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ABSTRACT

We analyze the asymptotic behavior of two-stage proce-
dures for multiple comparisons with the best (MCB) for
comparing the steady-state means of alternative systems
using simulation. The two procedures we consider differ in
how they estimate the variance parameters of the alternatives
in the first stage. One procedure uses a consistent estima-
tor, and the other employs an estimator based on one of
Schruben’s standardized time series (STS) methods. While
both methods lead to mean total run lengths that are of the
same asymptotic order of magnitude, the limiting variability
of the run lengths is strictly smaller for the method based
on a consistent variance estimator. We also provide some
analysis showing how to choose the first-stage run length.

1 INTRODUCTION

One problem often faced by simulation analysts is comparing
alternative systems relative to a steady-state performance
measure. For example, there may be 10 alternative designs
for a manufacturing system, and we want to compare the
designs relative to their steady-state throughputs.

To address this problem, we examine procedures for
multiple comparisons with the best (MCB, Hsu 1984).
Specifically, suppose there are k alternative systems, where
system i has steady-state mean θi, and assume that larger
means are better. MCB constructs simultaneous confi-
dence intervals for θi−max j 6=i θ j, i = 1, . . . ,k. Note that
if θi−max j 6=i θ j > 0 for some i, then system i is the best.
On the other hand, if θi−max j 6=i θ j < 0, then system i
is not the best, but this quantity indicates how close sys-
tem i is to the best. This information could be useful when
ultimately deciding which design to implement when sec-
ondary considerations (e.g., ease of maintenance) are taken
into account.

We examine two-stage MCB procedures to construct
simultaneous confidence intervals having absolute-width pa-
rameter δ > 0, which is pre-specified by the user; i.e., the

user wants the confidence intervals to have half-width at
most δ . In the context of comparing means of normally dis-
tributed populations, Matejcik and Nelson (1995) show that
two-stage MCB is closely related to an indifference-zone
selection procedure (Bechhofer 1954). The latter seeks to
correctly identify the best system with at least a pre-specified
probability when the best system is at least δ better than
the next best, where δ is pre-specified by the user.

Much of the previous work on MCB and selection proce-
dures focuses on comparing means of normally distributed
populations with independent and identically distributed
(i.i.d.) sampling used within each population (Hochberg
and Tamhane 1987, Swisher, Jacobson, and Yucesan 2003,
Kim and Nelson 2006b). However, steady-state means, as
we consider, are averages (or time averages) of stochastic
processes, which typically exhibit autocorrelations and have
non-normal output. Damerdji and Nakayama (1999), Kim
and Nelson (2006a) and Nakayama (2008a) develop and
analyze procedures for comparing steady-state means, and
a focus of these papers is establishing asymptotic validity
as δ → 0, where δ represents the desired width parameter
of the MCB intervals or the indifference-zone parameter.

We compare two two-stage MCB procedures for steady-
state means. In both methods, we simulate a first stage
whose size is proportional to 1/δ 2, from which an estimate
of the variance parameter of each system is computed. In
the first method, which we call MCB-CVE and is from
Nakayama (2008a), we use a consistent estimator of the
variance. Such estimators can be constructed using, e.g.,
the regenerative, autoregressive or spectral method under
various conditions; see Law (2006) for overviews of these
methods. The second method, which we call MCB-STS
and is a slight modification of a procedure in Damerdji
and Nakayama (1999), applies one of Schruben’s (1983)
standardized time series (STS) estimators of the variance.

We compare the total run lengths of MCB-CVE and
MCB-STS in terms of their means and variances. We find
that the mean run lengths are of the same asymptotic order,
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but the limiting variability for MCB-CVE is strictly smaller
than for MCB-STS.

Also, for MCB-CVE we analyze the effect of the first-
stage run length, which the user specifies, on the mean
and variability of the total run length. We use this to
determine the “best” first-stage run length by solving a
bicriteria optimization problem, in which we first minimize
the expected total run length, and then of those optimal
first-stage sizes, we break the tie by choosing the one that
minimizes the variance of the total run length.

The rest of the paper is organized as follows. Section 2
describes the mathematical framework we adopt, and we
present the two MCB procedures MCB-CVE and MCB-STS
in Section 3. Section 4 contains a comparison of their total
run lengths, and we provide analysis on choosing the first-
stage run length of MCB-CVE in Section 5. We summarize
our findings in Section 6. All proofs are given in Nakayama
(2008b).

