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ABSTRACT

This paper develops procedures for selecting a set of normal
populations with unknown means and unknown variances
in order that the final subset of selected populations satisfies
the following requirements: with probability at least P∗, the
selected subset will contain a population or “only and all”
of those populations whose mean lies less than the distance
d∗ from the smallest mean. The size of the selected subset
is random, however, at most m populations will finally be
chosen. A restricted subset attempts to exclude populations
that are deviated more than d∗ from the smallest mean.
Here P∗, d∗, and m are users specified parameters. The
procedure can be used when the unknown variances across
populations are unequal. An experimental performance
evaluation demonstrates the validity and efficiency of these
restricted subset selection procedures.

1 INTRODUCTION

Discrete-event simulation has been widely used to compare
alternative system designs or operating policies. When
evaluating k alternative system designs, we select one or
more systems as the best and control the probability that
the selected systems really are the best. Let µi denote the
expected response of system i. Our goal is to find the system
with the smallest expected response µ∗ = min1≤i≤k µi. If
the system with the biggest expected response is desired,
just replace min with max in the formula. We achieve
this goal by using a class of ranking and selection (R&S)
procedures. Most R&S procedures, e.g. Dudewicz and
Dalal (1975) or Rinott’s (1978) indifference-zone selection
procedures, have focused on identifying the best system.
Nevertheless, Koening and Law (1985) have developed a
two-stage indifference-zone procedure to select a subset of
size m containing the v best of k systems; where (1 ≤ v ≤
m < k). For a general overview of R&S, see Bechhofer et
al. (1995) or Swisher et al. (2003).

Chen et al. (2008) point out that R&S procedures have
been incorporated with other simulation procedures to make
statistically valid inferences, e.g. Buchholz and Thümmler
(2005), and the need to provide a subset of the m best sys-
tems; instead of only the best system. They indicate that the
overall efficiency of certain types of simulation-optimization
algorithms (e.g. evolutionary population-based search) de-
pends highly on the quality of the selected top-m systems,
i.e. the selected m best systems. If the selected subset
contains poor systems, the convergence rate of simulation-
optimization procedures (that invoking the R&S process) can
be negatively affected. Consequently, they extend OCBA
(Optimal Computing Budget Allocation, Chen et al. 2000)
to maximize the probability of correctly selecting the top-m
systems with a given computing budget, denoted OCBA-m.

Another approach of selecting a subset of good systems
is to select a restricted subset, which attempts to exclude
populations that are deviated more than d∗ from the best.
The size of the selected subset is random, however, at
most m populations will finally be chosen. The goal is
to provide a statistical guarantee of correctly selecting a
restricted subset and has no computing-budget constraint.
Extending the work of Gupta and Santner (1973), Sullivan
and Wilson (1989) have developed a two-stage restricted
subset selection procedure, denoted VE , that determines a
subset of maximum size m that contains at least one system
that is within a pre-specified amount of the best. In this
paper, we use different approaches to derive restricted subset
selection procedures. Furthermore, the proposed restricted
subset selection procedures have the capability to determine
a subset of maximum seize m that contains only and all of
the m system(s) that are within a pre-specified amount of
the best.

Selection procedures that are developed based on the
least favorable configuration (LFC, see Section 2.3) are
conservative and become inefficient when the number of
systems is large. Newer approaches, e.g. Chen et al. (2000)
and Chen (2004), take into account the difference of sample
means, which can significantly increase the efficiency of
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selection procedures. Hence, we incorporate this approach
into subset-selection procedures as well.

The paper is organized as follows. In Section 2, we pro-
vide the background necessary to understand the proposed
procedure. In Section 3, we present our methodologies and
the proposed procedures for selecting a subset containing
up to m d∗-near-best systems, see Section 2.1. In Section
4, we show our empirical-experiment results. In Section 5,
we give concluding remarks.

2 BACKGROUND

First, some notations:

Xi j: the observations from the jth replication or batch
of the ith system,

Ni: the number of replications or batches for system i,
µi: the expected performance measure for system i, i.e.

µi = E(Xi j),
X̄i: the sample mean performance measure for system

i, i.e. ∑Ni
j=1 Xi j/Ni,

σ2
i : the variance of the observed performance measure

of system i from one replication or batch, i.e.
σ2

i = Var(Xi j),
S2

i (Ni): the sample variance of system i with Ni repli-
cations or batches, i.e. S2

i (Ni) = ∑Ni
j=1(Xi j −

X̄i)2/(Ni−1).

