
that is realized once a finite total number of samples is
observed. Thus, the L L allocation seeks to maximize the
expected undiscounted reward over a finite horizon.

Section 6 adapts and extends the L L allocation to the
current context, in which both discounting and sampling
costs are included. The resulting sequential procedure as-
sumes that samples are normally distributed with a known
variance that may differ for each alternative.

The general idea of our sequential sampling procedure
is simple. At each stage of sampling, the procedure first
tests whether or not to continue sampling. It does this by
checking if there exists some one-stage L L allocation
of ß samples, for some ß ≥ 1, that leads to an expected
discounted reward that exceeds the value of stopping imme-
diately. If there is value to continuing, then one replication
is run for the alternative that L L suggests would most
warrant an additional replication. After that replication is
run, the statistics for that system are updated, with the
posterior distribution from the current stage becoming the
prior distribution for the next stage. If there is no value to
continuing for any ß≥ 1, then the procedure stops.

Before presenting the sequential sampling procedure,
we focus on stopping rules for the scheme. The develop-
ment of Section 4 immediately suggests a mechanism to
formalize whether or not there is value to additional sam-
pling. One should continue to sample if OEDR(~Θ) > µ0(k).
This will happen if there is a one-stage allocation of size
ß that leads to value for continuing to simulate. Unfortu-
nately, the sequential recalculation of OEDR(~Θ) that would
be required by such a procedure is computationally burden-
some. Fortunately, there is an easy-to-compute alternative.
Substituting the right hand side of (5) for the expectation
in the right hand side of (4) leads to an easily computable
and analytically justifiable bound.

Stopping rule EOCγ

1 (with implicit one-stage
allocation ri = ri(ß) ≥ 0 such that ∑

k
i=1 ri = ß): Con-

tinue sampling if and only if there is a budget ß≥ 1 such that

µ0(k) +maxi:i6=(k)

{
σZ ,i,(k)Ψ

[
µ0(k)−µ0i
σZ ,i,(k)

]}
eγß −

k

∑
i=1

rici (8)

> µ0(k).

In practice, EOCγ

1 may not be as effective as hoped.
It may sample less than is optimal because EOCγ

1 accounts
for only a subset of the economic value of sampling. In
numerical experiments, the expected discounted reward is
greater if one samples somewhat more than is optimal, as
compared to sampling somewhat less than is optimal. The
next stopping rule, which may be less justifiable analytically,
increases sampling slightly by plugging the right hand side
of the upper bound in (6) into the expectation of (4).

Stopping rule EOCγ

k Continue sampling if and only
if there is a budget ß≥ 1 such that

µ0(k) +∑i:i6=(k) σZ ,i,(k)Ψ
[

µ0(k)−µ0i)
σZ ,i,(k)

]
eγß −

k

∑
i=1

rici > µ0(k). (9)

Section 6 fully specifies how these stopping rules are
used with the L L allocation to solve the simulation se-
lection problem.

6 A SIMULATION SELECTION PROCEDURE

We now adapt and extend the L L allocation to the current
context, in which both discounting and sampling costs are
included. The resulting sequential procedure assumes that
samples are jointly independent and normally distributed
with a known variance that may differ for each alternative.
We leave unknown sampling variances for future work.

The one-stage L L allocation allocates a finite number
of samples to k alternatives in a way that maximizes the
expected (undiscounted) reward at the end of sampling.
Because the optimal solution is only known for some special
cases (e.g., k = 2), some allocations have been derived that
maximize bounds on the expected opportunity cost of a
potentially incorrect selection, when an asymptotically large
number of samples is to be allocated.

Corollary 2 of Chick et al. (2001) derives such an one-
stage L L allocation, assuming jointly independent, nor-
mally distributed outputs with unknown means and known
sampling variances that may differ for each system. This
policy is analogous to the one-stage L L allocation in
Chick and Inoue (2001) that handles the case of unknown
means and variances that may differ for each system.
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With four adaptations, the one-stage L L allocation can
be used as a simulation selection algorithm. One, we note
that specifying the prior distributions for the performance
of each system obviates the need for the ‘usual’ first stage
of sampling that is found in many ranking and selection
procedures. Two, for a small to medium number of samples,
some of the allocations can be negative. Techniques, such
as those used in the L L for the case of unknown sampling
variances (Chick and Inoue 2001), can be used to remedy
any violations of a non-negativity constraint. Three, the
allocation can be made sequential by updating statistics and
repeatedly allocating replications until a stopping rule is
satisfied. Four, the allocation can be extended to account
for discounting by incorporating new stopping rules, such
as EOCγ

1 and EOCγ

k in Section 5, that discount the value
of information from additional sampling.

These adaptations culminate in the following algorithm.

