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ABSTRACT

We consider the problem of feasibility determination in
a stochastic setting. In particular, we wish to determine
whether a system belongs to a given set Γ based on a
performance measure estimated through Monte Carlo sim-
ulation. Our contribution is two-fold: (i) we characterize
fractional allocations that are asymptotically optimal; and
(ii) we provide an easily implementable algorithm, rooted
in stochastic approximation theory, that results in sampling
allocations that provably achieve in the limit the same perfor-
mance as the optimal allocations. The finite-time behavior
of the algorithm is also illustrated on two small examples.

1 BACKGROUND

We consider the problem of feasibility determination in
a stochastic setting. In particular, we wish to determine
whether a system belongs to a given set Γ based on a
performance measure estimated through Monte Carlo sim-
ulation. While it is an interesting problem in its own right,
feasibility determination has recently attracted much atten-
tion from researchers in ranking and selection (R&S) whose
objective is to select the best system in the presence of a
stochastic constraint.

Ranking and selection (R&S) techniques are statistical
methods developed to select the best system, or a subset
of systems from among a set of alternative system de-
signs. R&S via simulation is particularly appealing as it
combines modeling flexibility of simulation with the effi-
ciency of statistical techniques for effective decision making.
Furthermore, it is relatively straightforward to satisfy the
underlying technical assumptions of these techniques in
simulation experiments, which also allow for multi-stage
sampling as required by some R&S methods.

Due to randomness in output data, comparing a number
of simulated systems requires care. Suppose we conduct n
simulation replications for each of r designs. Therefore, we
need rn simulation replications. Simulation results become

more precise as n increases. If the precision requirement
is high (n is not small), and if the total number of designs
in a decision problem is large (r is large), then rn can be
very large, which may easily render the total simulation
cost prohibitively high and preclude the feasibility of using
simulation for R&S problems. The effective employment
of the simulation budget in the course of obtaining a good
decision is therefore crucial.

The rich literature on R&S has been developing along
two principal axes. The optimal computing budget alloca-
tion (OCBA) approach has its roots in Dudewicz and Dalal
(1975) who developed a two-stage procedure for selecting
the best design or a design that is very close to the best sys-
tem. Rinott (1978) presents an alternative way to compute
the required number of simulation replications in the sec-
ond stage. This idea has been ultimately extended to fully
sequential algorithms. Paulson (1964), Gupta and Pancha-
pakesan (1979), Nelson and Matejcik (1995), Matejcik and
Nelson (1995), Hsu (1996), and Kim and Nelson (2006)
present methods based on the classical statistical model
adopting a frequentist view. On the other hand, the value of
information (VIP) approach, exemplified by Berger (1985),
Bernardo and Smith (1994), Gupta and Miescke (1996),
Chick and Inoue (2001), and Chen et al. (2000) uses a
Bayesian framework for managing the trade-off between
the consequences of an immediate decision and the cost of
additional sampling.

The overwhelming majority of the R&S research focuses
on a single unconstrained performance measure (Kim and
Nelson 2006). Most applications, however, either have mul-
tiple performance measures (Butler, Morrice, and Mullarkey
2001) or face some constraints on the primary performance
measure (Andradottir, Goldsman, and Kim 2005). In a
manufacturing setting, for example, one might be simulta-
neously interested in selecting the scheduling policy that
maximizes throughput, with a physical limit on the work
in process or a service constraint on lead times. While
some of these measures might be correlated, others might
simply conflict with one another. The literature dealing with
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multiple performance measures or stochastic constraints has
been sparse.

In the case with multiple performance measures, only
a partial ordering may be possible, i.e., these populations
may not be ordered in terms of a vector-valued parameter.
In such cases, one typically defines a real-valued function of
the parameters and use this function to rank the populations.
Gupta et al. (1973) propose several such scalar functions.
Andijani (1998) uses the analytic hierarchical process (AHP)
and Butler et al. (2001) use the multiple attribute utility
theory (MAUT) to construct a scalar function by assigning
weights to the performance measures. Kim and Lin (2001)
use a max-min approach whereby they maximize the poorest
performing criterion. Lee et al. (2006) and Lee et al. (2007)
seek to identify a Pareto set of non-dominated designs.