2.1 Indifference-Zone Selection Procedures

Let µil be the lth smallest of the µi’s, so that µi1 ≤ µi2 ≤ . . .≤
µik . Our goal is to select a subset of systems with the smallest
expected response µil ≤ µi1 +d∗. Let CS denote the event of
“correct selection.” In a stochastic simulation, a CS can never
be guaranteed with certainty. The possibility of CS, denoted
by P(CS), is a random variable depending on sample sizes
and becomes higher as the sample sizes increase. Moreover,
in practice, if the difference between µi1 and µ j is very small,
we might not care if we mistakenly choose system j, whose
expected response is µ j > µi1 . The “practically significant”
difference d∗ (a positive real number) between the best and
a satisfactory system is called the indifference zone in the
statistical literature, and it represents the smallest difference
about which we care. Therefore, we want a procedure that
avoids making a large number of replications or batches to
resolve differences less than d∗. That means we want P(CS)
≥ P∗ provided that µ j − µi1 ≥ d∗, where the minimal CS
probability P∗ and the “indifference” amount d∗ are both
specified by the users.

Configurations satisfying µ j −µi1 ≥ d∗ are said to be
in the preference zone for a correct selection; configurations
satisfying µ j − µi1 < d∗ are said to be in the indifference
zone. Formally, we say a system i is d∗-near-best or a good

design if µi is within a specified amount d∗ of the smallest
mean.

2.2 Two-stage Selection Procedures

The two-stage procedure of Dudewicz and Dalal (1975) to
select the best of k systems has been widely studied and
applied. Let n0 be the number of the initial replications or
batches. The first-stage sample means

X̄ (1)
i =

1
n0

n0

∑
j=1

Xi j,

and sample variances

S2
i (n0) =

∑n0
j=1(Xi j − X̄ (1)

i )2

n0−1
,

for i = 1,2, . . . ,k are computed. Based on the number of the
initial replications or batches n0 and the sample variance
estimate S2

i (n0) obtained from the first stage, the number
of additional simulation replications or batches for each
system in the second stage is Ni−n0, where

Ni = max(n0 +1,d(h1Si(n0)/d∗)2e), for i = 1,2, . . . ,k, (1)

where dze is the smallest integer that is greater than or
equal to the real number z, and h1 (which depends on k,
n0, and P∗) is a constant that can be found from the tables
in Koenig and Law (1985) or Law and Kelton (2000).

The derivation of the procedure is based on that to
select the best of k systems

P(CS) ≥
∫ ∞

−∞
[F(t +h1)]k−1 f (t)dt

and we equate the right-hand side to P∗ to solve for h1.
Here f and F , respectively, denote the probability density
function (pdf) and the cumulative distribution function (cdf)
of a t distribution with n0−1 degrees of freedom (df). We
then compute the second-stage sample means

X̄ (2)
i =

1
Ni−n0

Ni

∑
j=n0+1

Xi j.

Define the weights

Wi1 =
n0

Ni

[
1+

√
1− Ni

n0

(
1− (Ni−n0)(d∗)2

h2
1S2

i (n0)

)]
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and Wi2 = 1−Wi1, for i = 1,2, . . . ,k. Compute the weighted
sample means

X̃i = Wi1X̄ (1)
i +Wi2X̄ (2)

i

and select the system with the smallest X̃i. Note that the
expression for Wi1 was chosen to make (X̃i −µi)/(d∗/h1)
have a t distribution with n0−1 df (see Dudewicz and Dala
1975).

2.3 Selecting a Subset

In this section, we derive the required sample sizes for
selecting a subset of size m that contains the v(≤ m) best
of k systems. Note that both m and v are users speci-
fied parameters. Under the LFC µi1 = µi2 = . . . = µiv and
µiv +d∗ = µiv+1 = . . . = µk, the procedure guarantees with
probability P∗ that the selected subset of size m containing
systems il for l = 1,2, . . . ,v.

Let T be a random variable with pdf f and cdf F .
Hogg and Craig (1995, p. 198) show that the distribution
of the uth order statistics of m observations of T is

gm,u(tu) = β (F(tu);u,m−u+1) f (tu),

where

β (x;a,b) =
Γ(a+b)
Γ(a)Γ(b)

xa−1(1− x)b−1

is the beta distribution with shape parameters a and b and
Γ(a) is the gamma function. Note that Γ(a) = (a−1)! for
any positive integer a.

Let

Gm,i(ti) =
∫ ti

−∞
gm,i(t)dt.