Procedure L L (known variances).

1. Specify prior distributions for the unknown means
Θi, with Θi ∼ Normal

(
µ0i,σ

2
i /t0i

)
, for each alter-

native. Set y0i = µ0it0i for each i. Include µ00 = m
as an option if a known NPV alternative exists,
such as the “do nothing” option with m = 0. (Set
σ2

0 to be very small, e.g. 10−6 and t00 to be very
large, e.g., 100 years worth of replications, for
numerical reasons.)

2. Determine the order statistics, so that µ0(0) ≤
µ0(1) ≤ . . .≤ µ0(k).

3. WHILE stopping rule not satisfied DO:

(a) Initialize the set of systems considered for
additional replications, S ←{0,1, . . . ,k}.

(b) For each (i) in S \{(k)}: If (k) ∈S then set
λ
−1
ik ← σ̂2

(i)/t0,(i) + σ̂2
(k)/t0,(k). If (k) /∈S then

set λik← t0,(i)/σ̂2
(i).

(c) Tentatively allocate a total of r replications to
systems (i) ∈S (set r( j)← 0 for ( j) /∈S ):

r(i)←
(r +∑ j∈S t j)(σ2

(i)γ(i))
1
2

∑ j∈S (σ2
j γ j)

1
2

− t(i),

where

γ(i)←

{
λ

1/2
ik φ(d∗ik) for (i) 6= (k)

∑( j)∈S \{(k)} γ( j) for (i) = (k)

and d∗ik = λ
1/2
ik (µ(k)−µ(i)).

(d) If any ri < 0 then fix the nonnegativity con-
straint violation: remove (i) from S for each
(i) such that r(i) ≤ 0, and go to Step 3b. Oth-

erwise, round the ri so that ∑
k
i=1 ri = r and go

to Step 3e.

(e) Run ri additional replications for system i, for
i = 1,2, . . . ,k. Update the sample statistics,
t0,i← t0,i +ri; y0i← y0i+ sum of ri outputs for
system i; µ0i← y0i/t0i; and the order statistics,
so that µ0(0) ≤ µ0(1) ≤ . . .≤ µ0(k).

4. Select the system with the best estimated mean.

Depending upon the stopping rule, we refer to Procedure
L L (EOCγ

1) or L L (EOCγ

k).
The value of r in Step 3c is taken to be r = 1 replication

per stage for a fully sequential algorithm. The value of
r can be increased if more replications per iteration are
desired, e.g., if several replications per stage are run, or
if several replications can be run in parallel during each
stage. A computational speed-up can be obtained for the
allocation, when r = 1, by ignoring the potential requirement
to iterate through Steps 3a-3e, and by directly allocating
one replication to the alternative that maximizes r(i) in the
first pass through Step 3c.

Each stopping rule, EOCγ

1 and EOCγ

k , formally identifies
the sampling budget ß≥ 1 that maximizes an approximation
to the expected discounted value of continuing to run an
additional ß replications before selecting a system to imple-
ment. The approximations to the expected discounted value
require that the ß samples be allocated to the k systems
with a one-stage allocation. We do that here by assigning
r← ß and allocating the samples with Steps 3a-3e. The
determination of the optimal value of ß incurs a computa-
tional cost that is associated, for example, with a line-search
optimization algorithm for ß. A computational speed-up can
be obtained by simply checking if there exists a ß≥ 1 such
that the expected discounted value of sampling is positive.
If that is the case, then the optimal ß certainly has a positive
expected discounted value of sampling. In our implemen-
tation, we initially solve for the optimal ß. If that value
exceeds 1, we continue sampling. In the next iteration,
we check if a sampling budget of max{1,ß−1} leads to a
positive expected discounted value of sampling. If this is
so, we continue to sample. If not, we recheck the optimal
value of ß≥ 1 with a line search again.

The left hand sides of the inequalities that determine
the stopping rules EOCγ

1 and EOCγ

k are not monotonic in ß.
For example, when comparing k = 1 simulated alternative
with a known NPV of 0, if the simulated mean is just below
the stopping boundary, the expected reward of a one-step
algorithm with ß = 1 replication might not justify additional
sampling. Nevertheless, some values of ß > 1 may justify
additional sampling. It is therefore not optimal to perform
a one-step lookahead allocation by only testing if ß = 1
additional replication is sufficient to justify continuing.
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Table 1: The expected discounted reward and average time until selecting a project as a function of the number of independent
projects, k, allocation policy and stopping criterion.