R&S in the presence of stochastic constraints has re-
cently started receiving some attention. In a setting where
R&S is based on a primary performance measure subject
to the feasibility of a (possibly correlated) secondary per-
formance measure, Andradottir et al. (2005) propose a
two-phase approach : phase I identifies feasible systems
while phase II selects the best among them. With the ob-
jective of accelerating the first phase, Batur and Kim (2005)
have recently introduced procedures for finding a set of fea-
sible or near-feasible systems. The present article also is
concerned with efficient feasibility determination. Unlike
the previous work that is based on the indifference zone
perspective, we use large deviations theory to minimize the
expected number of incorrect determinations. We charac-
terize the optimal employment of the simulation budget to
sampling from each system, and present a stochastic ap-
proximation algorithm that yields a budget allocation that
provably converges to the optimal one. It is worth pointing
out that we are not the first ones using the large deviations
framework for R&S. Glynn and Juneja (2004) have used
this framework not only to determine an optimal budget
allocation strategy, but to also demonstrate the deteriorating
effect of violating the normality assumptions, which are
very commonly used in the R&S literature. Our notation
closely follows theirs. Like them, we characterize the op-
timal allocation of the computational budget. However, we
also provide an algorithm to achieve the optimal sampling
allocations.

The remainder of the paper is organized as follows.
Section 2 introduces the necessary notation along with some
preliminary ideas from the large deviations theory. Section
3 introduces our algorithm for feasibility determination. A
numerical illustration is presented in Section 4. Section 5
concludes the paper.

2 OPTIMAL ASYMPTOTIC ALLOCATION

We consider r systems, each with unknown performance
measure µ1, . . . ,µr ∈ R. Given a set Γ = [γ,∞), we wish

to employ Monte Carlo simulation to determine for each
system i whether µi ∈ Γ or not. We assume the simulationist
can obtain i.i.d. replicates of the random variable Xi to
form unbiased estimators X̄i(ni) = n−1

i ∑
ni
k=1 Xi,k of µi, for

i = 1, . . . ,r.
The simulation budget n is allocated in order to mini-

mize the expected number of incorrect determinations. If,
without loss of generality, we assume that µ1, . . . ,µa ∈Γ and
µa+1, . . . ,µr 6∈ Γ, then the feasibility determination problem
is to

min
p1,...,pr∈M

gn(p1, . . . , pr)

where

gn(p1, . . . , pr) =
a

∑
i=1

P(X̄i(pin) 6∈ Γ)+
r

∑
i=a+1

P(X̄i(pin) ∈ Γ),

and M = {pi≥ 0 : ∑i pi≤ 1}. The pi’s represent the fraction
of the simulationist’s budget that is allocated to sampling
from each system, where for simplicity we assume that each
system has the same per-sample cost.

Our contribution is two-fold: (i) we characterize frac-
tional allocations p∗1, . . . , p∗r that are optimal (in log scale)
as n→ ∞; and (ii), we provide an easily implementable
algorithm, rooted in stochastic approximation theory, that
results in sampling allocations that provably achieve the
same performance (in log scale) as the optimal allocations
in the limit as n→ ∞.

Let Ii(·) be the large deviations rate function

Ii(x) = sup
θ∈R
{θx− logMi(θ)}, (1)

where

Mi(θ) = E exp(θXi)

is the moment generating function, for each system i =
1, . . . ,r. Define Di = {θ ∈ R : logMi(θ) < ∞}, and Do

i the
interior of Di. Our main assumptions are that:

A1. The performance measures do not lie exactly at
the boundary: µi 6= γ for all i = 1, . . . ,r.