Then

gm,m(tm) = m[F(tm)]m−1 f (tm) and Gm,m(tm) = [F(tm)]m.

Let X̃v be the largest weighted sample mean from X̃il for
l = 1,2, . . . ,v and let µv be its unknown true mean. Let X̃u

be the uth (u = m− v+1) smallest weighted sample mean
from X̃il for l = v+1,v+2, . . . ,k and let µu be its unknown
true mean. We can write

P(CS)

= P[X̃v < X̃u]

= P

[
X̃v−µv

d∗/h
≤ X̃u−µu

d∗/h
+

µu−µv

d∗/h

]
= P

[
Tv ≤ Tu +

µu−µv

d∗/h

]

=
∫ ∞

−∞
Gv,v

(
tu +

µu−µv

d∗/h

)
gk−v,m−v+1(tu)dtu

≥
∫ ∞

−∞
[F(tu +h)]vgk−v,m−v+1(tu)dtu

=
(k− v)!

(m− v)!(k−m−1)!∫ ∞

−∞
[F(t +h)]v[F(t)]m−v[F(−t)]k−m−1 f (t)dt.

In this case, f and F are functions of the t distribution
with n0 − 1 df. The fourth equality follows since til for
l = 1,2, . . . ,v are independent. The inequality follows since
µu − µv ≥ d∗ under the indifference-zone approach. We
equate the right-hand side to P∗ and solve for h (which
depends on k, m, v, n0, and P∗). Since the value of h is
determined such that under the LFC P [Tv ≤ Tu +h] = P∗.
Let ϒ = Tv − Tu, then P [ϒ ≤ h] = P∗. That is, under the
LFC the value of h is the P∗ quantile of the distribution of
ϒ. See Koenig and Law (1985) and Chen (2007) for more
information on subset selection.

Hence, the required sample sizes for selecting a subset
of size m containing the v best systems are

Ni = max(n0 +1,d(hSi(n0)/d∗)2e), for i = 1,2, . . . ,k. (2)

After simulating Ni samples for systems i = 1,2, . . . ,k, the
procedure returns the m systems that have the smallest
weighted sample means. If m = v = 1, then the goal is to
choose the best system. If m > v = 1, we are interested in
choosing a subset of size m containing the best. If m = v > 1,
we are interested in choosing the m best systems.

2.4 Effect of the Indifference Amount

In testing the null hypothesis H0 : µu ≤ µi, for us to reject
the null hypothesis and conclude with confidence level
1−α that µu > µi is the same as the lower endpoint of
the one-tailed 1−α CI (confidence interval) is positive, i.e.
X̄u− X̄i−wiu > 0, where wiu denotes the half-width of the
one-tailed 1−α CI. For detail on duality of hypothesis test
and CI, see Rice (1995). The half-width wiu depends on
the sample sizes and becomes smaller as the sample sizes
become large. This implies the sample sizes (Nu and Ni)
should be large enough so that wiu < X̄u−X̄i. By symmetry of
the normal distribution P[X̄u− X̄i ≥ (µu−µi)−wiu]≥ 1−α .
To obtain P[X̄u − X̄i > 0] ≥ 1−α , the sample size should
be large enough so that wiu < diu = µu−µi.

Let d̂iu = X̄u − X̄i. Procedures developed based on the
LFC achieve wiu < d∗ and consequently the one-tailed 1−α

CI of diu CI1 = (d̂iu−d∗,∞]. Whereas procedures that take
into account sample means attempt to achieve wiu < diu and
CI2 = (d̂iu − diu,∞] ≈ (0,∞]. Hence, the allocated sample
sizes are just large enough for us to conclude µi < µu

(provided µi + d∗ ≤ µu) with a desired confidence but no
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more than necessary. The indifference amount in (1) and
(2) corresponds to the targeted CI half width. If the targeted
CI half-width is d = max(d∗,µu − µi), then d (instead of
d∗) should be used in those equations. In practice, the true
means µu and µi are unknown, we need to use the sample
means X̄u and X̄i to estimate d. See Chen (2004) for detail.

To take into account the effect of the indifference
amount, Chen (2007) proposes the following for subset selec-
tion. Sort the sample means such that X̄b1 ≤ X̄b2 ≤ . . .≤ X̄bk .
Let U(X̄bv) and L(X̄bm+1) be the upper and lower P∗ confi-
dence limits of µbv and µbm+1 , respectively. Compute

dbl =
{

max(d∗,L(X̄bm+1)− X̄bl ) 1 ≤ l ≤ v
max(d∗, X̄bl −U(X̄bv)) v+1 ≤ l ≤ k.