2 MATHEMATICAL FRAMEWORK

Suppose there are k systems to compare. Let Xi = [Xi(t) :
t ≥ 0] be a stochastic process on a state space Si denoting
the evolution over time of system i. We assume that Xi ∈
DSi [0,∞), where DSi [0,∞) is the space of Si-valued functions
on [0,∞) that are right continuous and have left limits
(Billingsley 1999). For each i, let fi : Si→ℜ be a “reward
function.” We assume the following holds for some finite
parameter θi:

lim
t→∞

1
t

∫ t

0
fi(Xi(s))ds = θi a.s.,

where a.s. stands for “almost surely.” Thus, θi is the steady-
state mean reward of system i, and our goal is to compare
the k alternatives in terms of θ1, . . . ,θk, where we assume
larger θi is better.

For each system i, a natural estimator of θi based on
a simulation of length t of process Xi is

θ̂i(t) =
1
t

∫ t

0
fi(Xi(s))ds.

We assume that the estimation process θ̂i = [θ̂i(t) : t ≥ 0]
satisfies a functional central limit theorem (FCLT), which we
now describe. Let⇒ denote weak convergence (Billingsley
1999). For each system i and each n > 0, define the process
Ui,n = [Ui,n(t) : t ≥ 0] with Ui,n(t) = n1/2t(θ̂i(nt)−θi).

Assumption 1 The k systems are simulated inde-
pendently, and for each system i, there exists a positive
finite constant σi such that

Ui,n⇒ σiBi (1)

as n→∞, where Bi = [Bi(t) : t ≥ 0] is a standard Brownian
motion.

Whitt (2002), Section 4.4, discusses examples of pro-
cesses satisfying the FCLT in Assumption 1, which is
slightly stronger than an ordinary central limit theorem
(CLT). For example, the FCLT holds (under various condi-
tions) for Markov chains, associated processes, martingales
and stochastic processes satisfying mixing conditions, which
are a form of asymptotic independence.

We now consider the special case when each process Xi
is regenerative (Crane and Iglehart 1975). Let Ai, j, j≥ 0, be
the sequence of regeneration epochs of system i, with 0≤
Ai,0 < Ai,1 < Ai,2 < · · ·. For j = 1,2, . . ., let τi, j = Ai, j−Ai, j−1
be the length of the jth cycle of system i. Also, define
Yi, j =

∫ Ai, j
Ai, j−1

fi(Xi(s))ds to be the cumulative reward over the
jth cycle of system i. Assume that E[τi,1] < ∞ and that there
exists a finite constant θi such that E[Yi,1−θiτi,1] = 0 and
E[(Yi,1−θiτi,1)2] < ∞. Also, for a function h : Si→ℜ and
j ≥ 1, let Wi, j(h) = sup0≤s≤τi, j

∣∣∫ s
0 h(Xi(Ai, j−1 +u))du

∣∣, and
assume r2P{Wi,1( fi−θi) > r}→ 0 as r→∞, where fi−θi
denotes the function whose value for x ∈ Si is fi(x)− θi.
Then θi = E[Yi,1]/E[τi,1] and the FCLT in (1) holds with
σ2

i = E[(Yi,1−θiτi,1)2]/E[τi,1]; see Glynn and Whitt (1993).
Typically, the parameter σi in Assumption 1 is unknown

and needs to be estimated. Below we discuss two broad
categories of techniques to accomplish this.

2.1 Consistent Variance Estimation

First we consider consistent estimation of σ2
i . Let Vi =

[Vi(t) : t ≥ 0] be an estimation process of σ2
i , where Vi(t)

is the estimator of σ2
i from a simulation up to time t. We

assume that Vi is consistent in the following sense:
Assumption 2 Vi(t)⇒ σ2

i as t→ ∞.
We can construct an estimator Vi satisfying Assump-

tion 2 under various conditions on the original process Xi
and the reward function fi. For example, consider again
our previous example when each Xi is regenerative. Define
Ni(t) = sup{ j≥ 0 : Ai, j ≤ t}, which is the number of regen-
erative cycles that process i completes by time t. Then the
variance estimator

Vi(t) =
1
t

Ni(t)

∑
j=1

[
Yi, j− θ̂i(t)τi, j

]2

satisfies Assumption 2 under the conditions we provided
earlier; see Glynn and Iglehart (1993) for details.