A2. For each system, there exists θ ∗i ∈ Do
i such that

(logMi(θ ∗i ))′ = γ .

Assumption A1 ensures that the rate functions Ii(·) evalu-
ated at the boundary point γ are positive, so that no system
requires all the simulation budget. Assumption A2 is stan-
dard in situations where the underlying distributions are
light tailed, and implies that for each system there exists
θ ∗i ∈ R (unique) such that Ii(γ) = θ ∗i γ −Mi(θ ∗i ). It can
be shown that θ ∗i < 0 for i ∈ {1, . . . ,a} and θ ∗i > 0 for
i ∈ {a+1, . . . ,r}.
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We are now ready to state the main results of this
section.

Proposition 1 Suppose Assumption A2 holds. Then

lim
n→∞

1
n

loggn(p1, . . . , pr) =−min
i

piIi(γ). (2)

Proof: The proof consists of two parts. For pi > 0
and θ scalar

1
n

logE (exp(nθ X̄i(pin))) = pi logMi(θ/pi).

Moreover,

sup
θ∈R
{γθ − pi logMi(θ/pi)}= pi sup

θ∈R
{γθ/pi− logMi(θ/pi)}

= piIi(γ).

Hence, the Gärtner-Ellis Theorem implies that
1/n logP(X̄i(npi) 6∈ Γ) → −piIi(γ) for i = 1, . . . ,a,
and 1/n logP(X̄i(npi) ∈ Γ)→−piIi(γ) for i = a + 1, . . . ,r,
as n→ ∞.

In the second part we obtain lower and upper
bounds for (1/n) loggn(p1, . . . , pr). Suppose that pi∗ Ii∗ =
mini piIi(γ). Then, since gn(p1, . . . , pr) ≥ P(X̄i∗(npi∗) 6∈
Γ) if i∗ ∈ {1, . . . ,a} and gn(p1, . . . , pr) ≥ P(X̄i∗(npi∗) ∈
Γ) if i∗ ∈ {a + 1, . . . ,r}, we obtain the lower bound
liminfn→∞(1/n) loggn(p1, . . . , pr)≥−pi∗ Ii∗(γ). For the up-
per bound,

1
n

loggn(p1, . . . , pr)≤
1
n

max{log(rP(X̄1(np1) 6∈ Γ)), . . . ,

log(rP(X̄a(npa) 6∈ Γ)), log(rP(X̄1(npa+1) ∈ Γ)), . . . ,
log(rP(X̄1(npr) ∈ Γ))}.

Taking limits,

lim sup
n→∞

1
n

loggn(p1, . . . , pr)≤−pi∗ Ii∗(γ).

⊗
The best achievable exponential decay rate for gn(·) is

described next.
Proposition 2 Suppose assumptions A1 and A2

hold. Then

lim
n→∞

1
n

loggn(p∗1, . . . , p∗r ) =− 1

∑
r
j=1 I−1

j (γ)

where

p∗i =
I−1
i (γ)

∑
r
j=1 I−1

j (γ)
. (3)

For any other (p1, . . . , pr) ∈M we have

lim inf
n→∞

1
n

loggn(p1, . . . , pr)≥−
1

∑
r
j=1 I−1

j (γ)
.

Proof: The first statement follows immediately by
evaluating Eq. (2) with p∗i . For the second statement
we need to show that p∗1, . . . , p∗r maximize the exponential
decay rate of gn(·), given in Eq.(2). Hence we consider the
problem maxp∈M mini piIi(γ), which is equivalent to the
linear problem

maxη

st η− piIi(γ)≤ 0 for i = 1, . . . ,r
r

∑
j=1

p j ≤ 1

pi ≥ 0 for i = 1, . . . ,r

The dual of this problem is

minπ

st π−qiIi(γ)≥ 0 for i = 1, . . . ,r
r

∑
j=1

q j ≥ 1

π,qi ≥ 0 for i = 1, . . . ,r

The variables pi = qi = I−1
i (γ)/∑

r
j=1 I−1

j (γ), η = π =
1/∑

r
j=1 I−1

j (γ) are primal and dual feasible and η = π ,
so that p∗i is primal optimal by weak duality. ⊗

We view p∗i as the optimal allocation scheme, meaning
that no other allocation achieves a higher exponential decay
rate for gn(·) as the sampling budget goes to infinity.