(3)

Then the required sample sizes are estimated by

Nbl = max(n0 +1,d(hSbl (n0)/dbl )
2e), for l = 1,2, . . . ,k.

Furthermore, the problem of maximizing the P(CS)
given a total sample size is the dual of minimizing the
sample size given the P(CS). Consequently, the solutions to
both problems are the same. To adapt the subset-selection
procedure to maximum P(CS) instead of minimizing the
sample size, we can set the indifference amount to X̄bv+1 −
X̄bv . Note that in this case the indifference amount is a
random variable. Then

dbl =
{

X̄bm+1 − X̄bl 1 ≤ l ≤ v
X̄bl − X̄bv v+1 ≤ l ≤ k.

(4)

Following the strategy of Chen et al. (2008), we allocate
the sample sizes for each system such that

Ni

N j
=

(
Si(ni)/di

S j(n j)/d j

)2

, i, j ∈ {1,2, . . . ,k}, and i 6= j,

where ni and n j are the current sample sizes of systems i and
j, respectively. Note that in OCBA-m, di = X̄i−µ0, where
µ0 = (X̄bv + X̄bv+1)/2. Our experimental results indicate that
the sample sizes derived based on (4) generally perform
better than based on di = X̄i−µ0.

3 METHODOLOGIES

In this section, we extend the subset selection procedure to
select a restricted subset. As with most selection procedure,
the proposed selection procedures require the input data
to be independent and identically distributed (iid) normal.
However, the variance can be different across systems.
Many performance measures of interest are taken over some
average of a sample path or a batch of samples. Thus, many
applications tend to have a normally distributed simulation
output. If the non-normality of the samples is a concern,

users can use batch means to “manufacture” samples that
appeared to be iid normal, as determined by the tests of
independence and normality (see, for example, Chen and
Kelton 2007). In the selection procedures described next, the
sampling operations can be carried out independently across
systems. Hence, one can deploy the selection procedure in
a parallel and distributed environment.

3.1 Comparisons With a Control

We use the approach of Chen (2006) to derive the procedure.
Suppose the sample sizes are Ni and Nc, respectively, for
systems i and c, where system c is a control. The test
at confidence level 1−α of H0 : µi < µc + d∗ against the
alternative H1 : µi ≥ µc +d∗ is based on the test statistic

Z =
X̄i− X̄c−d∗√
σ2

i /Ni +σ2
c /Nc

.

The acceptance region for this test is Z ≤ z1−α , where z1−α

is the 1−α quantile of the standard normal distribution.
That is,

X̄i− X̄c−d∗ ≤ z1−α

√
σ2

i /Ni +σ2
c /Nc.

Let Φ denote the standard normal cdf. If µi−µc > d∗, the
probability of committing a Type II error, i.e. concluding
that the null hypothesis is true when in fact it is false, is

β = P[X̄i− X̄c−d∗ ≤ z1−α

√
σ2

i /Ni +σ2
c /Nc]

≤ Φ(z1−α).

The inequality holds because Z has a standard normal dis-
tribution when µi−µc = d∗.

To control both the Type I error, i.e. we don’t accept
the null hypothesis when it is true, and the Type II error,
we will use the test statistic

Z =
X̄i− X̄c√

σ2
i /Ni +σ2

c /Nc

.

The acceptance region for this test is still Z ≤ z1−α or

X̄i− X̄c ≤ z1−α

√
σ2

i /Ni +σ2
c /Nc.

Note that with this test statistics the probability of accepting
the null hypothesis that µi < µc +d∗ will be less than 1−α

when µc < µi < µc + d∗ and will decrease as µi deviates
more from µc. If µi−µc > d∗, the probability that the test
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statistic falls in the acceptance region is

β ≤ Φ(z1−α −
d∗√

σ2
i /Ni +σ2

c /Nc

).

For fixed d∗ and α , β can be evaluated as a function of
sample sizes Nc and Ni. For more detail, see Rice (1995).
Suppose we want to limit the probability of β , the sample
sizes Nc and Ni should be large enough such that

z1−α −
d∗√

σ2
i /Ni +σ2

c /Nc

≤ zβ .

Let α = β = 1−P∗. Then

2z1−α ≤ d∗√
σ2

i /Ni +σ2
c /Nc

.