E[NPV]×106 k = 3 4 5 6 7 8 9 10
OEDR(~Θ) 4.44 5.23 5.85 6.35 6.77 7.12 7.42 7.69
OEDR(~Θ) 4.42 5.20 5.81 6.31 6.72 7.06 7.36 7.62

L L (EOCγ

k) 4.43 5.20 5.87 6.39 6.78 7.08 7.41 7.66
L L (EOCγ

1) 4.50 5.18 5.78 6.30 6.75 7.09 7.36 7.60
E[Days]

OEDR(~Θ) 17.4 20.0 22.4 24.5 26.4 28.3 30.0 31.6
L L (EOCγ

k) 10.1 8.3 6.6 6.2 6.4 6.3 6.2 6.1
L L (EOCγ

1) 10.2 8.2 6.4 6.1 5.9 5.2 5.4 5.4
PCSiz

OEDR(~Θ) 0.945 0.935 0.925 0.917 0.909 0.902 0.895 0.889
L L (EOCγ

k) 0.967 0.955 0.945 0.938 0.930 0.921 0.916 0.914
L L (EOCγ

1) 0.965 0.950 0.943 0.934 0.923 0.905 0.904 0.889

In the numerical experiments of Section 7, we imple-
ment the above algorithm with r = 1 replication allocated
per stage, and with the preceding computational speedups.

7 NUMERICAL RESULTS

7.1 Should I Build a Simulation Platform?

A manager can choose to implement one of k systems
directly, or can first choose to build a simulation platform
that, once built, would be able to simulate any of the k
alternatives.

Suppose that each of the k projects has an i.i.d. prior
distribution for the unknown mean: Normal

(
µ0,σ

2
i /t0

)
for

all i. We assume that the simulation output for each project
is normally distributed with known variance σi = 106, a cpu
time of η = 20 min/replication, an annual discount rate of
10%, and no marginal cost for simulations: ci = 0.

The top rows of Table 1 display the values of OEDR(~Θ)
and OEDR(~Θ) as functions of the number of alternatives,
when µ0 = 0 and t0 = 4. These values of OEDR(~Θ) and
OEDR(~Θ) can be compared with the time and cost required
to develop a simulation platform, to decide if a platform
warrants building or not, as in Section 4. The data show
that the bounds are relatively close for this range of k.

7.2 Simulation Platform Built: How Long to Simulate?

Suppose now that the simulation platform has been built, but
that the problem is otherwise the same as in Section 7.1.
Table 1 also shows the expected NPV of using Proce-
dure L L (EOCγ

1) or Procedure L L (EOCγ

k) to identify
the best alternative. Each L L (EOCγ

1) or L L (EOCγ

k)
cell is based on 6000 i.i.d. problem instances in which a set
of unknown means is sampled from their Normal

(
µ0,σ

2
i /t0

)
prior distributions (except for k = 1, which is based upon

105 samples, and where the simulation results match the
PDE solution with E[NPV]= B(µ0, t0) = 1.99× 106). For
Table 1, each procedure was modified slightly to stop after
a maximum of 75 days of sampling, or if the stopping rule
is satisfied, whichever comes first.

The top portion of Table 1 shows that L L (EOCγ

k) and
L L (EOCγ

1) provide estimates of the expected NPVs that
are in the range from OEDR(~Θ) to OEDR(~Θ), or within two
standard errors of that range. There is a slight advantage
for L L (EOCγ

k) over L L (EOCγ

1), as expected, since it
samples somewhat more.

The middle portion of Table 1 shows that, on average,
both of the sequential L L procedures require much less
time than that required by the optimal one-stage proce-
dure that maximizes OEDR(~Θ). Procedure L L (EOCγ

k)
tends to sample more than L L (EOCγ

1), as expected by the
construction of the stopping rules. There is no correspond-
ing time duration for OEDR(~Θ), since that figure assumes
perfect information instantaneously at no cost.

The bottom portion of Table 1 shows the frequentist
probability of correct selection for these procedures, esti-
mated by the fraction of times the ‘true’ best alternative was
selected by the procedure. With respect to this criterion,
L L (EOCγ

k) again beats L L (EOCγ

1), which in turn beats
the optimal one-stage allocation.

For the range of k tested, more systems means more
opportunity to obtain a good system, which means better
expected performance. We did not study combinatorially
large k here. We also have not yet studied the use of
common random numbers as a variance reduction tool in
this context.

8 DISCUSSION

Several other results have been obtained. They include:
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• the ability to compare the expected NPV of flexible
stopping rules, such as those in Section 5, with
the expected NPV of rigid stopping rules that are
sometimes seen in practice and that specify a fixed
simulation analysis deadline;

• additional numerical examples; and
• an improved ‘quick and dirty’ numerical approx-

imation for the optimal simulation stopping time
for the simulation selection problem when k = 1
(which improves upon a numerical approximation
of Brezzi and Lai (2002) for a related “Bayesian
bandit” problem).
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