Other examples of variance estimators satisfying As-
sumption 2 (under various conditions) include spectral esti-
mators (Damerdji 1991), autoregressive estimators (Fishman
1978, p. 252), and various batch means and batched area
estimators in which the number of batches m→ ∞ at an
appropriate rate as the run length increases (Damerdji 1994).
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Law (2006) and Bratley, Fox, and Schrage (1987) provide
overviews of these techniques.

2.2 Variance Estimation Using STS

An alternative approach to consistently estimating σ2
i is

to use one of Schruben’s (1983) standardized time series
methods. To do this, for each system i and n > 0, we define
the integrated process X̄i,n = [X̄i,n(t) : 0 ≤ t ≤ 1] ∈ C[0,1],
where

X̄i,n(t) = n θ̂i(nt) =
1
n

∫ nt

0
fi(Xi(s))ds

and C[0,1] is the space of continuous real-valued functions
on [0,1]. Suppose that we have run a simulation up to time
t. We then implement an STS method by applying to the
integrated process X̄i,t a function g : C[0,1]→ℜ satisfying
conditions given below, and we take

V ′i (t) = tg2(X̄i,t) (2)

as our STS estimator of σ2
i from the simulation of system i

up to time t. Also, we can show that

V ′i (t)⇒ g2(σiBi) = σ
2
i g2(Bi) (3)

as t→∞, where Bi is a standard Brownian motion on C[0,1].
We now provide the conditions the STS function g must

satisfy. Let B be a standard Brownian motion on C[0,1],
and we assume the following hold:

C1. g(βx) = βg(x) for all β ∈ ℜ with β > 0 and x ∈
C[0,1];

C2. g(x−βe) = g(x) for all β ∈ℜ and x∈C[0,1], where
e ∈C[0,1] with e(t) = t;

C3. P{g(B) > 0}= 1;
C4. P{B ∈ D(g)} = 0, where D(g) denotes the set of

discontinuities of g;
C5. g(B) has a density function fg with respect to

Lebesgue measure and fg(β ) > 0 for all β ∈ ℜ

with β > 0.

Glynn and Iglehart (1990) give Conditions C1–C4,
which we explain below, as the definition of STS functions,
and Nakayama (1994) and Damerdji and Nakayama (1999)
added a weaker version of C5 to handle two-stage STS
procedures. Instead of C5, Damerdji and Nakayama (1999)
assume that P{g(B) ∈ A} = 0 whenever A is a countable
set. However, all known STS functions g satisfy both this
condition and C5, and we believe (but do not have a formal
proof) that Conditions C1–C4 imply C5. For example, most
known STS methods result in g2(B) having a chi-squared
distribution, so C5 holds. Calvin and Nakayama (2006)
consider a maximum estimator, for which g(B) has a Weibull

distribution instead of the square root of a chi-square, but
this also satisfies C5.

We now explain conditions C1–C4. Condition C1 states
that if we scale a process by a constant, then evaluating the
function g at the scaled process gives the same value as
applying g to the original process and scaling the result by
the same constant. Note that we used C1 in the second step
of (3). C2 ensures that translating a process by a constant
does not alter the value of g. The parameter σi is positive,
and C3 guarantees that asymptotically the STS estimator of
σi is a.s. positive. C4 is a technical condition required for
the proofs.

Glynn and Iglehart (1990) provide examples of specific g
functions corresponding to various STS methods, including
g functions for batch means and Schruben’s (1983) area
estimator. For example, for batch means with m≥ 2 batches,
the STS function applied to x ∈C[0,1] is

gbm(x)

=

[
m

m−1

m

∑
j=1

(
x
(

j
m

)
− x
(

j−1
m

)
− x(1)

m

)2
]1/2

and

V ′i (t)

=
t

m−1

m

∑
j=1

(
1

t/m

∫ jt/m

( j−1)t/m
fi(Xi(s))ds− θ̂i(t)

)2

.