Hence, the CI half-width

w′
ci = z1−α

√
σ2

i /Ni +σ2
c /Nc ≤ d∗/2.

That is, to control both Type I and Type II errors, the
allocated sample sizes should be large enough such that the
1−α one-tailed CI half width is less than H = d∗/2 when
the difference between the two systems is at least d∗. Recall
that the indifference amount in (1) and (2) corresponding
to the targeted CI half width. Consequently, the required
sample sizes for selecting a restricted subset (up to size m)
in a two-stage procedure are

Ni = max(n0 +1,d(hSi(n0)/H)2e), for i = 1,2, . . . ,k. (5)

Note that the constant h here is the same as in (2). We
then generate additional Ni − n0 samples for system i in
the second stage and compute the weighted sample mean
X̃i. However, H = d∗/2 instead of d∗ should be used when
computing the weight Wi1. Select system bl if and only
if X̃bl ≤ min(X̃bm , X̃b1 + d∗/2). We denote this two-stage
restricted subset selection procedure RSS.

3.2 The Rationale

In this section, we provide the rationale of using H instead
of d∗ in (5) to determined the required sample sizes of
restricted subset selection.

If the constant h is obtained with n0, v, m, k, and P∗,
and under the LFC (i.e. µv + d∗ = µu), then the sample
sizes allocated by (2) ensures that

P(CS) = P[X̃v < X̃u]
= P[X̃v− X̃u−d∗ < µv−µu]

≥ P[X̃v− X̃u−wvu < µv−µu]
= P∗

The inequality follows because we infer (from the arguments
in Section 2.4) that the sample sizes allocated by (2) achieves
the one-tailed P∗ CI half width wvu ≤ d∗. The last equality
follows because the property of CI half width. Note that if
wvu > d∗, then P(CS) < P∗. It is our conjecture that

wvu =
h√
2

√
S2

v(n0)
Nv

+
S2

u(n0)
Nu

.

If we allocate the sample sizes by (5), then wvu ≤ d∗/2.
Let X̃b1(≤ X̃v) denote the smallest weighted sample mean.
Then

P[X̃b1 +d∗/2 < X̃u]
≥ P[X̃v +d∗/2 < X̃u]
≥ P[X̃v−wvu +d∗ < X̃u]
≥ P[X̃v− X̃u−wcu < µv−µu]
= P∗

Hence,

P[X̃u < X̃b1 +d∗/2]≤ 1−P∗.

That is, there is no more 1−P∗ probability that system u
(i.e. the system whose weighted sample means is the uth

smallest among system il for l = v+1,v+2, . . . ,k) will be
included in the restricted subset.

Under the configuration that µil = µi1 + d∗ for l =
2,3, . . . ,k (i.e. the LFC and v = 1) and v < m, the probabil-
ity of X̃bm+1 < X̃b1 +d∗/2 will be less than 1−P∗. However,
the probability of X̃bl < X̃b1 +d∗/2 for l = 2,3, . . . ,m will
be greater than 1−P∗. Note that under this configura-
tion the RSS procedure will allocate more samples than
those allocated by the VE procedure of Sullivan and Wilson
(1989). Under this configuration, the subset determined by
VE will on average contain (m−1)/2 non-d∗-near-best sys-
tems (Sullivan and Wilson 1989). Since precision become
higher as sample sizes become larger and RSS allocates
more samples than VE for each system, the subset deter-
mined by RSS should on average contain no more than
(m− 1)/2 non-d∗-near-best systems under the same con-
figuration. Under the LFC and v = m, the probability of
X̃bm+1 < X̃b1 +d∗/2 will be less than 1−P∗. That is, there
is at least P∗ probability that all the selected systems in
the restricted subset are d∗-near-best. However, the size of
the restricted subset may be less than m, i.e. some of the
d∗-near-best systems may not be selected.

Note that the value of v is an user specified parameter
via the constant of h. As the value of v increases so will the
value of h and the sample sizes; consequently, the average
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number of the non-d∗-near-best systems included in the
subset will decrease. In the special case that v = m, the
P(CS) is the probability that only and all of the v d∗-near-
best system(s) are included in the subset. For example, if
µi1 +d∗ < µi2 and the constant h is obtained with v = m(> 1)
and P∗, then the procedure guarantees that the final subset
contains only system i1 with probability P∗. On the other
hand, under the LFC (i.e. µil +d∗ = µiv+1 , for l = 1,2, . . . ,v
) the procedure guarantees that the final subset contains
system il for l = 1,2, . . . ,v with probability P∗.