Example 1 Suppose for every system we have Xi ∼
N(µi,σ

2
i ), with σ2

i > 0. For each system i (see Exercise
2.2.23 of Dembo and Zeitouni 1998),

Ii(γ) =
1
2

(
µi− γ

σi

)2

.

Hence Proposition 2, specialized to the Normal case, be-
comes

p∗i =
σ2

i /(µi− γ)2

∑
r
j=1 σ2

j /(µ j− γ)2 . (4)

In other words, when the underlying distributions are nor-
mal, each system is sampled in proportion to the square
of the distance of its scaled performance measure to the
boundary point γ .

Example 2 Assume Xi ∼ Bernoulli(µi), 0 < µi < 1,
for i = 1, . . . ,r, and let 0 < γ < 1. The rate functions are
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(Exercise 2.2.23 of Dembo and Zeitouni 1998),

Ii(γ) = γ log
(

γ

µi

)
+(1− γ) log

(
1− γ

1−µi

)
,

so that Proposition 2 results in

p∗i =

[
γ log

(
γ

µi

)
+(1− γ) log

(
1−γ

1−µi

)]−1

∑
r
j=1

[
γ log

(
γ

µ j

)
+(1− γ) log

(
1−γ

1−µ j

)]−1 . (5)

While Proposition 2 characterizes the optimal sampling
allocation, the rate functions Ii(γ) are generally unknown
and need to be estimated. However, estimating each rate
function involves solving a root finding problem, as can be
seen in Eq. (1) by solving for the derivative with respect to
θ equal to zero. This suggests that the computational cost
of sequentially estimating the rate functions dominates all
other costs when running the simulation, and therefore is
not a promising course of action. In the next section we
present a stochastic approximation algorithm that overcomes
these issues, and leads to fractional allocations that converge
almost surely to the optimal p∗i allocations.

3 STOCHASTIC APPROXIMATION ALGORITHM

Initially we warm-up each system with n0 > 0 replicates
and compute the sample averages X̃i,0 = n−1

0 ∑
n0
k=1 Xi,k. Let

Ii,0 = sup
θ∈R

{
θγ− log

(
1
n0

n0

∑
k=1

exp(θXi,k)

)}
= θi,0γ− log(Mi,0) ,

where θi,0 satisfies the root problem

γ =
∑

n0
k=1 Xi,k exp(θi,0Xi,k)
∑

n0
k=1 exp(θi,0Xi,k)

,

and the sample moment generating functions Mi,0 evaluated
at θi,0 are given by

Mi,0 =
1
n0

n0

∑
k=1

exp(θi,0Xi,k).

Finally, we initialize the sample sizes, λi,0 = n0 for
i = 1, . . . ,r.

Algorithm.

1. Initialize n = 0.
2. Generate a replicate α from the p.m.f.

I−1
i,n /∑

r
j=1 I−1

j,n , for i = 1, . . . ,r.