When applied to a standard Brownian motion B on the
unit interval, we can show that g2

bm(B) is distributed as
χ2

m−1/(m−1), where χ2
m−1 is a chi-squared random variable

with m−1 degrees of freedom, so E[g2
bm(B)] = 1. Hence,

for batch means, since gbm(Bi) is not deterministically equal
to 1, V ′i is not consistent by (3), so Assumption 2 does not
hold. In fact, Glynn and Whitt (1991) show that when the
number m of batches is held fixed as the run length t grows,
it is impossible to combine the batch means in some way
to obtain a consistent variance estimator.

In this paper, we will allow for any STS function g
(possibly with batching), which we assume satisfies the
following:

Assumption 3 The STS function g satisfies
E[g2(B)] = 1, where B is a standard Brownian motion.

The assumption that E[g2(B)] = 1, which we previously
saw holds for batch means, is not restrictive as long as
E[g2(B)] < ∞. It ensures that the limiting variance estimator
is unbiased by (3).
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3 TWO-STAGE MCB PROCEDURES

Our goal is to construct (simultaneous) MCB intervals for
θi−max j 6=i θ j, i = 1, . . . ,k, where the intervals have a pre-
specified absolute-width parameter δ > 0.

3.1 Procedure Using Consistent Variance Estimators

An approach to do this, given in Nakayama (2008a), is the
below two-stage procedure, which is related to a method of
Rinott (1978). The first stage estimates the unknown vari-
ance parameter σ2

i using the consistent variance estimator
Vi, which is used to determine the total run length required.

Procedure MCB-CVE

1. Specify the confidence level 1−α , and the desired
absolute-width parameter δ of the MCB confidence
intervals. Also, for each system i, specify the first-
stage run length

T0,i = ζi/δ
2, where ζi > 0 is any constant. (4)

The ζi may be unequal for different systems.

2. For each system i = 1, . . . ,k, simulate for a run
length of T0,i, where the k systems are simulated
independently.

3. For each system i, compute the total run length
required as

Ti(δ ) = max
(

T0,i,
γ2Vi(T0,i)

δ 2

)
, (5)

where the constant γ ≡ γ(k,1 − α) =√
2z(1−α)1/(k−1) , with zβ satisfying P{N(0,1) ≤

zβ} = β for 0 < β < 1 and N(0,1) a standard
(mean 0 and variance 1) normal random variable,
and Vi is any estimator satisfying Assumption 2.

4. For each system i, continue to simulate from
time T0,i to Ti(δ ), where the k systems are simu-
lated independently, and form the point estimator
θ̃i(δ ) = θ̂i(Ti(δ )) of θi.

5. Use the absolute-width parameter δ to construct
simultaneous MCB confidence intervals

Ii(δ ) =

[
−
(

θ̃i(δ )−max
j 6=i

θ̃ j(δ )−δ

)−
,

(
θ̃i(δ )−max

j 6=i
θ̃ j(δ )+δ

)+
]

,

i = 1, . . . ,k, for θi −max j 6=i θ j, i = 1, . . . ,k, re-
spectively, where −(β )− = min(β ,0) and (β )+ =
max(β ,0).

Nakayama (2008a) establishes the asymptotic validity
(as δ → 0) of the resulting MCB intervals; i.e.,

lim
δ→0

P
{

θi−max
j 6=i

θ j ∈ Ii(δ ), i = 1, . . . ,k
}

> 1−α,

so the asymptotic joint coverage of the MCB intervals is
greater than the nominal level.

3.2 Procedure Using STS Variance Estimators

We now modify Procedure MCB-CVE to estimate σ2
i using

a standardized time series estimator V ′i defined in (2) instead
of the consistent variance estimator Vi. Our two-stage MCB
procedure based on STS (which we call MCB-STS) is the
same as Procedure MCB-CVE except the total run length
for system i in (5) is changed to

T ′i (δ ) = max
(

T0,i,
γ ′2V ′i (T0,i)

δ 2

)
, (6)

where γ ′ is a constant that we will define shortly and T0,i is
the first-stage run length for system i; see (4). Also, in steps 4
and 5, we simulate system i up to time T ′i (δ ) rather than
to Ti(δ ), and the point estimator is now θ̃i(δ ) = θ̂i(T ′i (δ )).

We now define the constant γ ′ in (6). Suppose that we
want to construct STS MCB intervals having asymptotic
joint confidence level at least 1−α . Then γ ′= γ ′(k,1−α,g)
in (6) is chosen to satisfy

E

[
k−1

∏
i=1

Φ

(
γ ′

[(1/g2(Bi))+(1/g2(Bk))]
1/2

)]
= 1−α, (7)

where B1, . . . ,Bk are i.i.d. standard Brownian motions on
the unit interval.