3.3 Sequential Procedure of Selecting a Restricted
Subset

We now present a cost-effective sequential approach to
select a restricted subset of size up to m. We denote this
SRSS (Sequential Restricted Subset Selection) procedure.
To improve the efficiency of the procedure, we take into
account the difference of sample means when computing
the required sample sizes.

Sequential Restricted Subset Selection Procedure:

1. Let Ni,t be the sample size allocated for system i
and X̄i,t be the sample mean of system i at the tth

iteration. Simulate n0 samples for all systems. Set
the iteration number t = 0, and N1,t = N2,t = · · ·=
Nk,t = n0. Specify the value of the indifference
amount d∗ and the required precision P∗.

2. Calculate the sample means and sample variances.
Rank the sample means such that X̄b1 ≤ X̄b2 ≤ . . .≤
X̄bk .

3. Calculate the required sample size
Nbl ,t+1 = max(n0 + 1,d(2hSbl (Nbl ,t)/dbl )

2e),
for l = 1,2, . . . ,k. Here dbl is computed according
to (3).

4. If Ni,t+1 ≤ Ni,t , for i = 1,2, . . . ,k, go to step 6.
5. Simulate additional d(Ni,t+1 −Ni,t)+/2e samples

for system i. Here (x)+ = max(0,x). Set t = t +1.
Go to step 2.

6. Select system bl iff X̄bl ≤ min(X̄bm , X̄b1 +d∗/2).

Note that sample means X̄i, instead of weighted sample
means X̃i, are used to determine the subset. This is because
there are more than two stages of sample means and we
can no longer use the approach of Dudewicz and Dalal
(1975) to compute the weighted sample means. While X̄i

for i = 1,2, . . . ,k are still t-distributed, they have different
degrees of freedom. Hence, this sequential procedure is a
heuristic. Nevertheless, our empirical studies indicate that
this procedure performs well in terms of P(CS) and sample
sizes. The critical value h depends on k, m, v, n0, and
P∗. Even though the sample sizes for each system change
at each iteration, we use the initial value of h through

all iterations. This simplifies the programming effort and
provides conservative estimates of the sample sizes.

Let us consider the steps between taking additional
samples, i.e. steps 2 through 5, be one iteration. We can
reduce the number of iterations with a larger incremental
sample size for system i at the tth iteration, but we run
the risk of allocating more samples than necessary to non-
promising systems. For example, two-stage procedures
allocate all the required samples at the second stage based
on the information obtained at the first stage. At the other
extreme, some selection procedures, e.g. Kim and Nelson
(2001) take only one additional sample from each system
that is still under consideration at each iteration. While
these procedures generally require smaller sample sizes,
they require many iterations and the associated overhead.

We propose to use the sample size allocation strategy of
Chen and Kelton (2005) to compute the incremental sample
size dynamically with all the information obtained up to the
current iteration. The additional sample size for alternative
i at iteration t +1 is

δi,t+1 = d(Ni,t+1−Ni,t)+/2e. (6)

We use the equation S2
i (r) = (∑r

j X2
i j/r− X̄2

i )r/(r− 1) to
compute the variance estimator, so we are only required to
store the triple (Ni,t ,∑

Ni,t
t=1 Xit ,∑

Ni,t
t=1 X2

it ) instead of the entire
sequences (Xi1,Xi2, . . . ,XiNi,t ).

The SRSS procedure is able to estimate the required
sample size for each system to obtain the specified P∗

based on information obtained up to the current stage, so
we are able to allocate incremental sample sizes intelligently.
The procedure allocates a large incremental sample size at
the first iteration and reduces the incremental sample sizes
approximately by half at later iterations; see (6). This makes
sense because there should be room for more aggressive
budget allocation at early iterations, which reduces the
number of iterations and the overhead in computing sample
means and sample variances. Furthermore, we don’t run the
risk of allocating more samples than necessary because we
have estimated the required sample size for each system.
As the procedure proceeds, the incremental sample size
allocation becomes less aggressive to avoid allocating more
samples than necessary to non-promising systems.

4 EMPIRICAL EXPERIMENTS

In this section, we present some empirical results of per-
forming restricted subset selection using the RSS and SRSS
procedures. We chose the first-stage sample size to be
n0 = 20. The number of systems under consideration is
k = 10. The indifference amount d∗ is set to 1. The tar-
geted size of the subset m is set to 5. The minimal P(CS)
of P∗ is set to 0.90 and 0.95. Furthermore, we select the m
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best systems based on the sample means (i.e. X̄i’s) instead
of the weighted sample means (i.e. X̃i’s).