3. Update sample sizes: λα,n+1 = λα,n + 1, and
λi,n+1 = λi,n for i 6= α .

4. Generate a replicate from system α , (abusing no-
tation, say) Xn+1.

5. Update X̃α,n+1, Mα,n+1, θα,n+1, and Iα,n+1:

X̃α,n+1 = X̃α,n +
1

λα,n+1
(Xn+1− X̃α,n),

Mα,n+1 = Mα,n +
1

λα,n+1
(exp(θα,nXn+1)−Mα,n),

θα,n+1 = θα,n

− 1
λα,n+1

(Xn+1− γ)exp(θα,n(Xn+1− γ)) ,

and

Iα,n+1 = θα,n+1γ− log(Mα,n+1),

if θα,n+1γ− log(Mα,n+1) > 0, and Iα,n+1 = min j I j,n
otherwise. (This ensures that Iα,n+1 > 0 always.)
For i 6= α , set X̃i,n+1 = X̃i,n, Mi,n+1 = Mi,n, θi,n+1 =
θi,n, and Ii,n+1 = Ii,n.

6. Increase n← n+1 and go back to 2.

To ensure that each system is sampled infinitely often,
let (νn) be an increasing sequence such that νn→ ∞ and
n−1

∑
n
k=1 J(νk ≤ n)→ 0, where J(·) is the indicator function.

We sample from all r systems at stages ν1,ν2, . . ., and update
the parameters according to steps 3 and 5 of the algorithm.

This algorithm provides fractional allocations that con-
verge a.s. to the optimal allocations, as the next theorem
demonstrates.

Theorem 1 Under assumptions A1 and A2,

λi,n

n
→ p∗i ,

almost surely as n→ ∞.
Proof outline: Suppose momentarily that θi,n→ θ ∗i

a.s. Let pi,n = λi,n/n, so that step 3 of the algorithm can
be expressed as pi,n+1 = pi,n +(J(αn = i)− pi,n)/(n + 1),
where αn is the nth replicate of α generated in step 2 of the
algorithm, and J(·) is the indicator function. The recursion
for pi,n+1 can be re-written as

pi,n+1 = pi,n +
1

n+1
(p∗i − pi,n)+

1
n+1

(J(αn = i)−qi,n)

+
1

n+1
(qi,n− p∗i ), (6)
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where qi,n = I−1
i,n /∑

r
j=1 I−1

j,n . Since E[J(αn =
i)|I j,0,αk,Xk, j = 1, . . . ,r,k = 0, . . . ,n] = qi,n, the se-
quence {J(αn = i) − qi,n} is a martingale difference
with respect to the sequence of σ -algebras generated by
{I j,0,θ j,0,αk,Xk, j = 1, . . . ,r,k = 0, . . . ,n}. Additionally,

∑
k

|qi,k− p∗i |
k +1

≤∑
k

J(|qi,k− p∗i |> 1/(1+ k))
k +1

+∑
k

1
(k +1)2 , (7)

almost surely. The set {∑k J(|qi,k− p∗i | > 1/(1 + k))/(k +
1) = ∞} ⊆∪∞

`=0{∑k J(|qi,k− p∗i |> 1/(1+`))/(k+1) = ∞},
and P(∑k J(|qi,k − p∗i | > 1/(1 + `))/(k + 1) = ∞) = 0 for
each ` since θi,n→ θ ∗i a.s. implies qi,n→ p∗i a.s. Therefore
P(∑k J(|qi,k− p∗i | > 1/(1 + k))/(k + 1) = ∞) = 0, and we
conclude from Eq. (7), that ∑k |qi,k− p∗i |/(k +1) < ∞ a.s.

Hence, all the assumptions of Theorem 5.2.1 of Kushner
and Yin (2003) are satisfied. Moreover, the ordinary dif-
ferential equations p′i = p∗i − pi, i = 1, . . . ,r, have a unique
globally asymptotically stable point, p∗i , so that Theorem
5.2.1 of Kushner and Yin (2003) results in pi,n→ p∗i a.s.
(The special instances of n = νk,k = 1,2, . . . , can be handled
by introducing an extra term in Eq. (6), and do not affect
the asymptotic behavior of pi,n.)