When g is the batch means function gbm with m ≥ 2
batches, the parameter γ ′(k,1−α,gbm) in (7) is Rinott’s
(1978) constant from his two-stage selection procedure for
comparing the means of independent normal populations
when the first-stage sample size for each population is m.
Bechhofer, Santner, and Goldsman (1995) provide tables of
values for γ ′ for different values of k, m and 1−α .

Damerdji and Nakayama (1999) present a variant of
MCB-STS that determines the total number of batches to
simulate rather than the total run length, as we do now,
and establish its asymptotic validity (as δ → 0) when the
first-stage run length is T0 = ζ/δ 2 for some constant ζ

which is the same for all systems i. We now also allow
different first-stage run lengths for each system i, given
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by T0,i = ζi/δ 2 in (4), where ζi > 0 is any constant. We
can slightly modify the proof in Damerdji and Nakayama
(1999) to establish the asymptotic validity of MCB-STS.

4 COMPARISON OF RUN LENGTHS OF MCB-
CVE AND MCB-STS

We now compare MCB-CVE and MCB-STS in terms of
asymptotic properties of their total run lengths Ti(δ ) and
T ′i (δ ) for each system i. To do this, we will also study the
potential total run lengths, which we define as the second
terms in the maximums in (5) and (6). Specifically, these
are

T̄i(δ ) =
γ2Vi(T0,i)

δ 2 and T̄ ′i (δ ) =
γ ′2V ′i (T0,i)

δ 2 (8)

for MCB-CVE and MCB-STS, respectively. Thus,

Ti(δ )= max(T0,i, T̄i(δ )) and T ′i (δ )= max(T0,i, T̄ ′i (δ )).
(9)

4.1 Expected Run Lengths

We first examine the limiting means of the run lengths of
the two methods. The proof of the following is given in
Nakayama (2008a).

Theorem 1 Suppose Assumptions 1–3 hold. Then
the following hold for each system i as δ → 0:

(i) For MCB-CVE,

δ
2Ti(δ ) ⇒ τi, (10)

δ
2T̄i(δ ) ⇒ γ

2
σ

2
i , (11)

where

τi = max(ζi,γ
2
σ

2
i ), (12)

which is a finite positive constant. If {Vi(t) : t > 0}
is uniformly integrable, then

δ
2E[Ti(δ )] → τi, (13)

δ
2E[T̄i(δ )] → γ

2
σ

2
i . (14)

(ii) For MCB-STS,

δ
2T ′i (δ ) ⇒ τ

′
i , (15)

δ
2T̄ ′i (δ ) ⇒ γ

′2
σ

2
i g2(Bi),

where

τ
′
i = max[ζi,γ

′2
σ

2
i g2(Bi)] (16)

and τ ′i is nondegenerate with τ ′i ≥ ζi a.s. If {V ′i (t) :
t > 0} is uniformly integrable, then

δ
2E[T ′i (δ )] → E[τ ′i ], (17)

δ
2E[T̄ ′i (δ )] → γ

′2
σ

2
i ,

where ζi < E[τ ′i ] < ∞. Moreover, E[τ ′i ] > τi.

Thus, we see that for both MCB-CVE and MCB-STS,
the total run length and its expectation for each system i
are all asymptotically of order 1/δ 2; see (10), (13), (15),
and (17). The same also hold for the potential total run
lengths of each method. However, even though MCB-CVE
and MCB-STS have expected total run lengths that are of
the same order of magnitude, the last part of Theorem 1(ii)
shows that MCB-CVE asymptotically has strictly smaller
expected total run lengths.

4.2 Variability of Run Lengths

We now examine the variability of the total run lengths
Ti(δ ) and T ′i (δ ). For MCB-CVE the limit τi in (10) is
deterministic. For MCB-STS with a fixed number m≥ 1 of
batches, the limit τ ′i in (15) is nondegenerate. Hence, we
see that STS-MCB has asymptotically more variable total
run lengths than MCB-CVE.

Another way to quantify this is by comparing the limit-
ing variances (appropriately normalized) of Ti(δ ) and T ′i (δ ).
We first give the asymptotic variability of both the total run
length and the potential total run length for MCB-CVE.