We tested the following two configurations:

• Setting 1: µ1 = 0, and µ j = d∗, for j = 2,3, . . . ,k.
• Setting 2: µi = 0, for i = 1,2, . . . ,5, and µ j = d∗,

for j = 6,7, . . . ,k.

In setting 1, a correct selection means the selected
subset contains system 1. In setting 2, a correct selection
means none of the non-best systems (i.e, systems 6 through
10) are selected. Note that the size of the subset may be less
than m. We did not perform any experiments of the non-
LFC, since it has been shown that procedures that take into
account the difference of sample means can significantly
reduce the required sample sizes. Interested readers can see
Chen (2007) for some experimental results.

The setting of variances is as follows.

• Equal Variances: σ2
i = 62, for i = 1,2, . . . ,k.

• Increasing Variances: σ2
i = i2, for i = 1,2, . . . ,k.

• Decreasing Variances: σ2
i = (11− i)2, for i =

1,2, . . . ,k.

We perform 10,000 independent experiments to obtain
the actual P(CS). The number of times the selected subset
contains the desired systems is counted among the 10,000
independent experiments. The observed correct selection
proportion, PCS1, is then obtained by dividing this number
by 10,000. We also compute PCS2, the proportion that
the selected subset contains only and all of the v d∗-near-
best system(s), i.e. in setting 1 it contains only system
1; and in setting 2 it contains systems 1 through 5. We
list the results (PCS1, PCS2, the average final size of the
subset m̂, the average sample size of each simulation run T ,
i.e. T = ∑10000

R=1 ∑k
i=1 NR,i/10000, NR,i is the total number of

replications or batches for design i in the Rth independent run,
and the standard error of T ) for RSS and SRSS. Furthermore,
the Iter row lists the average number of iterations of SRSS.

Table 1 lists the results of setting 1 where system 1
is the only best system. The v = 1 and v = 5 columns list
the results when the critical constant h is obtained with
(n0 = 20, k = 10, m = 5) v = 1 and v = 5, respectively. The
allocated sample size of restricted subset selection is four
times the size of unrestricted subset selection. Recall that
H = d∗/2 is used in (5) whereas d∗ is used in (2). When
h is obtained with v = 1, i.e. the selected subset contains
the best system, the average size of the subset is 2 and
the observed PCS1’s are close to 1. The selected subset
contains only system 1 (i.e. the best system) about 0.55
fraction of the times. When h is obtained with v = 5, i.e.
the selected subset contains five d∗-near-best systems, the
average size of the subset is close to 1. The procedures
correctly determine that alternatives other than system 1 are
not d∗-near-best. Furthermore, the observed PCS1’s are all

1, i.e. the selected subset always contains system 1. The
subset contains only system 1 about 0.97 fraction of the
times.

Table 2 lists the results of setting 2 where systems
1 through 5 are the best systems. The observed P(CS)’s
are greater than the nominal values. When h is obtained
with v = 1, the average size of the subset is 3.45. When
h is obtained with v = 5, the average size of the subset
is 4.95. The procedures incorrectly determine some of the
best systems as non-d∗-near-best. When h is obtained with
v = 1, the selected subset contains systems 1 through 5 about
0.21 (i.e. (0.1254+0.2888+0.1355+0.3128)/4) fraction of the
times. On the other hand, when h is obtained with v = 5,
the selected subset contains systems 1 through 5 about
0.94 (i.e. (0.9132+0.9570+0.9323+0.9749)/4) fraction of
the times. The sequentialized procedure SRSS has better
performance than the two-stage procedure RSS in terms of
P(CS) and sample sizes. Moreover, the number of iterations
initiated by the SRSS procedure is small.

Tables 3 and 4 list the experimental results of the in-
creasing variances configuration. Tables 5 and 6 list the
experimental results of the decreasing variances configura-
tion. These results are generally similar to the experiments
when the variances are equal.

5 CONCLUSIONS

We have presented two restricted-subset-selection proce-
dures that provide effective means for screening a large set
of systems. These procedures are versatile, easy to apply
and can be incorporated with other procedures to select
promising systems from large alternatives for a follow-up
processing.