Regarding the asymptotic behavior of θi,n, our algorithm
guarantees that λi,n→∞ w.p.1, so that we can focus on the
epochs when a system is sampled. Re-write the recursion
for θα,n+1 as

θα,n+1 = θα,n +
1

λα,n+1
×
(

ḡα(θα,n)

− (Xn+1− γ)exp(θα,n(Xn+1− γ))
)
−

ḡα(θα,n)
λα,n+1

,

where ḡi(θi) = E[(Xi−γ)exp(θi(Xi−γ))]. Since log Mi(θi)
is strictly convex and (log Mi(θ ∗i ))′ = γ , we have ḡi(θi) < 0
for θi < θ ∗i , ḡi(θi) > 0 for θi > θ ∗i , and ḡi(θi) = 0 for θi = θ ∗i .

The sequence {ḡα(θα,n) − (Xn+1 −
γ)exp(θα,n(Xn+1− γ))} is a martingale difference
with respect to the sequence of σ -algebras generated by
{I j,0,θ j,0,αk,Xk, j = 1, . . . ,r,k = 0, . . . ,n}. Since λi,n → ∞

a.s. for each system i, Theorem 5.2.1 of Kushner and Yin
(2003) applies, meaning that θi,n converges a.s. to the
unique globally asymptotically stable point of the ODE

θ
′
i =−ḡi(θi),

which is given by θ ∗i , for i = 1, . . . ,r. ⊗

Remark. p∗i Ii(γ) = p∗j I j(γ) suggests that step 2 of
the algorithm could be replaced by α = argmini{λi,nIi,n}.

An argument similar to the one employed in the proof
of Theorem 1 shows that this approach also results in
asymptotically optimal fractional allocations.

The next result shows that the expected number of
incorrectly determined systems produced by the stochastic
approximation algorithm approaches 0 at the best possible
rate.

Theorem 2 Suppose that assumptions A1 and A2
hold. Then,

1
n

log

(
a

∑
i=1

P(X̃i,n 6∈ Γ)+
r

∑
i=a+1

P(X̃i,n ∈ Γ)

)
→− 1

∑
r
j=1 I−1

j (γ)
,

as n→ ∞.
Proof outline: The proof resembles the proof of

Proposition 1. First of all, since for each system the samples
are i.i.d., we obtain

1
n

log
(
E exp(nθ X̃i,n)

)
=

1
n

logE

[
Mi

(
θ

n
λi,n

)λi,n
]

,

where the expectation is with respect to the probability
measure of the random variable λi,n. Assumptions A1 and
A2, Theorem 1, and dominated convergence lead to

Mi

(
θ

n
λi,n

)λi,n/n

→Mi

(
θ

p∗i

)p∗i
(8)

a.s. By Jensen’s inequality(
E

[
Mi

(
θ

n
λi,n

)λi,n/n
])n

≤ E

[
Mi

(
θ

n
λi,n

)λi,n
]

,

so that

p∗i logMi

(
θ

p∗i

)
≤ lim inf

n→∞

1
n

log
(
E exp(nθ X̃i,n)

)
. (9)

By Eq. (8), given ε > 0,

Mi

(
θ

n
λi,n

)λi,n/n

≤Mi

(
θ

p∗i

)p∗i +ε

a.s. for all n sufficiently large, which results in

lim sup
n→∞

1
n

log
(
E exp(nθ X̃i,n)

)
≤ (p∗i + ε) logMi

(
θ

p∗i

)
.

Sending ε → 0, together with Eq. (9), yields

1
n

log
(
E exp(nθ X̃i,n)

)
→ p∗i logMi

(
θ

p∗i

)
.
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By the Gärtner-Ellis theorem, we conclude that
1/n logP(X̃i,n 6∈ Γ) → −p∗i Ii(γ) for i = 1, . . . ,a, and
1/n logP(X̃i,n ∈Γ)→−p∗i Ii(γ) for i = a+1, . . . ,r, as n→∞.
The rest of the proof is similar to the second part of the
proof of Proposition 1, and is thus omitted. ⊗