Theorem 2 Suppose that Assumptions 1 and 2 hold.
Also, assume that

√
Vi satisfies the following CLT:

√
t(
√

Vi(t)−σi)⇒ N(0,ψ2
i ) (18)

as t→ ∞ for some finite constant ψi > 0, and assume that
{t(Vi(t)−σ2

i )2 : t > 0} is uniformly integrable. Then the
following hold for each system i as δ → 0:

(i) the potential total run length T̄i(δ ) satisfies

δ (T̄i(δ )−E[T̄i(δ )]) ⇒ N(0,κ2
i ), (19)

δ
2Var(T̄i(δ )) → κ

2
i , (20)

where κi = 2γ2σiψi/
√

ζi, so 0 < κi < ∞;
(ii) if ζi < γ2σ2

i , then

δ (Ti(δ )−E[Ti(δ )]) ⇒ N(0,κ2
i ),

δ
2Var(Ti(δ )) → κ

2
i ; (21)

(iii) if ζi = γ2σ2
i , then

δ (Ti(δ )−E[Ti(δ )]) ⇒ Y,
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δ
2Var(Ti(δ )) → 2(1−π

−1)γ2
ψ

2
i , (22)

where Y has distribution function H with

H(y) =
{

0 for y < y0,
Φ((y− y0)/(2γψi)) for y≥ y0,

(23)
and y0 = 2γψi/

√
2π;

(iv) if ζi > γ2σ2
i , then

δ (Ti(δ )−E[Ti(δ )]) ⇒ 0,

δ
2Var(Ti(δ )) → 0. (24)

When Vi(t) is the regenerative variance estimator,
Proposition 4.34 of Glynn and Iglehart (1990) provides
moment conditions to ensure (18) holds.

We now want to interpret the results in Theorem 2. If
all the σi were known, rather than use a two-stage MCB
procedure, we would instead employ a single-stage proce-
dure with run length γ2σ2

i /δ 2 for each system i. In our
two-stage procedure MCB-CVE, the first-stage run length
is T0,i = ζi/δ 2 from (4), where the constant ζi is specified
by the user, and parts (ii)–(iv) of Theorem 2 consider a
partition of the possible values of ζi into three sets: less
than, equal to, and greater than γ2σ2

i . These results show
that the choice of the value for ζi has a significant impact
on the variability of the total run length Ti(δ ).

To understand this effect, because of (9), it will be
helpful to first get a handle on the potential total run length
T̄i(δ ) in (8). Note that (11) implies

T̄i(δ )≈ γ
2
σ

2
i /δ

2 for small δ . (25)

The CLT in (19) refines this by showing that when δ is
small, T̄i(δ ) is roughly normally distributed about its mean
E[T̄i(δ )], which is approximately γ2σ2

i /δ 2 for small δ by
(14).

Now consider the case when ζi < γ2σ2
i , as in Theo-

rem 2(ii). Since (25) implies T̄i(δ ) ≈ γ2σ2
i /δ 2 > ζi/δ 2 =

T0,i, the second stage is almost always needed in the limit
by (9). Thus, the first-stage run length is “too short” by
itself, and the total run length Ti(δ ) is almost always equal
to the potential run length T̄i(δ ). Hence, the asymptotic
variability of Ti(δ ) is that of T̄i(δ ); see (20) and (21).

Theorem 2(iii) examines when ζi = γ2σ2
i . Recall that

for small δ , the potential total run length T̄i(δ ) has roughly a
normal distribution centered at E[T̄i(δ )]≈ γ2σ2

i /δ 2, which
is exactly the first-stage length T0,i in this case. Thus,
the complementary events {T̄i(δ ) > T0,i} and {T̄i(δ )≤ T0,i}
each have approximately probability 1/2 for small δ . By
(9), the total run length Ti(δ ) = T̄i(δ ) when T̄i(δ ) > T0,i, so
a second stage is required, and it results in variability in the
total run length because of the randomness in T̄i(δ ). When
T̄i(δ )≤ T0,i, the second stage is not needed, in which case

the total run length Ti(δ ) exhibits no variability since it is
just T0,i, which is deterministic. Consequently, for small δ ,
the total run length Ti(δ ) has approximately a distribution
Ĥ that has a point mass at T0,i with probability 1/2 (arising
from when T̄i(δ )≤ T0,i) and the rest is the positive part of
a normal (corresponding to when T̄i(δ ) > T0,i). Shifting the
distribution Ĥ by its expectation leads to the distribution H
in (23). It can then be shown the variance of the total run
length satisfies (22).