Selection procedures that are developed based on the
LFC are conservative. Newer approaches utilize both the
means and variances from earlier stages; the marginal com-
putational effort is minimal, yet the achieved efficiency
improvement is significant. The sequential procedure pre-
serves the simple structure of indifference-zone selection
while being more efficient in situations where many alterna-
tive systems are non-competitive. We strongly recommend
users use the sequentialized version of the selection proce-
dures since they performs better than two-stage procedures
in terms of sample size and probability of correct selection.
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Table 1: Setting 1 and Equal Variances

P∗ = 0.90 P∗ = 0.95
v = 1 v = 5 v = 1 v = 5

PCS1 0.9813 1.0 0.9973 1.0
R PCS2 0.4633 0.9580 0.5979 0.9795
S m̂ 2.12 1.06 1.80 1.03
S T 2967 20947 4986 26214

std(T ) 303 2163 514 2675
PCS1 0.9866 1.0 0.9992 1.0

S PCS2 0.4886 0.9753 0.6314 0.9912
R m̂ 2.10 1.03 1.74 1.01
S T 2664 20864 4749 26215
S std(T ) 310 248 351 261

Iter 10 13 11 14

Table 2: Setting 2 and Equal Variances

P∗ = 0.90 P∗ = 0.95
v = 1 v = 5 v = 1 v = 5

PCS1 0.9331 1.0 0.9761 1.0
R PCS2 0.1254 0.9132 0.2888 0.9570
S m̂ 3.11 4.89 3.70 4.95
S T 2967 20947 4986 26214

std(T ) 303 2163 514 2675
PCS1 0.9456 1.0 0.9845 1.0

S PCS2 0.1335 0.9323 0.3128 0.9749
R m̂ 3.18 4.92 3.78 4.97
S T 2570 20850 4633 26206
S std(T ) 265 264 321 266

Iter 10 13 11 14

Table 3: Setting 1 and Increasing Variances

P∗ = 0.90 P∗ = 0.95
v = 1 v = 5 v = 1 v = 5

PCS1 0.9953 1.0 0.9998 1.0
R PCS2 0.4656 0.9650 0.6160 0.9828
S m̂ 1.94 1.04 1.67 1.02
S T 3191 22346 5343 28109

std(T ) 425 3030 721 3770
PCS1 0.9986 1.0 0.9999 1.0

S PCS2 0.4814 0.9707 0.6374 0.9882
R m̂ 1.93 1.04 1.66 1.02
S T 2745 22349 4997 28050
S std(T ) 401 226 475 251

Iteration 10 14 11 14

Table 4: Setting 2 and Increasing Variances

P∗ = 0.90 P∗ = 0.95
v = 1 v = 5 v = 1 v = 5

PCS1 0.9282 0.9999 0.9759 1.0
R PCS2 0.1617 0.9124 0.3173 0.9566
S m̂ 3.32 4.89 3.78 4.95
S T 3191 22346 5343 28109

std(T ) 425 3030 721 3770
PCS1 0.9456 1.0 0.9871 1.0

S PCS2 0.1667 0.9256 0.3352 0.9729
R m̂ 3.31 4.91 3.83 4.97
S T 2533 22294 4708 28022
S std(T ) 452 318 582 296

Iteration 10 14 11 14

Table 5: Setting 1 and Decreasing Variances

P∗ = 0.90 P∗ = 0.95
v = 1 v = 5 v = 1 v = 5

PCS1 0.9817 1.0 0.9975 1.0
R PCS2 0.4833 0.9607 0.6068 0.9812
S m̂ 2.08 1.05 1.79 1.02
S T 3175 22389 5342 28027

std(T ) 426 3023 711 3782
PCS1 0.9842 1.0 0.9993 1.0

S PCS2 0.4871 0.9769 0.6340 0.9897
R m̂ 2.10 1.03 1.73 1.01
S T 2940 22251 5149 27989
S std(T ) 296 407 315 385

Iteration 10 14 11 14

Table 6: Setting 2 and Decreasing Variances

P∗ = 0.90 P∗ = 0.95
v = 1 v = 5 v = 1 v = 5

PCS1 0.9462 0.9999 0.9762 1.0
R PCS2 0.1331 0.9131 0.2813 0.9573
S m̂ 3.14 4.89 3.67 4.95
S T 3175 22389 5342 28027

std(T ) 426 3023 711 3782
PCS1 0.9458 1.0 0.9831 1.0

S PCS1 0.1336 0.9348 0.3087 0.9760
R m̂ 3.18 4.91 3.76 4.97
S T 3026 22294 5217 28027
S std(T ) 193 312 169 292

Iteration 11 14 11 14
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