4 NUMERICAL EXAMPLES

We now illustrate our stochastic approximation algorithm
through the two examples introduced in Section 2, where
the performance metric of interest is distributed according to
Normal and Bernoulli distributions, respectively. In addition
to providing us with an opportunity to examine the finite-
time performance of our algorithm, these two examples also
illustrate the impact of deviations from the assumption of
normality, which is quite common in the R&S literature.
All the results are the average of 100 independent mega-
replications. The results, which reflect the allocation of the
computing budget as a function of the number of iterations
of the algorithm, lead to two key observations: the efficacy
of sequential algorithms and the importance of adequate
initialization of such algorithms. The efficacy of these
algorithms is particularly valuable in critical settings, i.e.,
those settings where the system performance is close to the
boundary of the feasible region.

Example 3 Suppose we have five systems with
Xi ∼ N(µi,σ

2
i ), with µi = [9.51,9.45,9.40,9.55,9.60] and

σ2
i = 1. Let the boundary point γ = 9.50. As a starting

point, we will use Eq. (4), and sample from each system
in proportion to the square of the distance of its scaled
performance measure to γ . In this case, the optimal budget
allocation for the five systems is given by p∗i = [0.9091,
0.0364, 0.0091, 0.0364, 0.0091]. Figure 1 shows that con-
vergence is rather rapid, that is, within 100000 iterations,
the optimal allocation of the computing budget is achieved
along with the correct classification of all the systems. Note
that the algorithm has been initialized with only 100 samples
from each system.

Given the fact that the rate functions are generally
unknown and need to be estimated, we next deploy our
stochastic approximation algorithm to classify five systems
with Xi ∼N(µi,σ

2
i ), with µi = [9.20,8.50,9.00,9.80,10.01]

and σ2
i = 1. Let the boundary point γ = 9.50. In this

case, the optimal budget allocation for the five systems is
given by p∗i = [0.3577, 0.0322, 0.1288, 0.3577, 0.1238].
Figure 2 shows that convergence has slowed down due to
the effort required in estimating the rate functions; that
is, it now takes over 1000000 iterations for the stochastic
approximation algorithm to achieve the optimal allocation of
the computing budget along with the correct classification of
all the systems. Note that the algorithm has been initialized
with 50000 samples from each system.

Example 4 Assume Xi ∼ Bernoulli(µi), with µi =
[0.92,0.85,0.90,0.98,0.88]. Let the boundary point γ =

Figure 1: Convergence of the budget allocation as a function
of log(iterations) for the Normal case with the exact rate
function

Figure 2: Convergence of the budget allocation as a function
of log(iterations) for the Normal case with the estimated
rate function

0.95. Based on Eq. (5), the optimal budget allocation for the
five systems is given by p∗i = [0.4492, 0.0618, 0.1878, 0.1927,
0.1084]. Figure 3 shows that, within 10000 iterations, our
stochastic approximation algorithm achieves the optimal
allocation of the computing budget along with the correct
classification of all the systems. One must recall, however,
that appropriate initialization of the algorithm is crucial.
The above performance is obtained after collecting 50000
observations to initialize the algorithm.

5 CONCLUDING REMARKS

We address the problem of feasibility determination in a
stochastic setting. More specifically, we wish to determine
whether a system belongs to a given set Γ based on a perfor-
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Figure 3: Convergence of the budget allocation as a function
of log(iterations) for the Bernoulli case with the estimated
rate function

mance measure estimated through Monte Carlo simulation.
Our contribution is two-fold: (i) we characterize fractional
allocations that are asymptotically optimal; and (ii) we pro-
vide an easily implementable algorithm, rooted in stochastic
approximation theory, that results in sampling allocations
that provably achieve in the limit the same performance as
the optimal allocations. The finite-time behavior of the algo-
rithm, illustrated on two small examples, is quite promising.
Current research is aimed at generalizing the approach to
settings where the feasible region is d-dimensional with
d > 1.
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