When ζi > γ2σ2
i , as in Theorem 2(iv), the first stage

is “too long,” so the second stage is almost never needed.
Thus, most of the time, the total run length is just T0,i,
which is deterministic, so there is little variability; see (24).

We now examine the variability of the run length for
MCB-STS.

Theorem 3 Suppose that Assumption 1 and 3 hold
and that {V ′2i (t) : t > 0} is uniformly integrable. Then for
each system i, the following hold as δ → 0:

(i) δ 4Var(T̄ ′i (δ ))→ Var(τ̄ ′i ), where τ̄ ′i = γ ′2σ2
i g2(Bi)

and 0 < Var(τ̄ ′i ) < ∞;
(ii) δ 4Var(T ′i (δ ))→ Var(τ ′i ), where τ ′i is defined in

(16) and 0 < Var(τ ′i ) < ∞.

We now compare the results of Theorems 2 and 3. In
terms of asymptotic variance of total run lengths, we see that
the variability of MCB-CVE run lengths are O(1/δ 2) by
(21), (22) and (24), whereas the variability of MCB-STS run
lengths are of order 1/δ 4 by Theorem 3(ii). Thus, MCB-
CVE run lengths are asymptotically less variable than MCB-
STS run lengths. The reason for the difference originates
from the fact that MCB-CVE uses consistent estimators
of σ2

i (Assumption 2), whereas the variance estimators in
MCB-STS are not consistent (for a fixed number of batches);
see Section 2.2.

5 CHOOSING A FIRST-STAGE RUN LENGTH FOR
MCB-CVE

We now apply the results from the previous section to
investigate the choice of ζi for MCB-CVE. Recall the
first-stage run length is T0,i = ζi/δ 2 from (4), where the
constant ζi > 0 is arbitrary and specified by the user, and
Theorem 1 shows the asymptotic impact of the choice of
ζi on the expected total run length Ti(δ ) for MCB-CVE.
Specifically, from (12) and (13) we see that δ 2E[Ti(δ )]→
γ2σ2

i if ζi ≤ γ2σ2
i , and δ 2E[Ti(δ )]→ ζi if ζi > γ2σ2

i . Thus,
we have the following result.

Corollary 4 For MCB-CVE, the values of ζi ∈
(0,∞) that minimize limδ→0 δ 2E[Ti(δ )] are ζi ∈ (0,γ2σ2

i ].
Corollary 4 suggests that the user should choose ζi such

that ζi ≤ γ2σ2
i to minimize the expected total run length.

Of these values of ζi, we now want to determine which
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leads to the smallest asymptotic variance of the total run
length. The next result follows from Theorem 2.

Corollary 5 For MCB-CVE, the value of ζi ∈
(0,γ2σ2

i ] that minimizes limδ→0 δ 2Var(Ti(δ )) is ζi = γ2σ2
i .

Thus, Corollaries 4 and 5 provide the optimal solution
ζi = γ2σ2

i to a bicriteria optimization problem to find the
best first-stage run length, by first choosing ζi to minimize
the expected total run length, and next breaking the tie
by minimizing the variance of the total run length. Of
course, the user typically does not know the value of σ2

i
(which is why a two-stage procedure is being applied in the
first place), so the optimal choice of ζi cannot be directly
implemented in practice since it depends on σ2

i . However,
it does provide interesting insight into how one should try
to choose ζi. Moreover, if we have an approximation for
σ2

i , then we could use this to determine a good value for ζi.
For example, Whitt (2006) and references therein provide
such variance approximations for various queueing and loss
models.

6 CONCLUSIONS

We compared the total run lengths for MCB-CVE and MCB-
STS in terms of their means and variances. We found that
although the two approaches have mean run lengths that
are of the same order 1/δ 2, where δ is the absolute-width
parameter of the MCB intervals, the variability of the MCB-
STS run lengths are strictly greater than those of MCB-CVE.
We also provided some analysis suggesting how to choose
the first-stage run length for MCB-CVE.
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